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ABSTRACT 
The Constituent Likelihood Automatic Word-tagging 

System (CLAWS) was originally designed for the low-level 
grammatical analysis of the million-word LOB Corpus of 
English text samples. CLAWS does not attempt a full parse, 
but uses a firat-order Markov model of language to assign 
word-class labels to words. CLAWS can be modified to 
detect grammatical errors, essentially by flagging unlikely 
word-class transitions in the input text. This may seem to be 
an intuitively implausible and theoretically inadequate model 
of  natural language syntax, but nevertheless it can 
successfully pinpoint most grammatical errors in a text. 
Several modifications to CLAWS have been explored. The 
resulting system cannot detect all errors in typed documents; 
but then neither do far more complex systems, which attempt 
a full parse, requiting much greater computation. 

Checking Grammar in Texts 
A number of  ~ r c b e r s  have experimented with ways to 

cope with grammatically ill-formed English input (for 
example, [Carboneil and Hayes 83], [Charniak 83], [Granger 
83], [Hayes and Mouradian 81], [Heidorn et al 82], [Jensen 
et al 83], [Kwasny and Sondheimer 81], [Weischedel and 
Black 80], [Weischedel and Sondheimer 83]). However, the 
majority of these systems are designed for Natural Language 
interfaces to software systems, and so can assume a 
restricted vocabulary and syntax; for example, the system 
discussed by [Fass 83] had a vocabulary of less than 50 
words. This may be justifiable for a NL front-end to a 
computer system such as a Database Query system, since 
even an artificial subset of English may be more acceptable 
to users than a formal command or query language. 
However, for automated text-checking in Word Processing, 
we cannot reasonably ask the WP user to restrict their 
English text in this way. This means that WP text-checking 
systems must be extremely robust, capable of analysing a 
very wide range of  lexical and syntactic constructs. 
Otherwise, the grammar checker is liable to flag many 
constructs which are in fact acceptable to humans, but 
happen not to be included in the system's limited grammar. 
A system which not only performs syntactic analysis of  text, 
but also pinpoints grammatical errors, must be assessed 
along two orthogonal scales rather than a single 'accuracy' 
measure: 

RECALL - 

"number of words/constructs correctly flagged as errors" 

"total number of 'true' errors that should be flagged" 

PRECISION = 

"number of words/constructs correctly flagged as errors" 

"total number of wordslconstructs flagged by the system" 

It is easy to optimise one of these performance measures 
at the expense of the other, flagging (nearly) ALL words in a 
text will guarantee optimal recall (i.e. (nearly) all actual 
errors will be flagged) but at a low precision; and 
conversely, reducing the number of words flagged to nearly 
zero should raise the precision but lower the recall. The 
problem is to balance this trade-off to arrive at recall AND 
precision levels acceptable to WP users. A system which 
can accept a limited subset of  English (and reject (or flag as 
erroneous) anything else) may have a reasonable recall rate; 
that is, most of  the 'true' errors will probably be included in 
the rejected text. However, the precision rate is liable to be 
unacceptable to the WP user:, large amounts of the input text 
will effectively be marked as potentially erroneous, with no 
indication of where' within this text the actual errors lie. One 
way to deal with this problem is to increase the size and 
power of  the parser and underlying grammar to deal with 
something nearer the whole gamut of  English syntax; this is 
the approach taken by IBM's EPISTLE project (see [Heidorn 
et al 82], [Jensen et al 83]). Unfortunately, this can lead to a 
very large and computationally expensive system: [Heidorn 
et al 82] reported that the EPISTLE system required a 4Mb 
virtual machine (although a more efficient implementation 
under development should require less memory). 

The UNIX Writer's Workbench collection of programs 
(see [Cherry and Macdonald 83], [Cherry et ai 83]) is 
probably the most widely-used system for WP text-checking 
(and also one of the most widely-used NLP systems overall - 
see [AtweU 86], [Hubert 85]). This system includes a 
number of separate programs to check for different types of  
faults, including misspellings, cliches, and cee, ain stylistic 
infelicities such as overly long (or short) sentences. 
However, it lacks a general-purpose grammar checker, the 
nearest program is a tool to filter out doubled words (as in "I 
signed the the contract"). Although there is a program 
PARTS which assigns a part of speech tag to each word in 
the text (as a precursor to the stylistic analysis programs), 
this program uses a set of localized heuristic rules to 
disambiguate words according to context; and these roles are 
based on the underlying assumption that the input sentences 
are grammatically well-formed. So, there is no clear way to 
modify PARTS to flag grammatical errors, unless we 
introduce a radically different mechanism for disambiguating 
word*tags according to contexu 

38 



LOB and CLAWS 
One such alternative word-tag disambiguation mechanism 

was developed for the analysis of  the Lancaster-Oslo/Bergen 
(LOB) Corpus. The LOB Corpus is a million-word 
collection of English text samples, used for experimentation 
and inspiration in computational linguistics and related 
studies (see for example [Leech et al 83a], [Atwell 
forthcoming b]). CLAWS, the Constituent-Likelihood 
Automatic Word-tagging System ([Leech et al 83b], [Atwell 
et al 84]), was developed to annotate the raw text with basic 
granmlatical information, to make it more useful for 
linguistic research; CLAWS did not attempt a full parse of 
each sentence, but simply marked each word with a 
grammatical code from a set of 133 WORDTAGS. The 
word-tagged LOB Corpus is now available to other 
researchers (see [Johansson et ai 86]). 

CLAWS was originally implemented in Pascal, but it is 
currently being recoded in C and in POPLOG Prolog. 
CLAWS can deal with Unrestricted English text input 
including "noisy" or ill-formed sentences, because it is based 
on Constituent Likelihood Grammar, a novel probabilistic 
approach to grammatical description and analysis described 
in [Atwell 83]. A Constituent Likelihood Grammar is used 
to calculate likelihoods for competing putative analysis; not 
only does this tell us which is the 'best' analysis, but it also 
shows how 'good' this analysis is. For assigning word-tags 
to words, a simple Markovian model can be used instead of 
a probabilistic rewrite-role system (such as a prohabilistic 
context-free grammar); this greatly simplifies processing. 
CLAWS first uses a dictionary, sufflxlist and other default 
routines to assign a set of putative tags to each word; then, 
for each sequence of ambiguously-tagged words, the 
likelihood of every possible combination or 'chain' of tags is 
evaluated, and the best chain is chosen. The likelihood of 
each chain of tags is evaluated as a product of all the 'links' 
(tag-pair-likelihoods) in the sequence; tag-pair likelihood is a 
function of the frequency of that sequence of two tags in a 
sample of tagged text, compared to the frequency of each of 
the two tags individually. 

An important advantage of this simple Markovian model 
is that word-tagging is done without parsing: there is no 
need to work out higher-level constituent-structure trees 
before assigning unambiguous word-tags to words. Despite 
its simplicity, this technique is surprisingly robust and 
successful: CLAWS has been used to analyse a wide variety 
of Unrestricted English, including extracts form newspapers, 
novels, diaries, learned journals, E.E.C. regulations, etc., with 
a consistent accuracy of c96%. Although the system did not 
have parse trees available in deciding word-classes, only 
cA% of words in the LOB Corpus had to have their assigned 
wordtag corrected by manual editing (see [Atwell 81, 82]). 

Another important advantage of the simple Markovian 
model is that it is relatively straightforward to transfer the 
model from English to other Natural Languages. The basic 
statistical model remains, only the dictionary and Markovian 
tag-pair frequency table need to be replaced. We are 
experimenting with the possibility of (partially) automating 
even this process - see [Atweli 86a, 86b, forthcoming c], 
[Atwell and Drakos 87]. 

The general Constituent Likelihood approach to 
grammatical analysis, and CLAWS in particular, can be used 

to analyse text including ill-formed syntax. More 
importantly, it can also be adapted to flag syntactic errors in 
texts; unlike other techniques for error-detection, these 
modifications of CLAWS lead to only limited increases in 
processing requirements. In fact, various different types of 
modification are possible, yielding varying degrees of 
success in error-detection. Several different techniques have 
been explored. 

Er ror  Likelihoods 
A very simple adaptation of  CLAWS (simple in theory at 

least) is to augment the tag*pair frequency table with a tag- 
pair e r r o r  l i ke l ihood  table. As in the original system, 
CLAWS uses the tag-pair frequency table and the 
Constituent Likelihood formulae to find the best word-tag for 
each word. Having found the best tag for each word, every 
cooccurring pair of tags in the analysis is re-assessed: the 
ERRO~_-LIKELIHOOD of  each tag-pair is checked. Error- 
likelihood is a measure of how frequently a given tag-pair 
occurs in an error as compared to how frequently it occurs in 
valid text. For example, if  the user types 

... m y  f a r t h e r  w a s  ... 

CLAWS will yield the word-tag analysis 

... P P $  R B R  B E D Z  ... 

which means <possessive personal pronoun>, 
<comparative adverb>, <past singular BE>. This analysis is 
then passed to the checking module, which uses tag-pair 
frequency statistics extracted from copious samples of error- 
full texts. These should show that tag-pairs <PP$ RBR> and 
<RBR BEDZ> often occur where there is a typing error, and 
rarely occur in grammatically correct constructs; so an error 
can be flagged at the corresponding point in the text. 

Although the adjustment to the model is theoretically 
simple, the tag-pair error likelihood frequency figures 
required could only be gleaned by human analysis of huge 
amounts of error-full text. Our initial efforts to collect an 
E r r o r  C o r p u s  convinced us that this approach was 
impractical because of the time and effort required to collect 
the necessary data. In any case, an alternative technique 
which managed without a separate table of tag-pair error 
likelihoods turns out to be quite successful. 

Low Absolute Likelihoods 
This alternative technique involved using CLAWS 

unmodified to choose the best tag for each word, as before, 
and then measuring ABSOLUTE LIKELIHOODS of tag- 
pairs. Instead of a separate tag-pair error likelihood table to 
assess the grammaticality, the same tag-pair frequency table 
is used for tag-assignment and error-detection. The tag-pair 
frequency table gives frequencies for grammatically well- 
formed text, so the second module simply assumes that if a 
low-likelihood tag pair occurs in the input text, it indicates a 
grammatical error. In the example above, tag-pairs <PP$ 
RBR> and <RBR BEDZ> have low likelihoods (as they 
occur only rarely in grammatically well-formed text), so an 
error can be diagnosed. 

Figure 1 is a fuller example of this approach to error 
diagnosis. This shows the analysis of a short text; please 
note that the text was constructed for illustration purposes 
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only, and the characters mentioned bear no resemblance to 
real living people! The text contains many mis-typed words, 
but these mistakes would not be detected by a conventional 
spelling-checker, since the error-forms happen to coincide 
with other legal English words; the only way that these 
errors can be detected is by noticing that the resultant 
phrases and clauses are ungrammatical. The granunar- 
checking program first divides the input text into words. 
Note that this is not entirely trivial: for example, enclitics 
such as I'll, won't are split into two words I ÷ 'II, will 

+ n't. The left-hand column in Figure I shows the sequence 
of words in the sample text, one word per line. The second 
column shows the grammatical tag chosen using the 
Constituent Likelihood model as best in the given context. 
The third column shows the absolute likelihood of  the 
chosen grammatical tag; this likelihood is normalised relative 
to a threshold, so that values greater than one constitute 
"acceptable" grammatical analyses, whereas values less than 
one am indicative of  unacceptably improbable grammar. 
Whenever the absolute likelihood value falls below this 
acceptability threshold, the flag ERROR? is output in the 
fourth column, to draw visual attention to the putative error. 
Thus, for example, the first word in the text, my, is tagged 
PP$ (possessive personal pronoun), and this tag has a 
normalisad absolute likelihood of  over 15, which is 
acceptable; the second word, farther, is tagged RBR 
(comparative adverb), but this time the absolute likelihood is 
below one (0.264271), so the word is flagged as a putative 
ERROR? 

This technique is extremely primitive, yet appears to 
work fairly well. There is no longer any need to gather 
error-likelihoods from an Error Corpus. However, the 
definition of what constitutes a "low" likelihood is not 
straightforward. On the whole, there is a reasonably clear 
correlation between words marked ERROR? and actual 
mistakes, so clearly low values can be taken as diagnostic of 
errors, once the question of what constitutes "lowness" has 
been defined rigorously. In the example, the acceptability 
level is defined in terms of a simple threshold: likelihoods 
are normalised so values below 1.000000 are deemed too 
low to be acceptable. The appropriate normalisetion scaling 
factor was found empirically. Unfortunately, a threshold at 
this level would mean some minor troughs would not be 
flagged, e.g. clever in I stole a meat clever .... (which was 
tagged JJ (adjective) but should have been the noun cleaver ) 
has a normalised likelihood of 4.516465; tame in the 
gruesome tame ofEroc Attwell... (which was also tagged JJ 
(adjective) but should have been the noun tale ) also has a 
normalised likelihood of 4.516465; and the phrase won day 
(which should have been one day ) involves a normalised 
likelihood of 4.060886 (although this is, strictly speaking, 
associated with day rather than won, an error flag would be 
sufficiently close to the actual error to draw the user's 
attention to it). However, if we raised the threshold (or 
alternatively changed the normalisation function so that these 
normalised likelihoods are below 1.000000), then more 
words would be flagged, lowering the precision of error 
diagnosis. In some cases, error diagnosis would be 
"blurred", since sometime-'~ words immediately before and/or 
after the error also have low likelihoods; for example, was in 
my farther vms very crawl.., has a likelihood of 1.216545. 
Worse, some error flags would appear in completely 
inappropriate places, with no true errors in the immediate 
context; for example, the exclamation mark at the end of he 

won't get away with this! has a likelihood of  4.185351 and 
so would probably be flagged as an error if the threshold 
were raised. 

Mother  way to define a trough would be as a local 
minimum, that is, a point on where points immediately 
before and after have higher likelihood values, even a trough 
with a quite high value is flagged this way so long as 
surrounding points are even higher. This would catch clever, 
tame and won day mentioned above. However, strictly 
speaking several other words not currently flagged in Figure 
1 are also local minima, for example my in perhaps my 

friends would ... and ~ in he ba/d at me /f [ ... So, this 
definition is liable to cause a greater number of  'red herring' 
valid words to be erroneously flagged as putative mistakes, 
again leading to a worse precision. 

Once an optimal threshold or other computational 
definition of low likelihood has been chosen, it is a simple 
matter to amend the output routine to produce output in a 
simplified format acceptable to Word Processor users, 
without grammatical tags or likelihood ratings but with 
putative errors flagged. However, even with an optimal 
measure of  lowness, the success rate is unlikely to be 
perfect. The model deliberately incorporates only 
rudimentary knowledge about English: a lexicon of  words 
and their wordtags, and a tag-pair frequency matrix 
embodying knowledge of  tag cooccurrence likelihoods. 
Certain types of error are unlikely to be detected without 
some further knowledge. One limited augmentation to this 
simple model involves the addition of error tags to the 
analysis procedure. 

Error-Tags 
A rather more sophisticated technique for taking syntactic 

context into account involves adding ERROR-TAGS to 
lexical entries. These are the tags of  any similar words 
(where these are different from the word's own tags). In the 
analysis phase, the system must then choose the best tag 
(from error-teg(s) and 'own' tag(s)) according to syntactic 
context, still using the unmodified CLAWS Constituent- 
Likelihood model. For example, in the sentence l am very 
hit. an error can be diagnosed if the system works out that 
the tags of input word hit ( NN, VB, VBD, and VBN - 
<singular cormnon noun>, <verb infinitive>, <verb past 
tense>, <verb past participle>) are all much less likely in the 
given context than J3 (<adjective>), known to be the tag of a 
similar word ( hot ). So, a rather more soph/sticated error- 
detection system includes knowledge not just about tags of  
words, but also about what alternative word-classes would be 
plausible if the input was an error. This information consists 
in an additional field in lexicon entries: each dictionary entry 
must hold (i) the word itself, (ii) the word's own tags, and 
(iii) the error-tags associated with the word. For example: 

WORD TAG(S) ERROR-TAG(S) 
. . °  

form NN IN# RI# 
. ° °  

hit NN VB VBD VBN JJ# 
o . °  

prophecy NN VB# 
. . o  
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Note that error-tags are marked with # to distinguish 
them from own tags. CLAWS then chooses the best tag for 
each word as usual. However, in the final output, instead of 
each word being marked with the chosen word-tag, words 
associated with an ERROR TAG are flagged as potential 
errors. 

To illustrate why error-tags might help in error diagnosis, 
notice that dense in I maid several dense in h/s ... does not 
have a below-threshold absolute likelihood, and so is not 
flagged as a putative error. An error-tag based system could 
calculate that the best sequence of tags (allowing error-tags) 
for the word sequence several dense in his ... is [AP NNS~ 
IN PP$] (<post-determiner>, <plural common noun>, 
<preposition>, <possessive personal pronoun>). Since NNS 
is an error-tag, an error is flagged. However, the simpler 
absolute likelihood based model does not allow for the 
option of  choosing NNS as the tag for dense, and is forced 
to choose the best of the 'own' tags; this in turn causes a 
mistagging of /n as NNU (<abbreviated unit of 
measurement>, since [JJ NNU] (<adjective> <abbreviated 
unit of measurement>) is likelier than [JJ IN] (<adjective> 
<preposition>). Furthermore, [JJ NNU] turns out not to be 
an exceptionally unusual tag cooccurrence. The point of  all 
this is that, without error-tags, the the system may mistag 
words immediately before or after error-words, and this 
mistagging may well distort the absolute likelihoods used for 
error diagnosis. 

This error-tag-based technique was originally proposed 
and illustrated in [Atwell 83]. The method has been tested 
with a small test lexicon, but we have yet to build a 
complete dictionary with error-tags for all words. Adding 
error tags to a large lexicon is a non-trivial research task; 
and adding error-tags to the analysis stage increases 
computation, since there are more tags to choose between for 
each word. So far, we have not found conclusive evidence 
that the success rate is increased significantly; this requires 
further investigation. Also to be more fully investigated is 
how to take account of other relevant factors in error 
diagnosis, in addition to error-tags. 

Full Cohorts 
In theory at least, the Constituent-Likelihood method 

could be generslised to take account of all relevant 
contextual factors, not just syntactic bonding. This could be 
done by generating COHORTS for each input word, and 
then choosing the cohort-member word which fits the context 
best. For example, if the sentence you were very hit were 
input, the following cohorts would be generated: 

you yew ewe 
were where wear 
very vary veery 
hit hot hut hat 

(the term "cohort" is adapted from [Marslen-Wilson 85] 
with a slight modification of meaning). Cohorts of similar 
words can be discovered from the spelling-check dictionary 
using the same algorithm employed to suggest corrections 
for misspellings in current systems; these techniques are 
fairly well-understood (see, for example, [Yannakoudekis 
and Fawthrop], [Veronis 87], [Borland 85]). Next, each 
member of  a cohort is assigned a relative likelihood rating, 

taking into account relevant factors including: 

i) the degree of  similarity to the word actually typed (this 
measure would be available anyway, as it has to be 

calculated during cohort generation; the actual word typed 
gets a similarity factor of 1, and other members of the cohort 
get appropriate lower weights) 

ii) the 'degree of  fit' in the given syntactic context 
(measured as the syntactic constituent likelihood bond 
between the tag(s) of  each cohort member and the tag(s) of  
the words before and after, using the CLAWS constituent 
likelihood formulae); 

iii) the frequency of usage in general English (common 
words like "you" and "very" get a high weighting factor, rare 
words like "ewe", "yew", and "veery" get a much lower 
weighting; word relative frequency figures can be gleaned 
from statistical studies of large Corpora, such as [Hofland 
and Johansson 82], [Francis and Kucera 82], [Carroll et al 
71]); 

iv) if a cohort member occurs in a grammatical idiom or 
preferred collocation with surrounding words, then its 
relative weighting is increased (e.g. in the context "fish and 
...", ch/ps gets a higher collocation weighting than chops ); 
collocation preferences can also be elicited from studies of 
large corpora using techniques such as those of [Sinclair et 
al 70]; 

v) domain-dependent lexical preferences should ideally be 
taken into account, for example in an electronics manual 
current should get a higher domain weighting than currant. 

All these factors are multiplied (using appropriate 
weightings) to yield a relative likelihood rating for each 
member of the cohort. The cohort-member with the highest 
rating is (probably) the intended word; if the word actually 
tylied is different, an error can be diagnosed, and 
furthermore a correction can be offered to the user. 

Unfortunately, although this approach may seem sensible 
in theory, in practice it would require a huge R&D effort to 
gather the statistical information needed to drive such a 
system, and the resulting model would be computationally 
complex and expensive. It would be more sensible to try to 
incorporate only those features which contribute significantly 
to increased error-detection, and ignore all other factors. 
This means we must test the existing error-detection system 
extensively, and analyse the failures to try to discover what 
additional knowledge would be useful to the system. 

Error  Corpus 
The error-likelihoud and full-cohort techniques would 

appear to give the best error-detection rates, but require vast 
computations to build a general-purpose system from scratch. 
The error-tag technique also requires a substantial research 
effort to build a large general-purpose lexicon. A version of 
the Constituent Likelihood Automatic Word-tagging System 
modified to use the ABSOLUTE LIKELIHOOD method of 
error-detection has been more extensively tested; this system 
cannot detect all grammatical errors, but appears to be quite 
successful with certain classes of errors. To test alternative 
prototypes, we are building up an ERROR CORPUS of texts 
containing errors. The LOB Corpus includes many errors 
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which appeared in the original published texts; these are 
marked SIC in the text, and noted in the Manual which 
comes with the Corpus files, [Johansson et al 78]. The 
initial Error Coqms consisted in these errors, and it is being 
added to from other sources (see Acknowledgements below). 
The errors in the Error Corpus can be (manually) classified 
according to the kind of processing required for detection 
(the examples below starts with a LOB line reference 
number): 

A: non-word error-forms, where the error can be found 
by simple dictionary-lookup; for example, 

A21 115 As the news pours in f rom around the world, 
beleagared (SIC) Berlin this weekend is a city on a razor's 
edge. 

B: error-forms involving valid English words in an 
invalid grammatical context, the kind of en, or the CLAWS- 
based approach could be expected to dete~ (these may he 
due to spelling or typing or grammatical mistakes by the 
typist, but this is irrelevant here: the classification is 
according to the type of processing required by the detection 
program); for example 

E18 121 Unlike an oil refinery one cannot grumble much 
about the fumes, smell and industrial dirt, generally, for  little 
comes out o f  the chimney except possibly invisible gasses. 
(SIC) 

C: error-forms which are valid English words, but in an 
abnormal grammatical/semantic context, which a CLAWS- 
type system would not detect, but which could conceivably 
he caught by a very sophisticated parser, for example, 
breaking 'long-distance' number agreement roles as in 

.415 170 It is, however, reported that the tariff on textile.¢ 
and cars imported f rom the Common Market are (SIC) to be 
reduced by 10 per cent. 

D: lexicaily and syntactically valid error-forms which 
would require "intelligenf' semantic analysis for detection; 
for example, 

P17 189 She did not imagine that he would pay her a visit 
except in Frank's interest, and when she hurried into the 
room where her mother was trying in vain to learn the 
reason of  his visit, her first words were of  her fiancee. (SIC) 

or 

[(29 35 He had then sown (SIC) her up with a needle, and, 
after a time she had come hack to him cured and able to 
bear more children. 

Collection and detailed analysis of texts for this Error 
Corpus is still in progress at the time of writing; but one 
important early impression is that different sources show 
widely different distributions of  error-classes. For example, 
a sample of 150 errors from three different sources shows 
the following distribution: 

i) Published (and hence manually proofread) text: 
A:52% B:28% C:8% D:12% 

ii) essays by 11- and 12-year-old children: 
A:36% B:38% C: 16% D: 10% 

iii) non-native English speakers: 
A :4% B:48% C:12% D:36% 

Because of this great variation, precision and recall rates 
are also liable to vary greatly according to text source. In a 
production version of the system, the 'unusualness' threshold 
(or other measure) used to decide when to flag putative 
errors will be chosen by the user, so that users can optimise 
precision or recall. It is not clear how this kind of  user- 
customisation could be built into other WP text-checking 
systems; but it is an obvious side-benefit of a Constituent 
Likelihood based system. 

Conduslous 
The figures above indicate that a CLAWS-based 

grammar-checker would be paff.iculady useful to non-native 
English speakers; but even for this class of users, precision 
and recall are imperfecL The CLAWS-based system is 
inadequate on its own, but should properly be used as one 
tool amongst many; for example as an augmentation to the 
Writer's Workbench collection of text-critiquing and 
proofreading programs, or in conjunction with other English 
Language Teaching tools such as a computerised ELT 
dictionary (such as those discussed by [Akkerman et al 85] 
or [Atwell forthcoming a]. Other systems for dealing with 
syntactically ill-formed English attempt a full grammatical 
parse of each input sentence, and in addition require error- 
recovery routines of varying degrees of sophistication. This 
involves much more  processing than the CLAWS-based 
system; and yet even these systems fall to diagnose all errors 
in a text. Cleady, the Constituent-Likelihood en~r-detection 
technique is ideally suited to applications where fast 
processing and relatively small computing requirements are 
of paramount impoff,ance, end for users who find imperfect 
error-detection better than none at all. I freely admit that the 
system has not yet been comprehensively tested on a wide 
variety of WP users; as with all AI research systems, a lot af 
work still has to be done to engineer a generally-acceptable 
commercial product. We are cun-ently looking for sponsors 
and collaborators for this research: anyone interested in 
developing the prototype into a robust system (for example, 
to be integrated into a WP system) is invited to contact the 
author! 
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Figure l .  Sample output with low Likelihoods flagged. 

m7 PP$ 1 5 . 2 f 7 ~  

farther RBR 0.264271 ERROR? 

wss BEDZ 1.216545 

very QL 22.13'7197 

crawl NN 0.289613 ERROR? 

103.174992 
he " PP3A 90897396 

bsld J J  0..271961 ERROR? 

a t  IN 17.2o'7397 

me PPIO 29.279452 

Jr CS IL400905 

1 PPIA 71.313009 

dud JJ 0.271961 ERROR? 

arvlthlng PN 0.088.53,5 ERROR? 

wrong J J  1.682160 

, , 24.477376 

and CC 82.096966 

sometimes RB 29.179920 

he PP3A 9,.921162 

would MD 64.525545 

hot J J  O220232 ERROR? 

and CC 24 .663~0  

bit NN 20.028340 

me P P 1 0  0.062'710 ERROR? 

, , 18.500350 

until CS 29.873133 

1 PP1A 71.313009 

wss BEDZ 95.448591 

so QL 22.137197 

week NN 0.289613 ERROR? 

and CC 42.917870 

miserable NN 20.028340 

that CS 18.439211 

1 PPIA 71_313009 

wanted VBD 13S~15263 

to TO 20.4,t526~ 

due J J  0.216826 ERROR? 

21.911547 

§redly RB 36£64715 

, , 48.44~0013 

won VBD 2&4~13e 

day NN 4.0EQ686 

, , 84.114626 

I PPIA 36.536284 

decided VBD 135.815263 

to T O  2&44S266 

got VBD 0.102690 ERROR? 

my PP$ 30.396041 

won VBD 0.099010 ERROR? 

back RP 2L849187 

on IN 10.259310 

him P P 3 0  29.2794.52 

: : 3.2,42075 

I PPIA 4.764065 

' l l  MD 64.525545 

mike NN 0.123308 ERROR? 

him P P 3 0  0.062710 ERROR? 

pay VB 10.708764; 

; ; 1.396258 

he PP3A 4.7640~5 

wil l  ~ 64.525545 

n ' t  XNOT 95.159151 

get VB 0.14.q38 ERROR? 

away RB 29.196041 

with IN 38.186770 

this DT 21.792427 

! ! 4.1853.51 

I PPIA 90.897396 

stole VBD 135.815263 

• AT 39.564677 

meat NN 191.684559 

clever J J  4.S16465 

, , 24.477376 

• rid CC 82.096986 

i PPIA 2,5.834909 

m i d  NN 0.0S9657 ERROR? 

seversl AP 2.085110 

dense J J  8.725460 

in NNU 33.948608 

his PP$ 0.306138 ERROR? 

hid VBD 0.099010 ERROR? 

with IN 34.451138 

it PP3 9.309486 

I I 11.826017 

it PP3 62.337141 

must MD 4&8?S000 

have HV 43 .~3082  

hurt VB 0.52728'7 ERROR? 

a AT 45.661755 

lit VBD 0.037789 ERROR? 

! I 22.778418 

son NN 9.189478 

the AT1 4.149936 

gruesome NN 160.254821 

tame J J  4 ¢164~5 

of  IN 17.237397 

Erue NN 54.835271 

Attweli NN 26 .2543~  

appeared VBN 8-8E7370 

in NNU 4.870130 

all ARN 0 . 2 6 5 3 9 3  ERROR? 

the ATI 3.499841 

papers NNS 40.46"7490 

70.S42872 

per hap• RB 3(,,.56d3 L5 

my PP$ $.4TM~$ 

friends NNS 44.477694 

would MD 15.005662 

learnt  VBN 0.237220 ERROR? 

to T O  34.470793 

spell NN 0.061Z50 ERROR? 

my PP$ 0.545207 ERROR? 

name NN 51.946085 

correctly J J  4..516465 

at  IN 17.237397 

last AP 10.850327 

! ! 3.437432 

Figure 1. Sample output with low Likelihoods flagged. 
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