
F O R M A L I S M S F O R M O R P H O G R A P H E M I C D E S C R I P T I O N

Alan Black. G r a e m e Ritchie.
Dept of Arr~.~al I~elZ~gence, Univer~y o[F_dlinSw'gh

80 South Br /dge , Edinburgh EH1 lltN, 5COTI, AND

Steve P u l m a n and G r a h a m Russel l
Corn/ha/rig Laborazory, U n ~ v e r ~ y o f C a m b r / d g e

Corn Exchange Street, C, ambri4t ge C B 2 3QG , ENGLAND

ABSTRACT

Recently there has been some interest in rule for-
maltsms for describing morphologically significant
regularities in or thography of words, largely
influenced by the work of Koskenniemi. Varioue
implementationa of these rules are possible, but
there are some weaknesses in the formalism as it
stands. An alternative specification formalism is
possible which solves some of the problems. This
new formalism can be viewed as a variant of the
"pure'" Koskenniemi model wi th certain con-
etraints relaxed. The new formal ism has particu-
lar advantages for mult iple cheLracter changes. An
interpreter has been implemented for the formal-
ism and a significant subset of EngLish morphogra-
phenfice has been described, but it has yet to be
used for describing other languages.

Background

This paper describes work in a partic~dAr area of
computational morphology, that of m o r p h o g r a -
phemics. Morphographemics is the area dealing
with systematic discrepancies between the surface
form of words and the symbolic representation of
the words in a lexicon. Such differences are typi-
cal/y orthographic changes that occuz when basic
lexical items are concatenated; e.g. when the sWm
move and sufflx +~d are concatenated they form
moved with the deletion of an e+. The work dis-
cussed here does not deal wi th the wider issue of
which morphemes can join together. (The way we
have dealt with that question is described in
Russell a aL (1986)).

The fzamework described here is based on
the two-level model of morphographemics
(Koskenniemi 1983) where rules are wri t ten to
de~zibe the relationships between sur face f o r m s
(e.g. moved) and lexical f o r m s (e.g. move+ed). In
his thesis, Koskennlemi (1983) presents a formal-
ism for describing morphographemics. In the early
implementatiorm (Koskenniemi 1983, Kart tunen
1983) although a hlgh-level notation was specified
the actual implementation was by hand-
compilation into a form of finite state machine.
Latez implementations have included automatic
compilation techniques (Bear 1986, Ritchie et aZ
1987), which take in a high-level specification of
marface-t~-lexical relationships and produce a
directly interpretable set of automata. This pre-
compilation is based on the later work of Koskeno
niemi (1985).

Note that there is a distinction between the
/u,,e~_7!~ and its Imp~nentatlon. Although the
Koskenniemi formalism is often discussed in terms
of automata (or transducers) it is not a lways
necessary for the morphologist using the system to
know exactly how the rules are implemented, but
only that the rules adhere to theiz defined
interpretation. A suitable formalism should make
it easier to specify spelling changes in an elegant
form. Obviously for practical reasons there
should be an efficient implementation, but it is not
necessary for the specification formal ism to be
identical to the low-level representation used in
the implementation.

As a result of our experience with these rule
systems, we have encountered various limitations
or inelegances, as follows:

II

• in • rea l l~ca l ly sized rule set, the descrip-
tion may be obscure to the human reader;,

• different rules m y inmac t with each
other in non-obvious and inconvenient ways;

• certain forms of correspondence demand
the use of several rules in an clumsy
manner;

• some optional correspondences are
extremely ditficult to describe.

Some of these problems can be overcome using a

modified formalism, which we have also imple-
mented and teated, although it aim has its limita-
tions.

Kmkenn iemi Rules

The exact form of rule described here is that used
in our wozk (Russell ,~ aL 1986, Ritehie eZ -I.
1987) but is the same as Koskenniemi's (1983,
1985) apart f rom some minor changes in surface
syntax. Koskenniemi Rules describe relationships
between a sequence of surface charac ters and a
sequence of lexlcal characters . A rule consists of
a rule pai r (which consists of a lexical and a sur-
face character), an opera tor , a l e f t context and a
r igh t context . There are three types of ru/e:

Con:,=z Re~r/czion: These are of the form

pair --* I.eftContext ~ RightContext

This specifies that the rule pair may appear
on/y in the given context.

Sw-/ace ~ l o n : These are of the form

pair *-- LeftContext ~ RightContext

This specifies that if the given contexts and
lexical character appear then the surface
character n = ~ appear.

Combined Ru~: This final rule type is a combina-
tion of the above two forms and is ~ r / t t e n

pair *-* LeftContext ~ RightContext

This form of rule specifies that the surface
character of the rule pair musz appear if the
left and right context appears and the lexical
characte~ appears, and also that this is the
onZy context in which the rule pair is
allowed.

The operator types may be thought of as a
form of implication. Contexts are specified as reg-
ular expressions of lexical and surface pairs. For

example the following rule:

Epenthesis
+:e *'* {s:s x : x z :z < {s:s c:c) h : h > ~ - - s:s

specifies (some of) the cases when an • is inserted
at the conjunction of a stem morpheme and the
suffix +$ (representing plurals for nouns and third
person tingular for verbs). The braces in the left
context denote optional choices, while the angled
brackets denote sequences. The above rule may be
summarised as "an • must be inserted in the sur-
face string when it has s, x, z, ch or sh in its left
context and $ in its right".

Another addition to the formafism is that
alternative contexts may be specified for each rule
pair. This is done with the or connective for mul-
t/pie left and right contexts on the right hand side
of the rule e.g.

Elision
e:O .-. C:C ~ < +.'0 V:V>

or <C:C V:V>~ <+~ e:e>

This example also in*roduces sets - C and V

(which are elsewhere declazed to represent con-
sonants and vowels). The or construct states that
• can correspond to 0 (the null symbol) when (and
only when) in eir3urr of the two given contexts.
The first option above copes with words such as
motmd resolving with move+ed and the second
deals with examples llke agreed ~esolving with

agrN+ed.

Sets have a somewhat non-standard
interpretation within this basic formalism. The
expansion of them is done in terms of the feasible
set. This is the set of all lexical and surface pairs
mentioned anywhere in the set of rules. That is,
all identity pairs from the intersection of the lexi-
ca/ and surface alphabets and all concrete pairs
f rom the rules, where concrete pairs are those pairs
that do not contain sets. The interpretation of a
pair containing a set is all members of the feasible
set that match. This means that if y:i is a member
of the feasible set and a set Ve is declax~.-d for the
set {a e i o u ~} the paiz Ve:Ve represents the pair
y:l as well as the more obvious ones.

Traditionally, (if such a word can be used),
Koskenniem/ Rules are implemented in terms of
finite da te machines (or transducers). ~ O
(Kartlmnen 1983), one of the early implementa-
t/ons, required the morphologist to specify the
rules dizectly in transducer form which was

12

dtmcult and prone to ~ o r . Koskennlemi (1985)
later described a possible method for compilation
of the high-level specification into transduceri.
This means the morphologist does not have to
write and debug low-level finite state machines.

Probl-ma w i t h Koskenntemi Formal/sin

The basic idea behind the Koskenniemi Formalism
- that rules should describe correspondences
between a surface string and s lexical string
(which effectively represents a normal form) -
appears to be sound. The problems listed here are
not fundamental to the underlying theory, that of
describing re la t ionsh ips between su~face and lexl-
ca/strings, but axe more problems with the exact
form of the rule notation. The formal~m as it
stands does not make it impossible to describe
many phenomena but can make it difficult and
unintuitlve.

One problem is that of interaction between
rules. This is when a pair that is used in s context
part of a rule A is aim restricted by some other
rule B, but the context within which the
appears in A is not a valid context with respect to
B. An example will help to Ulnstrate this. Sup-
pose, having developed the EZ/slon rule given
above, the linguist wishes to introduce a rule
which expresses the correspondence between reduc-
tion and the lexical form reduc~atton, a
phenomenon apparently unrelated to elision. The
obvious rule. are:

Elision
e:O ~-, C:C ~ < +:0 V : V >

or <:C:C V : V > ~ < + : 0 e :e >

A-deletion
a:O *-* <c:c e:O +:0 > m t:t

However, these rules do not operate indepen-
dent ly . The pair e:O in the left context of the A-
deletlon rule is not licensed by the E7/aion rule as
it occurs in a context (c:c ~ < +:0 a:O >) which is
not valid with respect to the right context of t h e
E1/slon rule, since the V : V pair does not match the
pair a:0. The necessary EUaton rule to circumvent
this problem is:

Elision
e . ~ *- , C : C m < +:O V : V >

or < C:C V : V :> ~ < +:0 e:e >

o r c :c ~ < + : 0 a : O >

Such possible situations mean that the writer of

the rules must check, every time the r t ~ pair from
s rule A is used within one of the context state-
ments of another rule B, that the character
sequence in that context statement is valid with
respect to rule A. TheoreticaLly it would be possi-
ble for a compiler to check for such cases although
this would require finding the intersection of the
languages generated by the set of finite state auto-
mats which is computationally expensive (Oarey
and Johnson 1979 p266).

A similar problem which is more easily
detected is w h a t can be termed double coercion.
This is when t w o rules have the same lexical char-
acter in their rule pair, and their respective left
and right contexts have an intersection. The situa-
tion which could cause this is where an underlying
lexical charact~ can correspond to two different
surface characters, in different contexts, with the
correspondence being completely determined by
the context, but with one context description being
more general than (subsuming) the other. For
example, the following rules allow lexical I to map
to su,-face null or surface I (and might be proposed
to describe the generation of forms like probably
and probab/Zlt'y from probable):

L-deletion
1:O *'* b:b m <e:O +:0 1:I >

L-to-I
1:i *-" b:b m { e:O e:l }

Matching the surface string bOO to the lexical
string b/e (as demanded by the first rule) would be
invalid because the second rule is coercing the lexi-
c a / l to a surface t; similarly the surface string btO
would not be able to match the lexical string ble
because of the first rule coercing the lexical Z to a
surface 0. (Again, such conflicts between rules
could in principle be detected by a compiler).
There appears to be no simple way round this
within the formalism. A possible modification to
the formalism which would stop conflicts occur-
ring would be to disallow the inclusion of more
than one rule with the same lexical character in
the rule-pair, but this seems a little too restrictive.

One argument that has been made against the
Koskenniemi Formalism is that multiple character
changes require more than one rule. That is where
a group of characters on the surface match a group
on in the lexicon (as opposed to one character
changing twice, which is not catered for nor is
intended to be in the frameworks presented here).

1 3

For example in English we may wish to describe
the ~Jationahlp between the mtrface form applica-
tion and the lexical form applyt.atton u a two
character change t ¢ to y +. The general way to
deal with multiple character changes in the
Koskenniem/Formalism is to write a rule for each
character change. Where a related character change
is referred to in a context of rule it should be
written as a lexiced character and an ",," on the
surface. Where " - " is defined u a surface ~q that
consists of edI surface characters. Thus the applica-
tion example can be encoded as follows.

Y-to-I
y:i *', - - < + : - a:a (t:t 1:1 b:b}>

C-imertion
+:c *-* y : - m <a:a{t:t 1:1 b:b} >

The " - " on the surface must be used to ensure that
the rules enforce each other. If the following were
written

Y-to-I
yd *" - - 4~ +:e aut {t:t I:l b:b} >

C-lnsortion
+:c *'* y:i m <a:a {t:t 1:1 b:b}>

then ap~3~atlon would ~ be matched with
apply+at/on. This technique is not par t icul~ly
intuitive but does work. It has been suggested
that a compile~ could automatically do this.

Another problem is that because only one
ruie may be written for each pair, the rules are
effectively sorted by ~ rather than phenomena
so when a change is genuinely a multiple change
the ~ changes in it cannot neces~____rily be
described together, thug making a rule set di~icult
to read.

Because of the way sets are expanded, the
interpretation of rules depends on all the other
rules. The addition or deletion of a spelling rule
m y change the feasible pair set and hence a rule's
interpretation may change. The problem is not so
much that the rules then need re-compiled (which
is not a very expensive operation) but that
interpretation of a rule cannot be viewed indepon-
dently from the rest of the rule set.

The above problems are edl actuedly criti=
of the elegance of the formalism for describ-

ing speUing phenomena as opposed to actual res-
trict/oug in its descriptive power. However, one
problem that has been pointed out by Bear is that
rule pairs can only have one type of operator so

that a pair may not be optional In one context but
mandatory in another.

There has also been some discussion of the
formed descriptive power of the formalism, partic-
uiarly the work of Barton (1986). Barton has
shown that the question of finding a
lexical/surface correspondence f rom an arbitrary
Koskenniemi rule s~t is NP-complete. It seems
intuitively wrong to suggest that the process of
morphographemlc analysis of natured language is
computationally difficult, and hence Barton's
result suggests that the formalism is actually more
powerful than is r ~ l l y needed to describe the
phenomenon. A leu powerful formalism would
be deairable.

A final point is that although initially this
high-level formalism appears to be easy to read
and comprehend from the writer 's point of view,
in practice when a number of rules are involved
this ceases to be the case. We have found that
debugging these rules is a slow and difficult task.

A / t e rna t ive Formal ism

section proposes a formalism which is basi-
cedly sim~lar to the "pure" Koskenniemi one.
Again a description consists of a set of rules.
There are two types of rule which aUow the
description of the two types of changes that can
occur, mandatory changes and optional changes.

The rules can be of two types, first surface-
to - lex~a l rules which are used to describe
optional changes and lexical-to=surface rules
which are used to describe mandatory changes, the
interpretation is as follows

Sw'fac~o-laxtc..aZ ~des: These rules are of the
form

LHS -* RHS

Where/ .2/5 and RH$ are simple fists of sur-
face and lexiced characters respectively, each
of the same length. The interpretation is
that for a surface string and lexical string to
match there must be a partition of the sur-
face string such that each partition is a LI-/S
of a rule and that the lexical string is equal
to the concatenation of the corresponding
RHSs.

Lextcal-to-Surface ~ht/es: These rules are of the

f o r m

14

I.HS *- RHS

The Z.HS and ~P./-/S are equal length strings of
surface and lexical characters respectively.
Their interpx~.tation is that any subetxing of
a lexical string that is a ~P~/S of a rule must
correspond to the surface string given in the
corresponding/.~S of the rule.

asymmetry in the application rules
means that L.S-~_-_~ (lexical-to-su~ace rules) can
overlap while S L - ~ u ~ (surface-to-lexical rules)
do not, An example may help to explain their use,

A basic set of spelling rules in this formal-
ism would consist of first the simple llst of idan-
f l i t SL-Rules

a ...o a

b - - . b
c . . ~ ¢

e * o

Z " " Z

which could be automatically generated f~om the
i n ~ t i o n of the surface and lexical alphabets.
In addition to this basic set we would wish to add
the rule

0 - ' . +

which would allow us to match null with a spe-
cial character marking the start of a su /~ . These
rules would then allow us to match strings like
boyOs to boy+s, glrl to girl and waUcOlng to
~ + i n g .

To cope with epenthesis we can add SL-Rules
of the form

s e s - - . s ÷ s

x e s - ' * x + s

z e s ' - * z ÷ u

ches-.ch+s
s h e s - - . s h + s

would allow matching of forms like boxe~
with box+s and m~c, he~ with maZch+s but still
allows boxOs with box+s. We can make the adding
of the • on the surface mandatory rather than just
optional by adding a cox'responding IS-Rule for
each tL-Rule. In this case if we add the IS-Rules

S e s * - ' - s + s

X e s * ' - - x + s

z e s * - - z + s

e h e s . - - c h + s
s h e s , - - s h +s

the surface str ing boxOs would not match box+s
because thia would violate the LS-Rule; similarly,
m~cJ~$ would not match ~_~__tch+s.

However if some change is optional and not
mandatory we need only write the SL-Rule with
no corresponding LS-Rule. For example, assuming
the word ~co/has the alternative plurals hooves or
hoofs, we can describe this optional change by
wTiting the SL=RUle

v e s - - . f + s

The main difference between this form of rules
and the Koskenniemi rules is that now one rule
can be written for multiple changes where the
Koskenniemi Formalism would require one for
each character change. For example, consider the
double change described above for matching appll-
cation with appZy+atlon. This required two distinct
rules in the Koskennlemi Format, while in the
revised formalism only two clearly related rules
are x~quired

i c a t - - . y + a t
i c a t ' - y + a t

One problem which the formalism as it stands
does suffer from is that it requires multiple rules
to describe different "cases" of changes e.g. each
case of epenthesis requires a rude - - one each for
words ending in ch, sh, $, x and z. In our imple-
mentation rules may be specified with sets instead
of just simple characters thus allowing the rules to
be more general. Unfortunately this is not
sufficient as the user really requires to specify the
left and right hand sides of rules as regular expres-
sions, thus allowing rules such as:

< { < { s c } h > x z s } e s >--*
<{ < { s c } h > x z s } + s >

but this seems to significantly reduce the readabil-
ity of the formalism.

One useful modification to this formalism
could be the coUapsing of the two types of rule
(IS and tL). It appears that an IS-Rule is never
required without a corresponding SL-Rule so we
could change the formalism so that we have two

15

operators --* for the simple SL-Rule for optional
changes and *-* to repree~qlt the corresponding SL
and I S-Rulea for mandatory changes.

So far we have implemented an interpreter
for this alternative for_m_-tlsm and written a
description of English. I t . coverage is comparable
with out English deecription in the Koskennieml
Formalism but the alternative description is possi-
bly easier to understand. The implementation of
these rules is again in the form of special automata
which check for valid and invalid patterns, like
that of the Koskenniemt rules. This is not surpris-
ing u both formalisms are designed for licensing
matches between surface and lex/cal strings. The
time for compilation and interpretation is compar-
able with that for the Koskenniemi rules.

Compar ison of the two fo rma l i sms

It is interesting to note that if we extended the
Koskenniemi formalism to allo`w regulax expres-
sionu of pa/rs on the left hand side of rules rather
than just simple pairs, `we get a formalism that is
very similar to our alternative proposal. The main
difference then is the lack of contexts in 'which the
rules apply - - in the alternative formalism the
rules are alto specifying the correspondences for
what would be contexts in the Koskenniemi for-
malism.

Because SL-Rules do not overlap this means
phenomena which are physically close together or
overlapping have to be described in one rule, thus
it may be the case that changes have to be declared
in more than one place. For example, one could
argue that there is e-deletion in the matching of
redu~ton to reduce+atic~ (thus following the
Koskenniemi Formalism) or that the change is a
double change in that the e-deletion and the a-
deletion are the same phenomena (as in this new
formalism). But there may also be cases where the
morphologiet identifies two separate phenomena
which can occur together in some circumstances.
In this new formalism rules would be zequixed for
each phenomena and also where the two overlap.
One example of this In EngLish may be qu/zzes
where both consonant doubling and e-insertion
apply. In this formalism a rule would need to be
written for the combined phenonmena as well as
each individual case. Ideally, a rule formalism
should not require information to be duplicated, so
that phenomena are only described in one place.
In English this does not occur often so seems not

to be a problem but this is probably not true for
languages "with richer morphogsaphemics such as
Finnish and Japanese.

Interaction bet`ween rules however can in a
sense still exist, but in the formalism's current
form it is significantly easier for a compiler to
detect it. SL-Rules do not cause interaction, since
different possible partitions of the surface string
represent d i f f ~ t analyses (not conflicting ana-
lyses). Interaction can happen only with L3-
Rules, which in principle may have overlapping
matches and hence may stipulate conflicting sur-
face sequences for a single lexical sequence.
Interaction will occur if any RHS of a rule is a
substring of a RHS of any other rule (or concate-
nation of rules) and has a different corresponding
LHS. With the formalism only allowing simple
strings in rules this would be relatively easy to
detect but if regular expressions were allowed the
problem of detection would be the same as in the
Koskenniemi Formalism. Double coercion in the
new formalism is actual/y only a special case of
interaction.

The interpretation of symbols representing
sets of characters has been changed so that adding
and deleting rules does not affect the other rules
already in the rule set. This seems to be an advan-
tage, as each rule may be understood in isolation
from others.

One main advantage of the new formalism is
that changes can be optional or mandatory. If
some change (say e-deletion) is sometimes manda-
tory and sometimes optional there will be distinct
rules that describe the d~erent cases.

As regenls the computational power of the
formalism, no detailed analysis has been made, but
intuitively it is suspected to be equivalent to the
Koskenniemi Forma~sm. That is, for every set of
these rules there is a set of Koskenniemi rules that
accepts/rejects the same surface and lexical
matches and vice versa. The formal power seems
an independent issue here as neither formalism has
particular advantages.

It may be worth noting that both formal-
isms are suitable for generation as well as recogni-
tion. This is due to the use of the two-level model
(surface and lexical strings), rather than the for-
realism notations.

16

P u m m W o r k

Although this alternative formalism ~ to have
mine advantages over the Koskenniemi Formalism
(optional and mandatory changes, set notation and
multiple character changes), there is still much
work to be done on the development of the new
formalism. The actual surface syntax of this new
f o ~ requires some experimentation to find
the most suitable form for easy specification of the
rules. Both the Koskenniem/ Formalism and the
new one seem adequate for specification of English
morphogx~phemics (which is comparatively tim-
pie) but the real issue appears to be which of them
allows the writer to describe the phenomena in the
most succinct form.

One of the major problems we have found in
our work is that although formalisms appear sire-
pie when described and initially implemented,
actual use often shows them to be complex and
d ~ c u l t to use. There is a useful analogy here
with computer programming languages. New pro-
gramming languages offer difl'ex~nt and sometimes
better faculties but in spite their help, effective
programming is still • dimcult task. To continue
the analogy, both these morphographemic formal-
isms require • form of debugger to allow the
writer to test the rule set quickly and find its
short-comingr. Hence we have implemented a
debugger for the Koskenniemi Formalism. This
debugger acts on user given surface and lexical
strings and allows s~rp or diagnosis modes. The
stop mode describes the current match step by step
tn ~ of the user wrft~en r,~_-~_% and explains the
reason for any failures (rude blocking, no rule
lieensln 8 apafr etc). The diagnosis mode runs the
match to completion and summarises the rules
used and any faLlures if they occur. The impor-
tant point is that the debugger describes the prob-
lems in terms of the user wriUen rules rather than
some low level automata. In earlier versions of
our sys tem debugging of our spel l ing rules was
very difficult and time consuming. We do not yet
have a similar debugger for our new formalism
but if ful ly incorporated into our system we see a
debugger as a necessary part of the system to make
it useful.

Another aspect of our work is that of testing
our new formalism with other languages. English
has a somewhat simple morphographemics and is
probably not the best language to test our formal-
ism on. The Koskenniemi Formalism has been

used to describe a number of different languages
(see Oazdar (1985) for a list) and seems adequate
for many languages. Semitic languages, like Ara-
bic, which have discontinuous changes have been
posed as problems to this framework. Kosken-
niemi (personal communication) has shown that in
fact his formalism is adequate for describing such
languages. We have not yet used our new formal-
ism for describing languages other than English,
but we feel that it should be at least as suitable as
the Koskenniemi Formalism.

Concleslon

paper has described the Koskenniemi Formal-
brm which can be used for describing morphogra-
phemic changes at morpheme boundaries. It has
pointod out some problems with the basic formal-
ism as it stands and proposes a possible alterna-
tive. This alternative is at least as adequate for
describing English morphographenfics and may be
suitable for at least the languages which the
Koskenniemi Formalism can describe.

The new formalism is possibly better, as ini-
tially it appears to be more intuitive and simple to
write but from experience this cannot be said with
certainty until the formalism has been
significantiy used.

Acknowledgements

We would like to thank Kimmo Koskenniemi for
comments on an earlier draft of this paper. This
work was supported by SERC/Alvey grant
GR/C/79114.

RefereIic~

Barton, O. Edward 1986 Computational Complex=
i ty in T~o-Level Morphology In Proceedings
ACL '86, 24th Armtud Meeting of Associatlon
/or Computag ionaZ Llnguls~ica 53-59.

Bear, John 1986 A Morphological Recoguisez with
Syntaetic and Phonological Rules In Proceed-
ings OOLING '86, l lOt Iv~ern~lonaZ Conf~-
er~ on Comptrtag tonaZ Linguistics 272-276.

Garey, Michasl R.; and ~ohnson, David S. 1979
Computers and IntractobIZlty: A Guide to ~e
27teor7 of NP-Completeness W.H.Freeman
and Co., New York.

Gazdar, Gerald 1985 Finite State Morphology: a
review of Koskenniemi (1983). Report No.

17

CSLI45-32, CSLI, Stanford UniversitT.

Karttunen, Lauri 1983 KIMMO: A General Mor-
phologicni Analyse~ 7"exa.v Llng~ds~tcs
Forum, 22:165-186.

Koskenniemi, KAmmo 1983 Two-level Morpholo
o87: • general computational model for
wurd- fom recognition and production.
Publication No.U, Department of General
Llngul~cs, University of Helainki, Finiand.

Koskennlemi, Klmmo 1985 Compilation of Auto-
mats from Two-Level Rules. Talk given at
Workshop on Finite-State Morphology,
CSLI, Stanford University, July 1985.

Rltchie, Graeme D.; Pulman, Steve G.; Black, Alan
W.; and Ru~ell Graham J. 1987 A Compu-
tation&! Framework For Lex/cal Description.
DAI Research Paper no. 293, University of
Edinburgh. Alto to appear in CompucatlonaZ
Z ~ ~ .

Russell Graham J.; Pulman, Steve G.; Ritchle,
Gzaeme D.; and Black, Alan W. 1986 A Dic-
tionary and Morphological Analyser for
Engliah. In Proceedings COLING "86, llZh
I n t ~ l ~ ~ on C.o~put~lon~
Z,/ngutsttc.s 277-279.

18

