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Abstract

We address for the first time unsupervised
training for a translation task with hun-
dreds of thousands of vocabulary words.
We scale up the expectation-maximization
(EM) algorithm to learn a large translation
table without any parallel text or seed lex-
icon. First, we solve the memory bottle-
neck and enforce the sparsity with a sim-
ple thresholding scheme for the lexicon.
Second, we initialize the lexicon training
with word classes, which efficiently boosts
the performance. Our methods produced
promising results on two large-scale unsu-
pervised translation tasks.

1 Introduction

Statistical machine translation (SMT) heavily re-
lies on parallel text to train translation models with
supervised learning. Unfortunately, parallel train-
ing data is scarce for most language pairs, where
an alternative learning formalism is highly in need.

In contrast, there is a virtually unlimited amount
of monolingual data available for most languages.
Based on this fact, we define a basic unsupervised
learning problem for SMT as follows; given only
a source text of arbitrary length and a target side
LM, which is built from a huge target monolingual
corpus, we are to learn translation probabilities of
all possible source-target word pairs.

We solve this problem using the EM algorithm,
updating the translation hypothesis of the source
text over the iterations. In a very large vocabulary
setup, the algorithm has two fundamental prob-
lems: 1) A full lexicon table is too large to keep in
memory during the training. 2) A search space for
hypotheses grows exponentially with the vocabu-
lary size, where both memory and time require-
ments for the forward-backward step explode.
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For this condition, it is unclear how the lexi-
con can be efficiently represented and whether the
training procedure will work and converge prop-
erly. This paper answers these questions by 1)
filtering out unlikely lexicon entries according to
the training progress and 2) using word classes to
learn a stable starting point for the training. For
the first time, we eventually enabled the EM al-
gorithm to translate 100k-vocabulary text in an
unsupervised way, achieving 54.2% accuracy on
EUROPARL Spanish—English task and 32.2% on
IWSLT 2014 Romanian—English task.

2 Related Work

Early work on unsupervised sequence learning
was mainly for deterministic decipherment, a
combinatorial problem of matching input-output
symbols with 1:1 or homophonic assumption
(Knight et al., 2006; Ravi and Knight, 2011a;
Nuhn et al., 2013). Probabilistic decipherment
relaxes this assumption to allow many-to-many
mapping, while the vocabulary is usually limited
to a few thousand types (Nuhn et al., 2012; Dou
and Knight, 2013; Nuhn and Ney, 2014; Dou et
al., 2015).

There has been several attempts to improve the
scalability of decipherment methods, which are
however not applicable to 100k-vocabulary trans-
lation scenarios. For EM-based decipherment,
Nuhn et al. (2012) and Nuhn and Ney (2014)
accelerate hypothesis expansions but do not ex-
plicitly solve the memory issue for a large lexi-
con table. Count-based Bayesian inference (Dou
and Knight, 2012; Dou and Knight, 2013; Dou
et al., 2015) loses all context information beyond
bigrams for the sake of efficiency; it is therefore
particularly effective in contextless deterministic
ciphers or in inducing an auxiliary lexicon for su-
pervised SMT. Ravi (2013) uses binary hashing to
quicken the Bayesian sampling procedure, which
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yet shows poor performance in large-scale experi-
ments.

Our problem is also related to unsupervised tag-
ging with hidden Markov model (HMM). To the
best of our knowledge, there is no published work
on HMM training for a 100k-size discrete space.
HMM taggers are often integrated with sparse
priors (Goldwater and Griffiths, 2007; Johnson,
2007), which is not readily possible in a large vo-
cabulary setting due to the memory bottleneck.

Learning a good initialization on a smaller
model is inspired by Och and Ney (2003) and
Knight et al. (2006). Word classes have been
widely used in SMT literature as factors in trans-
lation (Koehn and Hoang, 2007; Rishgj and
Se@gaard, 2011) or smoothing space of model com-
ponents (Wuebker et al., 2013; Kim et al., 2016).

3 Baseline Framework

Unsupervised learning is yet computationally de-
manding to solve general translation tasks includ-
ing reordering or phrase translation. Instead, we
take a simpler task which assumes 1:1 monotone
alignment between source and target words. This
is a good initial test bed for unsupervised transla-
tion, where we remove the reordering problem and
focus on the lexicon training.

Here is how we set up our unsupervised task:
We rearranged the source words of a parallel
corpus to be monotonically aligned to the target
words and removed multi-aligned or unaligned
words, according to the learned word alignments.
The corpus was then divided into two parts, using
the source text of the first part as an input (1) and
the target text of the second part as LM training
data. In the end, we are given only monolingual
part of each side which is not sentence-aligned.
The statistics of the preprocessed corpora for our
experiments are given in Table 1.

Source Target

Task (Input) (LM)
EUTRANS | Run. Words 85k 4.2M
es-en Vocab. 677 505

EUROPARL | Run. Words 2.7M  42.9M
es-en Vocab. 32k 96k

IWSLT Run. Words 2.8M 13.7M
ro-en Vocab. 99k 114k

Table 1: Corpus statistics.
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To evaluate a translation output éY, we use
token-level accuracy (Acc.):

)

where 7} is the reference output which is the tar-
get text of the first division of the corpus. It aggre-
gates all true/false decisions on each word posi-
tion, comparing the hypothesis with the reference.
This can be regarded as the inverse of word er-
ror rate (WER) without insertions and deletions.
It is simple to understand and nicely fits to our
reordering-free task.

In the following, we describe a baseline method
to solve this task. For more details, we refer the
reader to Schamper (2015).

3.1 Model

We adopt a noisy-channel approach to define a
joint probability of iV and e} as follows:

Hpen|en wi) P(falen) ()

elafl

which is composed of a pre-trained m-gram target
LM and a word-to-word translation model. The
translation model is parametrized by a full table
over the entire source and target vocabularies:

p(fle) = Oy

with normalization constraints V. Ope = 1.

3)

Having this model, the best hypothesis é}¥ is ob-
tained by the Viterbi decoding.

3.2 Training

To learn the lexicon parameters {6}, we use max-
imum likelihood estimation. Since a reference
translation is not given, we treat el as a latent
variable and use the EM algorithm (Dempster et
al., 1977) to train the lexicon model. The update
equation for each maximization step (M-step) of
the algorithm is:

> palelf")

n: fn=f

6, = ,
e s ey @
frnlfo=f
with pu(elf) = Sowen_. p(eVIfY). This

quantity is computed by the forward backward al-
gorithm in the expectation step (E-step).



4 Sparse Lexicon

Loading a full table lexicon (Equation 3) is infea-
sible for very large vocabularies. As only a few
f’s may be eligible translations of a target word e,
we propose a new lexicon model which keeps only
those entries with a probability of at least 7:

Fle)={f0s.>7} (5)
_ e pre Fe)
polfle) = 2 O ©
0 otherwise

We call this model sparse lexicon, because only a
small percentage of full lexicon is active, i.e. has
nonzero probability.

The thresholding by 7 allows flexibility in
the number of active entries over different target
words. If e has little translation ambiguity, i.e.
probability mass of 6. is concentrated at only a
few f’s, psp(f|e) occupies smaller memory than
other more ambiguous target words. For each M-
step update, it reduces its size on the fly as we
learn sparser E-step posteriors.

However, the sparse lexicon might exclude po-
tentially important entries in early training itera-
tions, when the posterior estimation is still not re-
liable. Once an entry has zero probability, it can
never be recovered by the EM algorithm after-
wards. A naive workaround is to adjust the thresh-
old during the training, but it does not actually help
for the performance in our internal experiments.

To give a chance to zero-probability translations
throughout the training, we smooth the sparse lex-
icon with a backoff model pyo(f):

p(fle) = A 'psp(f‘e) + (1= A) - pro(f)

where A is the interpolation parameter. As a back-
off model, we use uniform distribution, unigram
of source words, or Kneser-Ney lower order model
(Kneser and Ney, 1995; Foster et al., 2000).

In Table 2, we illustrate the effect of the sparse
lexicon with EUTRANS Spanish—English task
(Amengual et al., 1996), comparing to the existing
EM decipherment approach (full lexicon). By set-
ting the threshold small enough (7 = 0.001), the
sparse lexicon surpasses the performance of the
full lexicon, while the number of active entries, for
which memory is actually allocated, is greatly re-
duced. For the backoff, the uniform model shows

(7)

Acc. Active
Lexicon 7 Pbo [%] Entries [%]

Full - - 70.2 100
0.01 64.0 1.1

0.005 Uniform 69.0 2.7

Sparse  0.001 71.8 6.3
Unigram 71.3 6.2

0.001 Kneser-Ney 71.4 6.4

652

Table 2: Sparse lexicon with different threshold
values and backoff models (A = 0.99). Initialized
with uniform distributions and trained for 50 iter-
ations with a bigram LM. No pruning is applied.

the best performance, which requires no additional
memory. The time complexity is not increased by
using the new lexicon.

We also study the mutual effect of 7 and A (Fig-
ure 1). For a larger 7 (circles), where many entries
are cut out from the lexicon, the best-performing
A gets smaller (A = 0.1). In contrast, when we
lower the threshold enough (squares), the perfor-
mance is more robust to the change of A, while
a higher weight on the trained lexicon (A = 0.7)
works best. This means that, the higher the thresh-
old is set, the more information we lose and the
backoff model plays a bigger role, and vice versa.

Accuracy [%]

=
—e— 0.001
—=— 0.000001

0.4 0.6 0.8

A

0.0 0.2 1.0

Figure 1: Relation between sparse lexicon param-
eters (EUROPARL Spanish—English task).

The idea of filtering and smoothing parameters
in the EM training is relevant to Deligne and Bim-
bot (1995) and Marcu and Wong (2002). They
leave out a fixed set of parameters for the whole



training process, while we update trainable param-
eters for every iteration. Nuhn and Ney (2014)
also perform an analogous smoothing but with-
out filtering, only to moderate the lattice pruning.
Note that our work is distinct from the conven-
tional pruning of translation tables in supervised
SMT which is applied after the entire training.

5 Initialization Using Word Classes

Apart from the memory problem, it is inevitable to
apply pruning in the forward-backward algorithm
for runtime efficiency. The pruning in early itera-
tions, however, may drop chances to find a better
optimum in later stage of training. One might sug-
gest to prune only for later iterations, but for large
vocabularies, a single non-pruned E-step can blow
up the total training time.

We rather stabilize the training by a proper ini-
tialization of the parameters, so that the training is
less worsened by early pruning. We learn an initial
lexicon on automatically clustered word classes
(Martin et al., 1998), following these steps:

1. Estimate word-class mappings on both sides
(Csrca Ctgt)

Replace each word in the corpus with its class

[ Cse(f)

e — Cgi(e)

Train a class-to-class full lexicon with a tar-
get class LM

. Convert 3 to an unnormalized word lexicon
by mapping each class back to its member
words

V(f,e) a(fle) = p(Core(f)| Cigt(e))

. Apply the thresholding on 4 and renormalize
(Equation 6)

where all f’s in an implausible source class are
left out together from the lexicon. The resulting
distribution pgp(f|e) is identical for all e’s in the
same target class.

Word classes group words by syntactic or se-
mantic similarity (Brown et al., 1992), which
serve as a reasonable approximation of the orig-
inal word vocabulary. They are especially suitable
for large vocabulary data, because one can arbi-
trarily choose the number of classes to be very
small; learning a class lexicon can thus be much
more efficient than learning a word lexicon.
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Initialization Acc. [%]

Uniform 63.7
#Classes Class LM

25 2-gram 67.4
Word 50 2-gram 69.1
Cl or 100 2-gram 72.1
asses | 50 3-gram  76.0
50 4-gram 76.2

Table 3: Sparse lexicon with word class initial-
ization (7 = 0.001, A = 0.99, uniform backoff).
Pruning is applied with histogram size 10.

Table 3 shows that translation quality is con-
sistently enhanced by the word class initializa-
tion, which compensates the performance loss
caused by harsh pruning. With a larger number
of classes, we have a more precise pre-estimate
of the sparse lexicon and thus have more perfor-
mance gain. Due to the small vocabulary size,
we are comfortable to use higher order class LM,
which yields even better accuracy, outperforming
the non-pruned results of Table 2. The mem-
ory and time requirements are only marginally af-
fected by the class lexicon training.

Empirically, we find that the word classes do
not really distinguish different conjugations of
verbs or nouns. Even if we increase the number
of classes, they tend to subdivide the vocabulary
more based on semantics, keeping morphological
variations of a word in the same class. From this
fact, we argue that the word class initialization can
be generally useful for language pairs with differ-
ent roots. We also emphasize that word classes are
estimated without any model training or language-
specific annotations. This is a clear advantage for
unknown/historic languages, where the unsuper-
vised translation is indeed in need.

6 Large Vocabulary Experiments

We applied two proposed techniques to EU-
ROPARL Spanish—English corpus (Koehn, 2005)
and IWSLT 2014 Romanian—English TED talk
corpus (Cettolo et al., 2012). In the EUROPARL
data, we left out long sentences with more than
25 words and sentences with singletons. For the
IWSLT data, we extended the LM training part
with news commentary corpus from WMT 2016
shared tasks.

We learned the initial lexicons on 100 classes



for both sides, using 4-gram class LMs with 50
EM iterations. The sparse lexicons were trained
with trigram LMs for 100 iterations (r = 1079,
A = 0.15). For further speedup, we applied per-
position pruning with histogram size 50 and the
preselection method of Nuhn and Ney (2014) with
lexical beam size 5 and LM beam size 50. All our
experiments were carried out with the UNRAVEL
toolkit (Nuhn et al., 2015).

Table 4 summarizes the results. The supervised
learning scores were obtained by decoding with an
optimal lexicon estimated from the input text and
its reference. Our methods achieve significantly
high accuracy with only less than 0.1% of mem-
ory for the full lexicon. Note that using conven-
tional decipherment methods is impossible to con-
duct these scales of experiments.

Acc. [%]
Task Supervised Unsupervised Lex. Size [%]
es-en 77.5 54.2 0.06
ro-en 72.3 32.2 0.03

Table 4: Large vocabulary translation results.

7 Conclusion and Future Work

This paper has shown the first promising results
on 100k-vocabulary translation with no bilingual
data. To facilitate this, we proposed the sparse
lexicon, which effectively emphasizes the multi-
nomial sparsity and minimizes its memory usage
throughout the training. In addition, we described
how to learn an initial lexicon on word class vo-
cabulary for a robust training. Note that one can
optimize the performance to a given computing
environment by tuning the lexicon threshold, the
number of classes, and the class LM order.

Nonetheless, we still observe a substantial dif-
ference in performance between supervised and
unsupervised learning for large vocabulary trans-
lation. We will exploit more powerful LMs and
more input text to see if this gap can be closed.
This may require a strong approximation with re-
spect to numerous LM states along with an online
algorithm.

As along term goal, we plan to relax constraints
on word alignments to make our framework usable
for more realistic translation scenarios. The first
step would be modeling local reorderings such as
insertions, deletions, and/or local swaps (Ravi and
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Knight, 2011b; Nuhn et al., 2012). Note that
the idea of thresholding in the sparse lexicon is
also applicable to any normalized model compo-
nents. When the reordering model is lexicalized,
the word class initialization may also be helpful
for a stable training.
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