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Abstract

What is the information captured by neural
network models of language? We address
this question in the case of character-level
recurrent neural language models. These
models do not have explicit word repre-
sentations; do they acquire implicit ones?
We assess the lexical capacity of a network
using the lexical decision task common in
psycholinguistics: the system is required
to decide whether or not a string of charac-
ters forms a word. We explore how accu-
racy on this task is affected by the architec-
ture of the network, focusing on cell type
(LSTM vs. SRN), depth and width. We
also compare these architectural properties
to a simple count of the parameters of the
network. The overall number of parame-
ters in the network turns out to be the most
important predictor of accuracy; in partic-
ular, there is little evidence that deeper net-
works are beneficial for this task.

1 Introduction

Neural networks have rapidly become ubiquitous
in natural language processing systems, but our
ability to understand those networks has not kept
pace: we typically have little understanding of a
typical neural network beyond its accuracy on the
task it was trained to do. One potential way to gain
insight into the ability of a trained model is to eval-
uate it on an interpretable auxiliary task that is dis-
tinct from the task that the network was trained on:
a network that performs a particular auxiliary task
successfully is likely to have internal representa-
tions that encode the information relevant for that
task (Adi et al., 2017; Mikolov et al., 2013). Lin-
guistics and psycholinguistics offer a rich reper-
toire of tasks that have been used for decades to

study the components of the human mind; it is nat-
ural to use these tasks to understand the abilities
of artificial neural networks (Dunbar et al., 2015;
Linzen et al., 2016).

The present work takes up character-level neu-
ral network language models. Such models
have been surprisingly competitive in applica-
tions, even though they do not explicitly represent
words (Chung et al., 2016; Kim et al., 2016). Our
goal is to shed light on the ability of character-
level models to implicitly learn a lexicon. We
use a task designed to investigate humans lexical
processes. This task is based on a simple ques-
tion: how well can the subject distinguish real
words from character strings that do not belong
to the language (nonwords)? Since character-level
language models define a probability distribution
over all character strings, we can perform this
task in a particularly straightforward way: given a
word and a nonword that are matched on low-level
properties such as length and character bigram fre-
quency, we expect the probability of the word to be
higher than the probability of the nonword.

We systematically explore how the performance
of the network on this task is affected by three ar-
chitectural parameters. First, we vary the depth
of the network (number of layers); second, we
vary the number of units in each layer; and finally,
we compare simple recurrent networks (SRN)
to networks with long short-term memory cells
(LSTM). We find that the main factor that deter-
mines the lexical capacity of the network is the to-
tal number of parameters rather than any one of
these architectural properties.

2 Lexical decision

The lexical decision task is widely used in cog-
nitive psychology to probe human lexical repre-
sentations (Meyer and Schvaneveldt, 1971; Balota
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et al., 2006). In the standard version of the task,
which we refer to as yes/no lexical decision, the
subject is presented with a string of characters—
e.g., horse in one trial or porse in another—and
is requested to indicate whether or not the string
makes up a word. A large array of properties of
the word (or nonword) have been found to influ-
ence human performance on the task, measured
in accuracy and reaction time; most famously, hu-
mans recognize frequent words more quickly and
accurately than infrequent ones.

Our goal is to administer the lexical decision
task to a character-level language model. Such a
language model should assign a higher probability
to words than to nonwords. At first blush, it ap-
pears straightforward to perform the task by fixing
a probability threshold and classifying all of the
strings whose probability falls above this threshold
as words and all of the strings that fall below it as
nonwords. In preliminary experiments, however,
we found it difficult to define such a threshold. At
a minimum, the probability assigned by the model
to strings strongly depends on their length, so nor-
malization for length is essential (see Lau et al.
(2016) for discussion); even after normalization,
however, it remained challenging to set a thresh-
old distinguishing words from nonwords.

Instead of the standard yes/no lexical decision
task, then, we use a forced choice variant of the
task (Baddeley et al., 1993). In this version, two
strings are simultaneously presented, one of which
is always a word and the other always a nonword;
subjects are instructed to select the item that they
believe is a word. The advantage of this setup is
that we can match each word with a nonword that
is maximally similar to it in length or any other
properties that may be relevant, thus avoiding
complicated probability normalization schemes.

3 Models

We tested two types of recurrent units: the classic
Elman (1990) architecture, which we refer to as
simple recurrent network (SRN), and Long Short-
Term Memory units, or LSTM (Hochreiter and
Schmidhuber, 1997). Since each LSTM unit con-
tains several gates and a memory cell, it has ap-
proximately four times as many connections as an
SRN unit, and therefore four times as many pa-
rameters.

The first layer of each network is a character
embedding. This layer is followed by one or more

recurrent layers with a tanh nonlinearity, each fol-
lowed by a batch normalization layer (Ioffe and
Szegedy, 2015). A pair of ‘view’ layers then re-
shape the tensor with a linear transformation be-
tween them, yielding predicted scores for each el-
ement of the vocabulary. Finally, the output is pro-
duced by a softmax layer that gives a probability
distribution over the next character.

How many parameters does each network have?
Let n be its number of recurrent layers, V the size
of the vocabulary (all possible characters), D the
size of the character embedding, and H the num-
ber of units per layer. Table 1 shows the number
of parameters in each layer:

Layer Parameters

Character embedding layer V D
First SRN layer H(D + H + 1)
First LSTM layer 4H(D + H + 1)
Additional SRN layer H(2H + 1)
Additional LSTM layer 4H(2H + 1)
Batch normalization layers H
First ‘view’ H
Linear transformation HV
Second ‘view’ V

Table 1: Number of parameters in each of the com-
ponents of the model.

In addition to the RNNs, we test two simple
baselines: a bigram and a unigram model of the
training set. The goal of these baselines is to eval-
uate the nonwords: if a unigram model can reli-
ably distinguish nonwords from words, the non-
words are not sufficiently challenging; this could
happen, for example, if the nonwords tend to have
rare characters such as Q or Z.

4 Methods

Corpus: We trained our language models on a
subset of the movie book project corpus (Zhu
et al., 2015); the subset contained approximately
50M characters (10M words). The corpus was
lowercased by its creators. We split the corpus
into training, validation and test sets (80%, 10%
and 10% of the data, respectively); this test set
was used only to calculate perplexity (see below).
The vocabulary we used to test our network in the
lexical decision task only included words that oc-
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Figure 1: Accuracy as a function of the complexity of the network. The dashed line represents chance
accuracy (50%). Each dot represents a single run.) (a) Detailed results by architecture, number of units
per layer (16, 32, 64 or 128) and number of layers. (b) Relationship between accuracy and total number
of parameters (on a logarithmic scale).

curred in the training set.1

Nonword generation: We generated nonwords
using a slightly modified version of Wuggy
(Keuleers and Brysbaert, 2010); we refer the
reader to the original paper and our published code
for further details.

The algorithm takes a list of words as its input
and outputs a matching nonword for each word of
the list. Matching is performed using a phono-
tactic grammar of the lexicon. This phonotactic
grammar is based on a segmentation of the words
into syllables and subsyllabic elements (onset, nu-
cleus and coda). A syllabification dictionary splits
the words into a sequence of syllables. Each syl-
lable is then segmented into subsyllabic elements
using a grammar of legal subsyllabic sequences.
Each subsyllabic element is represented by a tuple
that records its letters, position in the word, total
number of subsyllabic elements in the word and
the subsyllabic element that follows it. The first
three elements of the tuples form a “link”. The
frequency of a link is computed from the lexicon,
along with its possible next subsyllabic elements.
This makes up a “bigram chain” that describes the
phonotactics of the lexicon. For a given word, a
nonword is generated by the bigram chain with pa-
rameters as similar as possible as the input word.

1A network may be able to correctly perform a lexical
decision on words to which it has not been exposed if those
words follow the word formation rules of the language (e.g.,
Frenchify); we are exploring this issue in ongoing work.

Such parameters defined by the bigram chain can
be, but are not limited to, the total length of the
word and the transition probabilities between its
subsyllabic elements.

Task: The RNN defines a probability distribu-
tion over character strings. We performed the
forced choice task by calculating the probability
of the word and the probability of the nonword,
and selecting the string that had a higher proba-
bility; trials in which the probability of nonword
was higher were considered to be errors. To en-
sure that we were computing the probability of a
word rather than a prefix or suffix (e.g., cat as a
prefix of category), we added spaces on either side
of the word; e.g., we computed the probability of
‘ cat ’ rather than ‘cat’. We transformed the train-
ing corpus accordingly, to ensure that all words en-
countered during training contribute to the lexical
decision, including words preceded or followed by
a punctuation mark or a sentence boundary.

Experiments: We trained networks with all
combinations of unit type (LSTM or SRN), width
(16, 32, 64 or 128 hidden units per layer) and
depth (one, two or three hidden layers). To es-
timate the impact of random initialization on the
results, we trained six networks with each combi-
nation of parameters.2

We used a slightly modified version of Justin

2Our code can be found at https://github.com/
bootphon/char_rnn_lexical_decision.
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Figure 2: The relationship between character-level
perplexity and lexical decision accuracy. Each
point represent a single fitted model.

Johnson’s Torch implementation of character-level
RNNs.3 To prevent overfitting, the networks
were trained using early stopping based on vali-
dation set loss. They were optimized using Adam
(Kingma and Ba, 2015) with a learning rate of
2e−3. The number of distinct characters was
95, and the dimension of the character embed-
dings was 64. During training, the networks op-
erated over minibatches of size 50 and sequences
of length 50.

5 Results

The accuracy of the unigram and bigram baselines
was 49.6% and 52.1% respectively, very close to
chance accuracy (50%). This suggests that the
nonwords we generated were sufficiently difficult
to distinguish from the words. The results of the
RNNs we trained are shown in Figure 1a. All
of the three architectural parameters affected per-
formance in the task: networks with LSTM cells
performed better than SRNs with the same num-
ber of units and layers. Increasing the number
of units per layer was beneficial across the board.
Additional layers improved performance as well,
though the addition of the third layer was often
less beneficial than the addition of the second one.
Given a fixed budget of units, it was more useful
to deploy them in a wide and shallow network than
a narrow and deep network (e.g., an SRN with 32
hidden units in one layer outperformed an SRN
with 16 hidden units in two layers).

3https://github.com/jcjohnson/
torch-rnn

How much of the advantage of LSTMs is due to
the fact that they have more parameters per unit?
Figure 1b plots the accuracy of the same networks,
this time against the log-transformed number of
parameters. While there remains a slight advan-
tage for LSTMs over SRNs, especially as the num-
ber of parameters increases, it is evident that the
number of parameters is an excellent predictor of
the performance of the network. Of course, since
the dependencies that the network needs to model
to perform the lexical decision task are relatively
short, this task may not bring out the competitive
advantage of LSTMs, which are argued to excel in
tasks that require long dependencies.

We plot the relationship between the perplexity
of the language model and its accuracy in the lex-
ical decision task in Figure 2. This relationship is
not entirely surprising, given that low perplexity
indicates that the model assigns high likelihood to
the character sequences that occurred in the test
set, which are of course much more likely to be
words than nonwords. The two measures are far
from being identical, however. Perplexity incor-
porates the model’s ability to predict dependencies
across words; this is not the case for lexical deci-
sion, where performance may in fact be hindered
by irrelevant contextual information, as it is for hu-
mans (McDonald and Shillcock, 2001). Perplexity
also weights accurate prediction of frequent words
much more highly than infrequent words. Given
these differences, the measures could potentially
diverge in subsets of the lexicon.

6 Discussion

The lexical capacity measure that we have pro-
posed assigns the same weight to rare and frequent
words. As such, it may provide an alternative eval-
uation metric for character-based language mod-
els, supplementing the more standard measure of
perplexity, which is biased in favor of frequent
words and conflates lexical knowledge with longer
dependencies across words.

One advantage of the evaluation metric we have
proposed is that it is in principle possible to com-
pare it to human performance. This contrasts
with perplexity, which does not map onto any task
that can be given to humans, especially when the
model is at the character level. For example, our
preliminary analyses showed that the model makes
more errors on low-frequency than high-frequency
words, a pattern that is qualitatively similar to hu-
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mans (Ratcliff et al., 2004).
Some challenges remain, however, before a

quantitative comparison before humans and neu-
ral network language models can be performed.
Existing large-scale human behavioral datasets are
based on a speeded yes/no version of the task, in
which participants are instructed to make a lex-
ical decision on a single string of characters as
quickly as possible (Balota et al., 2007), whereas
our evaluation is based on the forced choice task
and does not incorporate time pressure. A be-
havioral dataset with the paradigm we have used
should be easy to collect using crowdsourcing. Al-
ternatively, direct comparison to existing human
datasets could be made possible by developing re-
liable ways to map language model probabilities
onto timed yes/no lexical decisions; our initial ex-
periments suggest that some nontrivial challenges
would need to be overcome before this direction
can be pursued.

Our work is related to early work that aimed
to measure the phonotactic knowledge of recur-
rent networks (Stoianov et al., 1998; Stoianov
and Nerbonne, 2000). This idea was developed
by Testolin et al. (2016), who use the lexical de-
cision task to measure the orthographic knowl-
edge of various neural networks and n-gram mod-
els. The Naive Discriminative Learner (Baayen
et al., 2011), which can be seen as a simple non-
recurrent neural network, has been used to model
human lexical decision reaction times. Finally, our
work is related to work on syntax that evaluated
whether a word-level language model assigns a
higher probability to an grammatical sentence than
to a minimally different ungrammatical one (Lau
et al., 2016; Linzen et al., 2016; Sennrich, 2017).

In summary, the main result of this study is that
with a sufficient number of parameters character-
level neural networks are able to perform lexical
decisions with high levels of performance, despite
not being trained on this task. A second important
result is that the main predictor of lexical decision
accuracy was the total number of parameters in the
network; we found no evidence that deep networks
are superior to shallow and wide ones on this task.
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