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Abstract

Grounded semantics is typically learnt
from utterance-level meaning representa-
tions (e.g., successful database retrievals,
denoted objects in images, moves in a
game). We explore learning word and ut-
terance meanings by continuous observa-
tion of the actions of an instruction fol-
lower (IF). While an instruction giver (IG)
provided a verbal description of a config-
uration of objects, IF recreated it using a
GUI. Aligning these GUI actions to sub-
utterance chunks allows a simple maxi-
mum entropy model to associate them as
chunk meaning better than just providing
it with the utterance-final configuration.
This shows that semantics useful for in-
cremental (word-by-word) application, as
required in natural dialogue, might also be
better acquired from incremental settings.

1 Introduction

Situated instruction giving and following is a good
setting for language learning, as it allows for the
association of language with externalised mean-
ing. For example, the reaction of drawing a circle
on the top left of a canvas provides a visible signal
of the comprehension of “top left, a circle”. That
such signals are also useful for machine learn-
ing of meaning has been shown by some recent
work (inter alia (Chen and Mooney, 2011; Wang
et al., 2016)). While in that work instructions
were presented as text and the comprehension
signals (goal configurations or successful naviga-
tions) were aligned with full instructions, we ex-
plore signals that are aligned more fine-grainedly,
possibly to sub-utterance chunks of material. This,
we claim, is a setting that is more representative of
situated interaction, where typically no strict turn

taking between instruction giving and execution is
observed.
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Figure 1: Example of collaborative scene drawing
with IG words (rounded rectangles) and IF reac-
tions (blue diamonds) on a time line.

Figure 1 shows two examples from our task.
While the instruction giver (IG) is producing their
utterance (in the actual experiment, this is com-
ing from a recording), the instruction follower (IF)
tries to execute it as soon as possible through ac-
tions in a GUI. The temporal placement of these
actions relative to the words is indicated with
blue diamonds in the figure. We use data of this
type to learn alignments between actions and the
words that trigger them, and show that the tem-
poral alignment leads to a better model than just
recording the utterance-final action sequence.

2 The learning task

We now describe the learning task formally. We
aim to enable a computer to learn word and utter-
ance meanings by observing human reactions in a
scene drawing task. At the beginning, the com-
puter knows nothing about the language. What it
observes are an unfolding utterance from an IG and
actions from an IF which are performed while the
instruction is going on. Aligning each action a (or,
more precisely, action description, as will become
clear soon) to the nearest word w, we can repre-
sent an utterance / action sequence as follows:

wt1 , wt2 , at3 , · · · , wti , ati+1 , · · · , wtn (1)

491



(Actions are aligned ‘to the left’, i.e. to the imme-
diately preceding or overlapping word.)

As the IF concurrently follows the instruction
and reacts, we make the simplifying assumption
that each action ati is a reaction to the words
which came before it and disregard the possibility
that IF might act on a predictions of subsequent in-
structions. For instance, in (1), we assume that the
action at3 is the interpretation of the words wt1

and wt2 . When no action follows a given word
(e.g. wtn in (1)), we take this word as not con-
tributing to the task.

We directly take these action symbols a as the
representation of the utterance meaning so-far, or
in other words, as its logical form; hence, the
learning task is to predict an action symbol as soon
as it is appropriate to do so. The input is presented
as a chunk of the ongoing utterance containing at
least the latest word. The utterance meaning U of
a sequence {wt1 , . . . , wtn} as a whole then is sim-
ply the concatenation of these actions:

U = {at1 , ...., ati} (2)

3 Modeling the learning task

3.1 Maximum entropy model
We trained a maximum entropy model to compute
the probability distribution over actions from the
action space A = {ai : 1 ≤ i ≤ N}, given the
current input chunk c:

p(ai|c) =
1

Z(c)
exp

∑
j

λjfj(ai, c) (3)

λj is the parameter to be estimated. fj(ai, c) is
a simple feature function recording co-occurences
of chunk and action:

fj(ai, c) =
{

1 if c = cj
0 otherwise

(4)

In our experiments, we use a chunk size of 2,
i.e., we use word bigrams. Z(c) is the normal-
ising constant. The logical form with the highest
probability is taken to represent the meaning of the
current chunk: a∗(c) = arg maxi p(ai|c)

In the task that we test the approach on, the ac-
tion space contains actions for locating an object
in a scene; for sizing and colouring it; as well as
for determining its shape. (See below.)
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Figure 2: Example of hypothesis updating. New
best hypotheses per type are shown in blue; re-
tained hypotheses in green; revised hypotheses in
red.

3.2 Composing utterance meaning
Since in our task each utterance places one object,
we assume that each utterance hypothesis U con-
tains a unique logical form for each of following
concepts (referred as type of logical forms later):
colour, shape, size, row and column position.

While the instruction unfolds, we update the ut-
terance meaning hypotheses by adding new logical
forms or updating the probabilities of current hy-
pothesis. With each uttered word, we first check
the type of the predicted logical form. If no log-
ical form of the same type has already been hy-
pothesised, we incorporate the new logical form to
the current hypothesis. Otherwise, if the predicted
logical form has a higher probability than the one
with the same type in the current hypothesis, we
update the hypothesis; if it has a lower probabil-
ity, the hypothesis remains unchanged. Figure 2
shows an example of the hypothesis updating pro-
cess.

4 Data collection

4.1 The experiment
While the general setup described above is one
where IG gives an instruction, which a co-present
IF follows concurrently, we separated these con-
tributions for technical reasons: The instructions
from IG were recorded in one session, and the
actions from IF (in response to being played the
recordings of IG) in another.

To elicit the instructions, we showed IGs a scene
(as shown in the top of Figure 3) on a computer
screen. They were instructed to describe the size,
colour, shape and the spatial configuration of the
objects. They were told that another person will
listen to the descriptions and try to re-create the
described scenes.

100 scenes were generated for the description
task. Each scene includes 2 circles and a square.
The position, size, colour and shape of each ob-
ject were randomly selected when the scenes were
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Figure 3: The GUI and a sample scene.

generated. The scenes were shown in the same
order to all IGs. There was no time restriction
for each description. Each IG was recorded for
20 minutes, yielding on average around 60 scene
descriptions. Overall, 13 native German speakers
participated in the experiment. Audio and video
was recorded with a camera.

In the scene drawing task, we replayed the
recordings to IFs who were not involved in the pre-
ceding experiment. To reduce the time pressure
of concurrently following instructions and react-
ing with GUI operation, the recordings were cut
into 3 separate object descriptions and replayed
with a slower pace (at half the original speed). IFs
decided when to begin the next object description,
but were asked to act as fast as possible. This setup
provides an approximation (albeit a crude one) to
realistic interactive instruction giving, where feed-
back actions control the pace (Clark, 1996).

The drawing task was performed with a GUI

(Figure 3) with separate interface elements corre-
sponding to the aspects of the task (placing, sizing,
colouring, determining shape). Before the exper-
iment, IFs were instructed in using the GUI and
tried several drawing tasks. After getting familiar
with the GUI, the recordings were started. Over-
all, 3 native German speakers took part in this ex-
periment. Each of them listened to the complete
recordings of between 4 and 5 IGs, that is, to be-
tween 240 and 300 descriptions. The GUI actions
were logged and timestamped.

4.2 Data preprocessing
Aligning words and actions First, the instruc-
tion recordings were manually transcribed. A
forced-alignment approach was applied to tempo-
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Figure 4: Action type distributions over utterance
duration (1 = 100% of utterance played).

rally align the transcriptions with the recordings.
Then, the IF actions were aligned with the record-
ings via logged timestamps.

Figure 4 shows how action types distribute over
utterances. As this shows, object positions tend
to be decided on early during the utterance, with
the other types clustering at the end or even after
completion of the utterance.

Actions and Action Descriptions We defined a
set of action symbols to serve as logical forms rep-
resenting utterance chunk meanings. As described
above, we categorised these action symbols into 5
types (shown in Table 1). The symbols were used
for associating logical forms to words, while the
type of actions was used for updating the hypoth-
esis of utterance meaning (as explained in Sec-
tion 3.2).

We make the distinction between actions and
action symbol (or action description), because we
make use of the fact that the same action may be
described in different ways. E.g., a placing action
can be described relative to the canvas as a whole
(e.g. “bottom left”) or relative to other objects (e.g.
“right of object 1”). We divided the canvas into a
grid with 6 × 6 cells. We represent canvas posi-
tions with the grid coordinate. For example, row1
indicates an object is in the first row of the canvas
grid. We represent the relative positions with the
subtraction of their indexes to corresponding refer-
ential objects. For example, prev1 row1 indicates
that the object is 1 row above the first described
object. Describing the same action in these differ-
ent ways gives us the required targets for associ-
ating with the different possible types of locating
expressions.

Labelling words with logical forms With the
assumption that each action is a reaction to at most
N words that came before it (N = 3 in our setup),
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type logical form
row row1, row2 ... row6

prev1 row1, prev1 row2 ...
prev2 row1, prev2 row2 ...

column col1, col2 ... col6
prev1 col1, prev1 col2 ...
prev2 col1, prev2 col2 ...

size small, medium, big

colour red, green, blue, magenta

cyan, yellow

shape circle, square

Table 1: Reaction types and logical forms.

we label these N previous words with the logical
form of the action. E.g., for the first utterance from
Figure 1 above:

(1)
unten links ist ein kleines blaues Viereck
row4 row4 small small small blue square
col0 col0 blue blue square

square

Notice that a word might be aligned with more
than one action, which means that the learning
process has to deal with potentially noisy infor-
mation. Alternatively, a word might not be aligned
with any action.

5 Evaluation

The data was randomly divided into train (80%)
and test sets (20%). For our multi-class classifica-
tion task, we calculated the F1-score and precision
for each class and took the weighted sum as the fi-
nal score.

Setup F1-score Precision Recall
Proposed Exp1 0.75 0.65 0.89

model Exp2 0.66 0.55 0.83
Baseline model 0.60 0.52 0.71

Table 2: Evaluation results.

Figure 5 illustrates the evaluation process of
each setup.

Proposed model The proposed model was eval-
uated on the utterance and the incremental level.
In Experiment 1, the meaning representation is
assembled incrementally as described above, but
evaluated utterance-final. In Experiment 2, the
model is evaluated incrementally, after each word
of the utterance. Hence, late predictions (where
a part of the utterance meaning is predicted later
than would have been possible) are penalised in
Experiment 2, but not Experiment 1. The model
performs better on the utterance level, which sug-
gests that the hypothesis updating process can suc-
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Figure 5: Evaluation Setups. Exp. 1 only evaluates
the utterance-final representation, Exp. 2 evaluates
incrementally. False interpretations are shown in
red.

cessfully revise false interpretations while the de-
scriptions unfold.

Baseline model For comparison, we also trained
a baseline model with temporally unaligned data
(comparable to a situation where only at the end
of an utterance a gold annotation is available). For
(1), this would result in all words getting assigned
the labels row4,col0,small,blue,square. As
Table 2 shows, this model achieves lower results.
This indicates that temporal alignment in the train-
ing data does indeed provide better information for
learning.

Error analysis While the model achieves good
performance in general, it performs less well on
position words. For example, given the chunk
“schräg rechts” (diagonally to the right) which
describes a landmark-relative position, our model
learned as best interpretation a canvas-relative po-
sition. The hope was that offering the model
the two different action description types (canvas-
relative and object-relative) would allow it to make
this distinction, but it seems that here at least
the more frequent use of “rechts” suppresses that
meaning.

6 Related work

There has been some recent work on grounded
semantics with ambiguous supervision. For ex-
ample, Kate and Mooney (2007) and Kim and
Mooney (2010) paired sentences with multiple
representations, among which only one is cor-
rect. Börschinger et al. (2011) introduced an ap-
proach to ground language learning based on un-
supervised PCFG induction. Kim and Mooney
(2012) presents an enhancement of the PCFG ap-
proach that scales to such problems with highly-
ambiguous supervision. Berant et al. (2013)
and Dong and Lapata (2016) map natural lan-
guage to machine interpretable logical forms with
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question-answer pairs. Tellex et al. (2012), Salvi
et al. (2012), Matuszek et al. (2013), and Andreas
and Klein (2015) proposed approaches to learn
grounded semantics from natural language and ac-
tion associations. These approaches paired am-
biguous robot actions with natural language de-
scriptions from humans. While these approaches
achieve good learning performance, the ambigu-
ous logical forms paired with the sentences were
manually annotated. We attempted to align ut-
terances and potential logical forms by continu-
ously observing the instruction following actions.
Our approach not only needs no human annota-
tion or prior pairing of natural language and log-
ical forms for the learning task, but also acquires
less ambiguous language and action pairs. The re-
sults show that the temporal information helps to
achieve competitive learning performance with a
simple maximum entropy model.

Learning from observing successful interpreta-
tion has been studied in much recent work. Be-
sides the work discussed above, Frank and Good-
man (2012), Golland et al. (2010), and Reckman
et al. (2010) focus on inferring word meanings
through game playing. Branavan et al. (2009),
Artzi and Zettlemoyer (2013), Kollar et al. (2014)
and Monroe and Potts (2015) infer natural lan-
guage meanings from successful instruction ex-
ecution of humans/agents. While interpretations
were provided on utterance level in above works,
we attempt to learn word and utterance meanings
by continuously observing interpretations of natu-
ral language in a situated setup which enables ex-
ploitation of temporally-aligned instruction giving
and following.

7 Conclusions

Where most related work starts from utterance-
final representations, we investigated the use of
more temporally-aligned understanding data. We
found that in our setting and for our simple learn-
ing methods, this indeed provides a better signal.
It remains for future work to more clearly delin-
eate the types of settings where such close align-
ment on the sub-utterance level might be observed.
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