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Abstract

In this paper, we present a method for
temporal relation extraction from clinical
narratives in French and in English. We
experiment on two comparable corpora,
the MERLOT corpus for French and the
THYME corpus for English, and show that
a common approach can be used for both
languages.

1 Introduction

Temporal information extraction from electronic
health records has become a subject of interest,
driven by the need for medical staff to access
medical information from a temporal perspec-
tive (Hirsch et al., 2015). Diagnostic and treat-
ment could be indeed enhanced by reviewing pa-
tient history synthetically in the order in which
medical events occurred. However, most of this
temporal information remains locked within un-
structured texts and requires the development of
NLP methods in order to be accessed.

In this paper, we focus on the extraction of tem-
poral relations between medical events (EVENT),
temporal expressions (TIMEX3) and document
creation time (DCT). More specifically, we
address intra-sentence narrative container rela-
tion identification between medical events and/or
temporal expressions (CR task, for Container
Relation) and DCT relation identification between
medical events and documents (DR task, for
Document creation time Relation).

In the DR task, the objective is to temporally
locate EVENT entities according to the Document
Creation Time of the document in which they oc-
cur. Possible tags are Before, Before-Overlap,
Overlap and After.

In the CR task, the objective is to identify tem-
poral inclusion relations between pairs of enti-
ties (EVENT and/or TIMEX3) formalized as narra-
tive container relations following Pustejovsky and
Stubbs (2011).

In this context, we build on Tourille et al. (2016)
and show how this type of model can be ap-
plied for extracting temporal relations from clin-
ical texts similarly in two languages. We exper-
imented more specifically on two corpora: the
THYME corpus (Styler IV et al., 2014), a corpus
of de-identified clinical notes in English from the
Mayo Clinic and the MERLOT corpus (Campillos
et al., to appear), a comparable corpus in French
from a group of French hospitals.

2 Related Work

Temporal information extraction from clinical
texts has been the topic of several shared tasks
over the past few years.

The i2b2 Challenge for Clinical Records (Sun et
al., 2013) offered to work on events, temporal ex-
pressions and temporal relation extraction. Partic-
ipants were challenged to detect clinically relevant
events and time expressions and link them with a
temporal relation.

SemEval has been offering the Clinical TempE-
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val task related to the topic for the past two years
(Bethard et al., 2015; Bethard et al., 2016). Its
first track focused on extracting clinical events and
temporal expressions, while its second track in-
cluded DR and CR tasks. Different approaches
were implemented by the teams, among which
SVM classifiers (Lee et al., 2016; Tourille et
al., 2016; Cohan et al., 2016; AAl Abdulsalam
et al., 2016) and CRF approaches (Caselli and
Morante, 2016; AAl Abdulsalam et al., 2016)
for the DR task, and CRF, Convolutional neu-
ral networks (Chikka, 2016) and SVM classi-
fiers (Tourille et al., 2016; Lee et al., 2016;
AAl Abdulsalam et al., 2016) for the CR task.

3 Corpus Presentation

The MERLOT corpus is composed of clinical doc-
uments written in French from a Gastroenterol-
ogy, Hepatology and Nutrition department. These
documents have been de-identified (Grouin and
Névéol, 2014) and annotated with entities, tempo-
ral expressions and relations (Deléger et al., 2014).
The THYME corpus is a collection of clinical texts
written in English from a cancer department that
have been released during the Clinical TempEval
campaigns. This corpus contains documents an-
notated with medical events and temporal expres-
sions as well as container relations.

The definition of a medical event is slightly dif-
ferent in each corpus. According to the annota-
tion guidelines of the THYME corpus, a medi-
cal event is anything that could be of interest on
the patient’s clinical timeline. It could be for in-
stance a medical procedure, a disease or a di-
agnosis. There are five attributes given to each
event: Contextual Modality (Actual, Hypotheti-
cal, Hedged or Generic), Degree (Most, Little or
N/A), Polarity (Pos or Neg), Type (Aspectual, Ev-
idential or N/A) and DocTimeRel (Before, Before-
Overlap, Overlap and After). Concerning the tem-
poral expressions, a Class attribute is given to each
of them: Date, Time, Duration, Quantifier, Pre-
PostExp or Set.

For the French corpus, medical events are de-
scribed according to UMLS R© (Unified Medical
Language System) Semantic Groups and Seman-
tic Types. Several categories are considered as
events: disorder, sign or symptom, medical proce-
dure, chemical and drugs, concept or idea and bio-
logical process or function. Events carry only one
DocTime attribute (Before, Before-Overlap, Over-

lap or After). Similarly to the THYME corpus,
temporal expressions within the French corpus are
given a class among: Date, Time, Duration or Fre-
quency.

Narrative containers (Pustejovsky and Stubbs,
2011) can be apprehended as temporal buckets
in which several events may be included. These
containers are anchored by temporal expressions,
medical events or other concepts. Styler IV et
al. (2014) argue that the use of narrative contain-
ers instead of classical temporal relations (Allen,
1983) yields better annotation while keeping most
of the useful temporal information intact. The
concept of narrative container is illustrated in Fig-
ure 1 and described further in Pustejovsky and
Stubbs (2011).
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Figure 1: Examples of intra-sentence narrative
container relations.

The French corpus does not explicitly cover
container relations. However, we consider that
During relations are equivalent to Contains rela-
tions. In addition, we also considered that Re-
veals and Conducted relations imply Contains re-
lations. Furthermore, the corpus does not cover
inter-sentence relations (relations that can spread
over multiple sentences). We focus in this paper
on intra-sentence container relations (relations that
are embedded within the same sentence) and we
will refer to them as CONTAINS relations in the
rest of this paper.

Descriptive statistics of the two corpora are pro-
vided in Table 1.

4 Model Description

In our model, we consider both DR and CR tasks
as supervised classification problems. Concern-
ing the DR task, each medical event is classified
into one category among Before, Before-Overlap,
Overlap and After. The number of document cre-
ation time relations per class for both corpora is
presented at table 3. For the CR task, we are deal-
ing with a binary classification problem for each
pair of EVENT and/or TIMEX3. However, consid-
ering all pairs of entities within a sentence would
give us an unbalanced data set with a very large
amount of negative examples. Thus, to reduce the
number of candidate pairs, we transformed the 2-
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THYME MERLOT

Tokens 501,156 179,200

EVENTa DR 78,901 18,127CR 64,650

TIMEX3a DR 7,863 3,940CR 7,708

CONTAINS 17,444 4,295
a Not all documents are annotated with con-
tainer relations. We present separate count
of EVENT and TIMEX3 for each task CR
and DR.

Table 1: MERLOT (fr) and THYME
(en) corpora – Descriptive Statistics.

Feature DR Container CR
Entity type 3 3 3
Entity form 3 3 3
Entity attributes 3 3 3
Entity position (within the document) 3 3 3
Container model output 3
Document Typea 3 3 3
Contextual entity forms 3 3 3
Contextual entity types 3 3 3
Contextual entity attributes 3 3 3
Container model output for contextual entities 3
PoS tag of the sentence verbs 3 3
Contextual token forms (unigrams) 3 3
Contextual token PoS tags (unigrams) 3 3

Contextual token forms (bigrams)b 3 3

Contextual token PoS tags (bigrams)b 3 3

a Information available only for the MERLOT corpus.
b Only when using plain lexical forms.

Table 2: Features used by our classifiers.

category problem (contains or no-relation) into a
3-category problem (contains, is-contained, or no-
relation). In other words, instead of considering
all permutations of entities within a sentence, we
consider all combinations of entities from left to
right, changing when necessary the contains re-
lations into is-contained relations. Moreover, this
transformation solves the problem of possible con-
tradictory predictions. If we were to consider all
pairs of entities within a sentence, we could have
the situation where the prediction of our classi-
fier implies that two entities contain each other
(A contains B and B contains A). By consider-
ing all combinations instead of all permutations,
the problem will never occur during the predic-
tion phase. However, our system does not handle
temporal closure, and conflicts could still appear
at sentence level (X contains Y , X is contained
by Z, Y contains Z).

THYME (en) MERLOT (fr)

Before 29,170 1,936
Bef./Over. 4,240 2,643
Overlap 37,091 12,211
After 8,400 1,337

Table 3: MERLOT (fr) and THYME (en) corpora -
Document Creation Time relation repartition.

Furthermore, some entities are more likely to be
the anchor of narrative containers. For instance,
temporal expressions are, by nature, potential an-
chors and may contain other temporal expressions
and/or medical events. This is also the case for
some medical events. For instance, a surgical op-
eration may contain other events such as bleeding

or suturing whereas it will not be the same with
the two latter in most cases. Following this obser-
vation, we have built a model to classify entities
as being potential container anchors or not (CON-
TAINER classifier). This classifier obtains a high
performance. We use its output as feature for our
CONTAINS relation classifier.

4.1 Preprocessing and Feature Extraction

The THYME corpus has been preprocessed us-
ing cTAKES (Savova et al., 2010), an open-source
natural language processing system for extrac-
tion of information from electronic health records.
We extracted several features from the output
of cTAKES: sentences boundaries, tokens, part-
of-speech (PoS) tags, token types and semantic
types of the entities that have been recognized by
cTAKES and that have a span overlap with at least
one EVENT entity of the THYME corpus.

Concerning the MERLOT corpus, no specific
pipeline exists for French medical texts; we thus
used Stanford CoreNLP system (Manning et al.,
2014) to segment and tokenize the text. We also
extracted PoS tags. As the corpus already provides
a type for each EVENT, there is no need for detect-
ing other medical information.

For both DR and CR tasks, we used a combina-
tion of structural, lexical and contextual features
yielded from the corpora and the preprocessing
steps. These features are presented in Table 2.

4.2 Lexical Feature Representation

We implemented two strategies to represent the
lexical features in both DR and CR tasks. In the
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DCT CONTAINER CONTAINS CONTAINS without
CONTAINER

Corpus Plain W2V Plain W2V Plain W2V Plain W2V

MERLOT (fr) 0.830
(0.008)

0.785
(0.006)

0.837
(0.004)

0.776
(0.014)

0.827
(0.007)

0.799
(0.012)

0.724
(0.011)

0.670
(0.016)

THYME (en) 0.868
(0.002)

0.797
(0.006)

0.760
(0.007)

0.678
(0.031)

0.751
(0.003)

0.702
(0.013)

0.589
(0.006)

0.468
(0.018)

(a) Cross-validation results over the training corpus for all tasks. We report F1-measure for CONTAINER and CONTAINS
tasks and accuracy for DCT task. We also report standard deviation for all models.

MERLOT (fr) THYME (en)

P R F1 P R F1

baseline 0.67 0.67 0.67 0.47 0.47 0.47

bef./over. 0.68 0.69 0.69 0.73 0.60 0.66
before 0.81 0.60 0.69 0.88 0.88 0.88
after 0.79 0.69 0.73 0.84 0.84 0.84
overlap 0.88 0.92 0.90 0.88 0.90 0.89

micro-average 0.83 0.84 0.83 0.87 0.87 0.87

(b) DR task results over the test corpus. We report preci-
sion (P), recall (R) and F1-Measure (F1) for all relation types.

MERLOT (fr) THYME (en)

P R F1 P R F1

baseline 0.43 0.15 0.22 0.55 0.06 0.11

no-relation 0.99 1.00 0.99 0.96 0.98 0.97
contains 0.75 0.57 0.65 0.61 0.47 0.53

micro-average 0.98 0.98 0.98 0.93 0.94 0.93

(c) CR task results over the test corpus. We report preci-
sion (P), recall (R) and F1-Measure (F1) for all relation types.

Table 4: Experimentation results.

first one, we used the plain forms of the differ-
ent lexical attributes we mentioned in the previ-
ous section. In the second strategy, we substituted
the lexical forms with word embeddings. For En-
glish, these embeddings have been computed on
the Mimic 3 corpus (Saeed et al., 2011). Concern-
ing the French language, we used the whole col-
lection of raw clinical documents from which the
MERLOT corpus has been built. In both cases,
we computed1 the word embeddings using the
word2vec (Mikolov et al., 2013) implementation
of gensim (Řehůřek and Sojka, 2010). We used the
max of the vectors for multi-word units. Lexical
contexts are thus represented by 200-dimensional
vectors. When several contexts are considered,
e.g. right and left, several vectors are used.

5 Experimentation

We divided randomly the two corpora into
train and test set following the ratio 80/20.
We performed hyper-parameter optimization us-
ing a Tree-structured Parzen Estimator ap-
proach (Bergstra et al., 2011), as implemented in
the library hyperopt (Bergstra et al., 2013), to se-
lect the hyper-parameter C of a Linear Support
Vector Machine, the lookup window around en-
tities and the percentile of features to keep. For

1Parameters used during computation: algorithm =
CBOW; min-count = 5; vector size = 200; window = 10.

the latter we used the ANOVA F-value as selec-
tion criterion. We used the SVM implementa-
tion provided within Scikit-learn (Pedregosa et al.,
2011). In each case, we performed a 5-fold cross-
validation. For the container classifier and con-
tains relation classifier, we used the F1-Measure
as performance evaluation measure. Concerning
the DCT classifier, we used the accuracy.

6 Results and Discussion

Cross-validation results are presented in Table 4a.
DR and CR tasks results are presented respectively
in Table 4b and Table 4c. For both tasks, we
present a baseline performance. For the DR task,
the baseline predicts the majority class (overlap)
for all EVENT entities. For the CR task, the base-
line predicts that all EVENT entities are contained
by the closest TIMEX3 entity within the sentence
in which they occur.

Concerning the DR task, there is a gap of 0.04
in performance between the French (0.83) and
English (0.87) corpora. We notice that results
per category are not homogeneous in both cases.
Concerning the MERLOT corpus, the score ob-
tained for the category Overlap is better (0.90)
than the score obtained for Before-Overlap (0.69),
Before (0.69) and After (0.73). Concerning the
THYME corpus, the performance for the category
Before-Overlap (0.66) is clearly detached from the
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others which are grouped around 0.85 (0.88 for
Before, 0.84 for After and 0.89 for Overlap). This
may be due to the distribution of categories among
the corpora. Typically, the performance is lower
for the categories where we have a lower num-
ber of training examples (Before-Overlap for the
THYME corpus and categories other than Over-
lap for the MERLOT corpus).

Concerning the CR task, results are separated
by a 10 percent gap (0.65 for the MERLOT cor-
pus and 0.53 for the THYME corpus). Results ob-
tained for the THYME corpus are coherent with
those obtained by Tourille et al. (2016) on the
Clinical TempEval 2016 evaluation corpus2. We
increased the recall value in comparison to their
results (from 0.436 to 0.47) but this measure is still
the main point to improve.

More globally, the best results of the Clinical
TempEval shared task were 0.843 (accuracy) for
the DR task and 0.573 (F1-Measure) for the CR
task, which are comparable to our results (0.87 for
the DR task and 0.53 for the CR task).

Table 4a also indicates that replacing lexical
forms by word embeddings seems to have a nega-
tive impact on performance in every case.

As for the difference of performance according
to the language, several parameters can affect the
results. First, the sizes of the corpora are not com-
parable. The THYME corpus is bigger and has
more annotations than the MERLOT corpus. Sec-
ond, the quality of annotations is more formalized
and refined for the MERLOT corpus. This differ-
ence can influence the performance, especially for
the CR task. Third, the lack of specialized clinical
resources for French can negatively influence the
performance of all classifiers.

Concerning the quality of annotations, it has
to be pointed out that inter-annotator agreement
(IAA) for temporal relation is low to moderate:
in MERLOT, IAA measured on a subset of the
corpu s is 0.55 for During relations, 0.32 for Con-
ducted relations and 0.64 for Reveals relations. In
Thyme, IAA for Contains relation is 0.56. The
inter-annotator agreement is comparable in both
languages, and suggests that temporal relation ex-
traction is a difficult task even for humans to per-
form.

2Similarly to our evaluation corpus for English, the Clini-
cal TempEval 2016 evaluation corpus was extracted from the
THYME corpus but the two corpora are different.

7 Conclusion and Perspectives

In this article, we have presented a work focus-
ing on the extraction of temporal relations between
medical events, temporal expressions and docu-
ment creation time from clinical notes. This work,
based on a feature engineering approach, obtained
competitive results with the current state-of-the-
art and led to two main conclusions. First, the use
of word embeddings in place of lexical features
tends to degrade performance. Second, our feature
engineering approach can be applied with compa-
rable results to two different languages, English
and French in our case.

To follow-up with the first conclusion, we
would like to test a more integrated approach for
using embeddings, either by turning all features
into embeddings as in Yang and Eisenstein (2015)
or by adopting a neural network architecture as
in Chikka (2016).
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