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A B S T R A C T  

In some computer applications of linguistics (such as 
maximum-likelihood decoding of speech or handwriting), the 
purpose of the language-handling component (Language 
Model) is to estimate the linguistic (a priori) probability of 
arbitrary natural-language sentences. This paper discusses 
theoretical and practical issues regarding an approach to 
building such a language model based on any equivalence 
criterion defined on incomplete sentences, and experimental 
results and measurements performed on such a model of the 
Italian language, which is a part of the prototype for the 
recognition of spoken Italian built at the IBM Rome 
Scintific Center. 

S T O C H A S T I C  M O D E L S  O F  L A N G U A G E  

In some computer applications, it is necessary to have a 
way to estimate the probability of any arbitrary 
natural-language sentence. A prominent example is 
maximum-likelihood speech recognition (as discussed in [1], 
[4], [7]), whose underlying mathematical approach can be 
generalized to recognition of natural language "encoded" in 
any medium (e.g. handwriting). The subsystem which 
estimates this probability can be called a stochastic model of 
the target language. 

If the sentence is to be recognized while it is being 
produced (as necessary for a real-time application), the 
computation of its probability should proceed 
"left-to-right," i.e. word by word from the beginning 
towards the end of the sentence, allowing application of fast 
tree-search algorithms such as stack decoding[5] 
Left-to-right computation of the probability of any word 
string is made possible by a formal manipulation based on 
the definition of condit__ional probability: if W i is the i-th 
word in the sequence 14' of length N, then: 

N 

e ( W ) =  1--IP(EI w , t  , ~_~  . . . . .  ~'t) 
i=1 

In other terms, the probability of a sequence of words is the 
product of the conditional probability of each word, given 
all of the previous ones. As a formal step, this holds for full 
sentences as well as for any subsequence within a sentence, 
and also for multi-sentence pieces of text, as long as 
sentence boundaries are explicitly accounted for (typically by 
introducing a pseudo-word as sentence boundary marker). 
We shall apply this equation only to subsequences occurring 
at the start of sentences (i.e. "incomplete" sentences); thus, 
the unconditional probability P(WI) can meaningfully be 
read as the probability that the particular word WI, rather 
than any other word, will be the one starting a sentence. 

The language model will thus consist essentially of a 
way to compute the conditional probability of any (target) 
word given all of the words that precede it in the sentence. 
For brevity, we shall call this (possibly empty) subsequence 
of the sentence to the left of the target word its prefix, using 
this term intcrchangeably with incomplete sentence, and we 
shall refer to the operation of conditional probability 
estimation given an incomplete sentence as predicang the 
next word in the sentence. A stochastic language model in 
this form may be said to be in predictive normal form [2]. 

The predictive power of two language models in 
predictive normal form can always be compared on an 
empirical basis, no matter how different their internal 
structures may be, by using the perplexity statistic 
introduced in [6]; the perplexity, computed by applying a 
language model in predictive normal form to an arbitrary 
body of text, can be interpreted as the average number of 
words among which the model is "in doubt" at every 
context along the text (this can be made rigorous along the 
lines of the argument in [13]). 

T R A I N I N G  T H E  M O D E L  

A naive statistical approach to the estimation of the 
conditional probabilities of words given prefixes, to build a 
language model in predictive normal form, would simply 
collect occurrences of each prefix in a large corpus, using 
the relative frequencies of following words as estimates of 
probability. 'l'i~is is clearly unfeasible: no matter how large 
the available corpus, the possible prefixes will be yet more 
numerous; thus, most of them will not be observed in the 
corpus, and those which are observed will only be seen 
followed by a very limited and unrepresentative subset of 
the words that can come after them. 

This problem stems directly from the fact that the 
number of elements in the set ("space") of different possible 
(incomplete) sentences is too high; thus, it can be met 
head-on by simply reducing the number of incomplete 
sentences which are deemed to differ significantly for 
predictinn purposes, i.e. by passing to the quotient space of 
the sentence space on a suitable equivalence relation; in 
other words, by using as, contexts of the language model, 
the equivalence classes in a partition of the set of all 
prefixes, rather than the prefixes themselves. The 
equivalence classification of prefixes can be based on any 
kind of linguistical knowledge, as long as it can be applied to 
two prefixes to judge if they can be deemed "similar 
enough" to allow us to expect that they should lead to the 
same prediction regarding the next word to Le expected in 
the sentence. Indeed, the knowledge embodied in the 
equivalence classification need not be of the kind that would 
be commonly labeled "[inguistical"; the equivalence criterion 
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between two sentence prefixes need not be any more than 
the purely pragmatical "they behave similarly in predicting 
the next following word." 

Let us assume that we already had a stochastic language 
model, in predictive normal form, somehow trained to our 
satisfaction. To each string of words, considered as a 
sentence prefix, there would be attached a probability 
distribution over all words in the dictionary, corresponding 
to the conditional probability that the word should follow 
this prefix. We could now apply sentence-space partitioning 
as follows: define a distance measure between probability 
distributions over the dictionary; apply any clustering 
algorithm to obtain the desired number of classes (or, 
cluster iteratively until further clustering would require 
merging of equivalence classes which are at a distance above 
some threshold). By this hypothetical process, we would be 
extracting linguistical knowledge (namely, which sequences 
of words can be deemed equivalent as regards the word 
which can be expected to follow them) from the model itself 
(thus, presumably, from the data it was trained upon). 
Since we don't have such a well-trained model to begin with, 
we will actually have to reverse the process: start by 
injecting some knowledge in the form of equivalence 
criteria, obtain from this a way to practically train the 
model. 

One way to obtain the initial sentence-space partition 
could be from a parser able to work left-to-right on natural 
language sentences; each class in the partition would be the 
set of all sentence prefixes that take the parser's state to a 
given string of non-terminals (or rather, given the possibility 
of ambiguous parses, to a given set of such strings). We 
have not attempted this. What we have attempted is 
obtaining the equivalence relation on string of words from 
an equivalence relation on single words, which is far simpler 
to define (although, being a further approximation, it can be 
expected to give poorer results). Thus, if we define the 
equivalences: 

Michele ~--- Giuseppe 
pensa -- dlce 

we will have that "Michele dice" is equivalent to "Giuseppe 
pensa," and so on. One big advantage is that such 
equivalence classes on single words are relatively easy to 
obtain automatically (by clustering over any appropriate 
distance measure, as outlined in the hypothetical example 
above - the difference being that we can train single words 
adequately, without having to resort to a previous 
classification), thus leading to an automatical (although far 
from optimal) sentence-space partitioning on which the 
model's training can be based. 

It should be noted at this point that this approach 
suffers from the "synonym problem": since equivalence 
relationships enjoy the transitive property, we risk deeming 
"equivalent" two items A and B which are actually quite 
different, by virtue of the fact that they both "resemble" a 
third item C. This problem depends on the "all or nothing" 
nature of equivalence relationships, and could be bypassed 
by a mathematically more general approach, based on the 
theory of Marker  Sources (as outlined in ['3], [g]). The 
latter can be said to stern from a generalization of 

sentence-space partitions to "fuzzy partitions" (probabilistic 
covers), i.e. frnm usage of a nondeterministic equivalence 
relation. I lowever, as argued in rlO], the greater generality, 
although aesthetically appealing, and no doubt useful against 
the "synonym problem," does not necessarily add enough 
power to the language model to offset the added 
computational burden; in many cases, Markov-source 
models can be practically reduced to sentence-space 
partitioning models. 

One further generalization is the identification of 
equivalence relationships between word strings of different 
length. For example, verb forms such as "dice" or "pensa" 
could be deemed equivalent to themselves prefixed by the 
word "non," finally leading to equivalence between, say, 
"Marie dice" and "Giuseppe non pensa." Such equivalences 
could also, in principle, be tested automatically on statistical 
grounds. Finally, equivalence criteria thus obtained via 
statistical means are by no means ends in themselves, but 
can be integrated with other linguistical knowledge 
expressed as a partition of the sentence space, to build a 
stronger model. Indeed, the set of language models built on 
sentence space partitions inherits mathematical lattice 
properties from the set of partitions itself, through their 
natural correspondence, allowing simple but useful 
operation on language models to yield new language models. 
For example, the "least upper bound" operation on two 
language models gives the model based on the equivalence 
criterion which requires both equivalence criteria from the 
original models to be satisfied. Thus, for example, we could 
start from an equivalence criterion O defined on purely 
grammatical grounds (for example, by using a parser, such 
as suggested above), and another equivalence criterion S 
defined on statistical grounds (such as we have built as 
outlined above), and merge them into a new criterion SO, 
the laxer one which is still stronger than either, to obtain a 
finer partition (and thus, presumably, a better performing 
stochastical language model, assuming a reasonably large 
corpus is available to train it on). 

A P P L I C A T I O N  AND R E S U L T S  

Given a suitable equivalence criterion over prefixes, and 
a large corpus, the language model can now in principle be 
built by purely statistical means, by collecting the multiset of 
words following each equivalence class (context), and using 
relative frequencies as estimators of conditional 
probabilities. However, this would require that the 
equivalence criterion be so lax (i.e., that it have so few 
contexts) that each of its contexts can be guaranteed to 
occur in the corpus followed by all different words that can 
possibly follow it, despite possible statisUcal fluctuations. 
This is an overly severe restriction that, even for a quite 
large corpus, would in practice constrain the model builder 
to use very weak equivalence classifications (i.e. ones of little 
discriminatory power). 

A generalization of the backing-off methodology first 
proposed in [q] can be used to overcome this limitation. 
Rather than a single sentence-space partition, the model will 
need a chain of such partitions, progressively weaker, and 
ending with the weakest possible "partition" - the one which 
considers any prefix equivalent to any other (the maximal 
element in lhe above-mentioned lattice). "Elementary" 
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models will be built, with the above statistical procedure, 
over each partition of the chain. 

When using the model (now built as a chain of 
elementary models) in predictive form, if a prediction cannot 
be reliably obtained from the strongest model in the chain, 
the algorithm will then bacl~-off to the next weakest model, 
and proceed recursively along the chain of elementary 
models until it finds one that can give a reliable prediction 
(the existence in the chain of the weakest conceivable model 
ensures termination). 

The method requires that, along with its predictions, an 
elementary model deliver, for any given context, a measure 
of its own reliability. This can be quantified as follows: in 
any context, an elementary model must estimate the 
probability that the next word will not be in the set actually 
observed for that model in that context (i.e., the set of 
words it is able to predict). Thus, each step of backing-off 
will be performed in two cases: unconditionally, if an 
elementary model has no observations at all for prefixes 
equivalent to the target one; conditionally, if that context 
was indeed observed, but the target word was not observed 
in it (and in this latter case, the self-estimate of reliability of 
the elementary model will come into play). 

For the estimation of the global probability of 
unobserved words in a context ("new" observations), there 
could be used the general approaches, based on Turing's 
heuristic, discussed in [ I 1 ] and [ 12], which lead, in practice, 
to estimating the probability of "new" observations as the 
ratio of words observed once to total observations. We 
have found it more reliable to use a simpler approach (the 

. "First-Time" heuristic), which directly estimates the 
probability of new observations as the ratio of different 
words observed to total observations. 

This idea leads to strictly more pessimistic estimates of 
reliability of elementary models (in particular, it treats any 
word observed only once in a context as if never observed 
at all) and, judging from experimental results, seems to 
better model actual linguistic behavior. As expected, it 
proves particularly valuable when judging predictive power 
over poorly-trained material, specifically Italian sentences in 
a domain of discourse different from that of the training 
corpus. Using training data from the "II Mondo" weekly 
magazine, the perplexity (with an 8000-word vocabulary) 
over other test sentences from the same magazine came to 
113, and over news flashes from the Ansa agency to 174, 
using Turing's heuristic; while using the First-Time heuristic 
under the same experimental conditions gave values of II I 
and 150 respectively. 

Particularly with this heuristic, cross-domain behavior 
of such models appears quite acceptable. Our main training 
corpus was a set of articles and news flashes on economy 
and finance, from the "II Mondo" weekly magazine and the 
"Ansa" new agency, for a total of about 6 million words; 
addition of just 50,000 words of inter-office memoranda 
made the perplexity of another test set of such memoranda 
(on a 3000-word vocabulary) decrease from 149 to 115, 

while naturally perplexity on test material homogeneous to 
the main body of the training corpus remained fixed (at 76). 
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