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Abstract

The polarity classification task aims at au-
tomatically identifying whether a subjec-
tive text is positive or negative. When
the target domain is different from those
where a model was trained, we refer to
a cross-domain setting. That setting usu-
ally implies the use of a domain adaptation
method. In this work, we study the sin-
gle and cross-domain polarity classifica-
tion tasks from the string kernels perspec-
tive. Contrary to classical domain adap-
tation methods, which employ texts from
both domains to detect pivot features, we
do not use the target domain for train-
ing. Our approach detects the lexical pe-
culiarities that characterise the text polar-
ity and maps them into a domain indepen-
dent space by means of kernel discrimi-
nant analysis. Experimental results show
state-of-the-art performance in single and
cross-domain polarity classification.

1 Introduction

The polarity classification task, also known as (bi-
nary) polarity or sentiment categorisation, aims at
identifying whether a subjective text is positive or
negative depending on the overall sentiment de-
tected. Single domain polarity classification (Pang
et al., 2002) refers to the standard text classifica-
tion setting (Sebastiani, 2002). The cross-domain
level (Blitzer et al., 2007) refers to classify a dif-
ferent domain from that or those where a model
was trained.

These tasks have become especially important
for business purposes. The vastness and accessi-
bility of the Internet produced a new generation
of event and product reviewers. These reviewers
employ channels such as blogs, fora or social me-
dia. In consequence, companies are highly inter-
ested into identifying reviewers’ opinions on, for
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instance, new products in order to improve mar-
keting campaigns.

Although polarity classification tasks can be
tackled with text classification methods, it has
been proven to be a more challenging task (Pang et
al., 2002): sentiment may be expressed more sub-
tly (Reyes and Rosso, 2013) than categories gener-
ally recognised with keywords alone. In addition,
the cross-domain variant has the additional diffi-
culty of using a different vocabulary among do-
mains. This problem is usually drawn by means of
domain adaptation techniques (Ben-David et al.,
2007). Most of these techniques exploit pivot fea-
tures that allow to map vocabularies among do-
mains.

String kernels are known for their good perfor-
mance in text classification (Lodhi et al., 2002).
Recent works with this representation demon-
strated its excellent capacity to capture lexical
peculiarities of text (Popescu and Grozea, 2012;
Ionescu et al.,, 2014). In this work we study
the single and cross-domain polarity classification
tasks from the string kernels perspective. The re-
search questions we aim to answer are:

* What is the performance of string kernels for
single and cross-domain polarity classifica-
tion? We are interested in the performance
of this representation in these specially chal-
lenging classification tasks. Despite the use
of string kernels is not new at single-domain
level (Bespalov et al., 2011), this is, to the
best of our knowledge, the first attempt to use
them at cross-domain level. This leads us to
our next research question.

Can this representation classify at cross-
domain level without learning from texts of
the target domain? We employ Kernel Dis-
criminant Analysis (Mika et al., 1999) for the
classification, which is based on a non-linear
space transformation. We aim to clarify if
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the lexical peculiarities captured by this ap-
proach characterise the polarity of the texts
independently of the domain.

In order to answer these questions, we compare
our approach with several state-of-the-art meth-
ods with the well-known Multi-Domain Sentiment
Dataset (Blitzer et al., 2007). Experimental re-
sults show state-of-the-art performance in single
and cross-domain polarity classification. In addi-
tion, the stability of the proposed approach is re-
markable among the different evaluated domains.

2 Related Work

In this section we review the state-of-the-art meth-
ods which have been evaluated in the Multi-
Domain Sentiment dataset. Focused on single-
domain polarity classification, the Confidence-
Weighted Learning (CWL) (Dredze et al., 2008) is
based on updating more aggressively the weights
of features with higher confidence. The Struc-
tural Correspondence Learning with Mutual In-
formation (SCL-MI) (Blitzer et al., 2007) was
the first model evaluating the dataset at cross-
domain level. The mutual information was used
to select pivot features which are subsequently
used for measuring co-occurrence with the rest of
the features. Chen et al. (2012) addressed this
task, considering the scalability and the compu-
tational cost of the approach, with marginalized
stacked denoising autoencoders. The use of neu-
ral networks has also been proven to be useful
for cross-domain classification tasks where un-
labeled data from the test domain is employed
to extract domain independent features (Ganin
et al., 2016). Some approaches have proven
to excel both at single and cross-domain levels.
Bollegala et al. (2013) proposed the Sentiment-
Sensitive Thesaurus (SST) model that groups to-
gether words expressing the same sentiment. Re-
cently, the Knowledge-Enhanced Meta classifier
(KE-Meta) (Franco-Salvador et al., 2015) com-
bined surface and word sense disambiguation fea-
tures derived from a semantic network.

3 String Kernels

String Kernels (SK) are functions that measure the
similarity of string pairs at lexical level. Their dual
representation allows to work with a huge num-
ber of character n-grams while keeping the feature
space reduced.
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In this work, we follow the implementation and
formulation of Ionescu et al. (2014).] A simple
measure of the similarity of two strings s,t is the
number of shared substrings of length p. The p-
grams kernel is estimated as follows:

kp(s,t) = > f(num,(s),num,(t)), (1)

veLp

where num,(s) is the number of occurrences of
string v as a substring of s, p is the length of v, and
L is the alphabet used to generate v. The function
f(z,y) variates depending on the type of kernel:

1. f(z,y) = x-y in the p-spectrum kernel;

2. f(z,y) = sgn(z)-sgn(y) in the p-grams pres-
ence bits kernel;?

3. f(z,y) = min(z,y) in the p-grams intersec-
tion bits kernel.

As we can see, the values of f(.) are the highest
with the spectrum kernel and the lowest with the
presence kernel. This gives us an idea about what
these kernels capture. The spectrum kernel offers
high values even when the texts are only partially
related. The intersection kernel employs the n-
gram frequency to provide with a precise lexical
similarity measure. Finally, the presence kernel
captures the lexical core meaning of the texts by
smoothing the n-gram repetitions.

Our kernels combine different n-gram lengths?
(see Section 4.2 for details about our parameter se-
lection) and are normalised as follows:

k(s,t)
k(s,s) - k(t,t)

We perform the classification with Kernel Dis-
criminant Analysis (KDA) (Baudat and Anouar,
2000),* which returns the eigenvector matrix U.
We compute the feature matrices Y = KU and
Y, = KU, where K and K; are the training and
test instance kernels. For each class ¢, we cre-
ate the prototype Y. as the average of all vectors
of Y that correspond to the instances of class c.

R(s,t) = @)

"http://string-kernels.herokuapp.com/

Zsgn is the sign function.

3We combine the n-gram lengths by adding the kernel
values obtained for each n.

“We wuse the following KDA implementation:
http://www.cad.zju.edu.cn/home/dengcai/
Data/DimensionReduction.html



Finally, we classify each test instance by iden-
tifying the class of the prototype with the low-
est mean squared error between Yi(i) and Y.
Key to our cross-domain classification, without
learning from texts of the target domain, is the
KDA'’s space transformation. It employs the ker-
nel trick (Scholkopf, 2001) and formulates the task
as an eigenvalue problem resolution to learn non-
linear mappings which transform our features to a
new space that captures the most relevant lexical
peculiarities for polarity classification.

4 Evaluation

In this section we evaluate and compare our ap-
proach in the single and the cross-domain polarity
classification tasks.

4.1 Dataset and Tasks Setting

Dataset We employ the Multi-Domain Senti-
ment Dataset (v. 2.0) (Blitzer et al., 2007).> It
contains Amazon product reviews of four differ-
ent domains: Books (B), DVDs (D), Electronics
(E) and Kitchen appliances (K). Each review con-
tains information including a rating in a range of
0 to 5 stars. Reviews rated with more than 3 stars
were labeled as positive, and those with less than
3 as negative. There are 1,000 positive and 1,000
negative reviews for each domain.

Methodology We evaluate our approach using
the presence (kg/ 1), intersection (kg), and spec-
trum (k) kernels. We compare with SST and KE-
Meta at single and cross-domain levels (see Sec-
tion 2). In addition, we compare with CWL at
single-domain and with SCL-MI at cross-domain
level.® Finally, we include as a baseline the com-
bination of word unigram, bigram, and trigram
features using a support vector machine classifier
with linear kernel (henceforth referred to as word
n-g). We perform our evaluation with a stratified
10-fold cross-validation. We use the accuracy of
classification as the evaluation metric. Statistically
significant results according to a x? test are high-
lighted in bold.

4.2 Parameter Selection

We adjusted the kernel n-gram length and the
KDA'’s regularisation factor o with a 80-20% split-

Shttps://www.cs. jhu.edu/-mdredze/
datasets/sentiment/

SThe results of the compared approaches are taken from
Franco-Salvador et al. (2015).
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Figure 1: Avg. accuracy among all the fold values
depending on the KDA'’s regularisation factor.

Method Books DVDs Electronics Kitchen
KE-Meta  83.5 82.3 82.6 84.2
SST 80.4 82.4 84.4 87.7
CWL 82.6 80.9 85.9 85.7
word n-g  80.5 81.7 80.3 81.9
SK(Y') 838 848 86.2 85.5
SK(kg) 83.8 84.6 86.6 85.4
SK(kp) 82.7 82.8 84.7 85.3

Table 1: Single-domain polarity classification ac-
curacy (in %).

ting over the nine training folds of each cross-
validation iteration. We first set « to its default
value (0.2) and explored different combinations of
n-gram lengths, for 2 < n < 10. The best re-
sults where obtained when we combined all the n-
grams in 5 < n < 8. Using that combination, we
tested for € [0.01,1]. The results notably dif-
fered depending on the task setting, training do-
main, and kernel (see Figure 1). We use the pa-
rameters adjusted in this section for the rest of our
evaluation.

4.3 Single-domain Polarity Classification

In Table 1 we show the single-domain results. As
we can see, the state-of-the-art performance dif-
fers depending on the domain. The combination
of word n-grams makes word n-g the baseline in
all the domains. KE-Meta excels with book re-
views, SST with kitchen appliance reviews, and
CWL with book and electronic reviews. Franco-
Salvador et al. (2015) analysed this fact and jus-
tified it with the difference in review length and



Method Books DVDs Electronics Kitchen
KE-Meta 779 80.4 78.9 82.5
SST 76.3 78.3 83.9 85.2
SCL-MI 74.6 76.3 78.9 82.0
word n-g  74.4 79.8 77.1 76.9
SKkY) 820 819 83.6 85.1
SK(kQ) 80.7 80.7 83.0 85.2
SK(kp) 71.2 69.0 73.7 78.0

Table 2: Multi-source cross-domain polarity clas-
sification accuracy (in %).

vocabulary richness among the evaluated domains.
In addition, they highlighted the KE-Meta stability
among domains, i.e., their higher lower-bound in
accuracy. However, the results of our presence and
intersection string kernels are more stable. What
is more, depending on the domain, their results
are statistically superior or equal to the best ob-
tained by the state of the art. The exception is
SST, which obtains the best results in the kitchen
domain, where the shorter average review length
could penalise other methods. We note that there
are not statistically significant differences between
the presence and intersection kernels. However,
the spectrum kernel obtains lower results in all the
cases. In contrast to the other two kernels, the
spectrum one assigns a high score even when only
one of the texts has a high frequency for a partic-
ular n-gram (see Section 3). This produces simi-
lar kernel representations for texts which may be
not so close at lexical level and, consequently, pe-
nalises the model precision.

4.4 Cross-domain Polarity Classification

Following recent works in cross-domain polar-
ity classification (Bollegala et al., 2013; Franco-
Salvador et al., 2015), in Table 2 we compare
with the state of the art using a multi-source cross-
domain setting, i.e., we train with all the domains
but the one we classify. Similarly to the single-
domain results, word n-g is the baseline, KE-Meta
offers higher results in book and DVD reviews,
and SST in electronic and kitchen appliance re-
views. We note that SCL-MI was designed for
single-source cross-domain classification (Blitzer
et al., 2007). Therefore, the use of multiple train-
ing domains may be the reason of its lower, but
still competitive, performance.

Interestingly, despite not using target domain
texts for training, the presence and intersection
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kernels obtain statistically superior or equal results
to the best ones obtained by the state of the art.
This proves that the non-linear mappings learned
by KDA capture the lexical peculiarities that char-
acterise polarity in a domain-independent way. We
note again the stability of the results of these ker-
nels and the non-existent statistically significant
difference between them. In contrast, the spectrum
kernel obtains the lowest results of the table. In or-
der to analyse this fact, we perform an additional
experiment where we use a single-source setting
to train our cross-domain classifiers. We can see
the results in Table 3.

The comparison of the multi-source and the
single-source results shows that the presence and
intersection kernels are occasionally able to ex-
ploit different domain characteristics to obtain bet-
ter results, e.g. the presence and intersection ker-
nels with kitchen reviews, and the presence kernel
with DVDs reviews. Even in cases when the com-
bination of domains do not lead to better results,
the results remain close to those of the most com-
patible training domain; specially with the pres-
ence kernel. We note the relevance of the multi-
source setting for the industry: it is easier to use
multiple domains to learn a domain-independent
classifier than to detect each time which is the
most appropriated training domain. Finally, we
observe that the spectrum kernel has competitive
results when the most compatible domain is used
for training. However, the aforementioned score
characteristics of that kernel (see Sections 3 and
4.3) exponentially increase its error in the multi-
source setting.

5 Conclusions

In this paper we studied the single and the cross-
domain polarity classification tasks from the string
kernels perspective. We analysed the performance
of the presence, intersection, and spectrum kernels
when classifying with kernel discriminant anal-
ysis. Experimental results compared to several
state-of-the-art approaches in the Multi-Domain
Sentiment Dataset showed state-of-the-art perfor-
mance for the presence and intersection kernels
in both tasks. In addition, these two kernels pro-
vided with the most stable results among domains.
What is more, we showed that the non-linear space
transformations of kernel discriminant analysis
captured the lexical peculiarities that characterise
polarity in a domain-independent way. This fact



Method D—B E—B K—B B—D E—D K-—D

SK(Yh 820 724 727 814 749 736
SK(k)) 821 724 728 813 751 729
SK(k,) 811 699 714 800 735 718
B—-E D—E K—E B—K D—K E—K
SK(YY 713 744 839 746 754 849
SK(K)) 718 745 844 749 751 849
SK(k,) 707 726 839 742 749 845

Table 3: SK single-source cross-domain polarity classification accuracy (in %), where each column
header follows the “training domain — test domain® format.

allowed our approaches to excel at cross-domain
level without learning from texts of the target do-
main. Finally, the analysis of the single-source
and the multi-source cross-domain results proved
that the presence kernel tolerates better the inclu-
sion of new training domains in the multi-source
cross-domain setting. This fact makes it the rec-
ommended option for cross-domain polarity clas-
sification.

Future work will investigate further how to em-
ploy string kernels for single and cross-domain
classification tasks.
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