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Abstract

Crosslingual word embeddings represent
lexical items from different languages
using the same vector space, enabling
crosslingual transfer. Most prior work
constructs embeddings for a pair of lan-
guages, with English on one side. We in-
vestigate methods for building high qual-
ity crosslingual word embeddings for
many languages in a unified vector space.
In this way, we can exploit and combine
information from many languages. We re-
port competitive performance on bilingual
lexicon induction, monolingual similarity
and crosslingual document classification
tasks.

1 Introduction

Monolingual word embeddings have facilitated
advances in many natural language process-
ing tasks, such as natural language understand-
ing (Collobert and Weston, 2008), sentiment anal-
ysis (Socher et al., 2013), and dependency pars-
ing (Dyer et al., 2015). Crosslingual word embed-
dings represent words from several languages in
the same low dimensional space. They are help-
ful for multilingual tasks such as machine trans-
lation (Brown et al., 1993) and bilingual named
entity recognition (Wang et al., 2013). Crosslin-
gual word embeddings can also be used in trans-
fer learning, where the source model is trained on
one language and applied directly to another lan-
guage; this is suitable for the low-resource sce-
nario (Yarowsky and Ngai, 2001; Duong et al.,
2015b; Das and Petrov, 2011; Täckström et al.,
2012).

Most prior work on building crosslingual word
embeddings focuses on a pair of languages. En-
glish is usually on one side, thanks to the wealth

of available English resources. However, it is
highly desirable to have a crosslingual word em-
beddings for many languages so that different rela-
tions can be exploited.1 For example, since Italian
and Spanish are similar, they are excellent candi-
dates for transfer learning. However, few parallel
resources exist between Italian and Spanish for di-
rectly building bilingual word embeddings. Our
multilingual word embeddings, on the other hand,
map both Italian and Spanish to the same space
without using any direct bilingual signal between
them. In addition, multilingual word embeddings
allow multiple source language transfer learning,
producing a more general model and overcoming
data sparseness (McDonald et al., 2011; Guo et
al., 2016; Agić et al., 2016). Moreover, multilin-
gual word embeddings are also crucial for multi-
lingual applications such as multi-source machine
translation (Zoph and Knight, 2016), and multi-
source transfer dependency parsing (McDonald et
al., 2011; Duong et al., 2015a).

We propose several algorithms to map bilingual
word embeddings to the same vector space, ei-
ther during training or during post-processing. We
apply a linear transformation to map the English
side of each pretrained crosslingual word embed-
ding to the same space. We also extend Duong et
al. (2016), which used a lexicon to learn bilingual
word embeddings. We modify the objective func-
tion to jointly build multilingual word embeddings
during training. Unlike most prior work which fo-
cuses on downstream applications, we measure the
quality of our multilingual word embeddings in
three ways: bilingual lexicon induction, monolin-
gual word similarity, and crosslingual document
classification tasks. Relative to a benchmark of

1From here on we refer to crosslingual word embeddings
for a pair of languages and multiple languages as bilingual
word embeddings and multilingual word embeddings respec-
tively.
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training on each language pair separately and to
various published multilingual word embeddings,
we achieved high performance for all the tasks.

In this paper we make the following contribu-
tions: (a) novel algorithms for post hoc combina-
tion of multiple bilingual word embeddings, ap-
plicable to any pretrained bilingual model; (b) a
method for jointly learning multilingual word em-
beddings, extending Duong et al. (2016), to jointly
train over monolingual corpora in several lan-
guages; (c) achieving competitive results in bilin-
gual, monolingual and crosslingual transfer set-
tings.

2 Related work

Crosslingual word embeddings are typically based
on co-occurrence statistics from parallel text (Lu-
ong et al., 2015; Gouws et al., 2015; Chandar A P
et al., 2014; Klementiev et al., 2012; Kočiský et
al., 2014; Huang et al., 2015). Other work uses
more widely available resources such as compa-
rable data (Vulić and Moens, 2015) and shared
Wikipedia entries (Søgaard et al., 2015). However,
those approaches rely on data from Wikipedia, and
it is non-trivial to extend them to languages that
are not covered by Wikipedia. Lexicons are an-
other source of bilingual signal, with the advan-
tage of high coverage. Multilingual lexical re-
sources such as PanLex (Kamholz et al., 2014)
and Wiktionary2 cover thousands of languages,
and have been used to construct high performance
crosslingual word embeddings (Mikolov et al.,
2013a; Xiao and Guo, 2014; Faruqui and Dyer,
2014).

Previous work mainly focuses on building word
embeddings for a pair of languages, typically with
English on one side, with the exception of Coul-
mance et al. (2015), Søgaard et al. (2015) and Am-
mar et al. (2016). Coulmance et al. (2015) extend
the bilingual skipgram model from Luong et al.
(2015), training jointly over many languages us-
ing the Europarl corpora. We also compare our
models with an extension of Huang et al. (2015)
adapted for multiple languages also using bilin-
gual corpora. However, parallel data is an ex-
pensive resource and using parallel data seems to
under-perform on the bilingual lexicon induction
task (Vulić and Moens, 2015). While Coulmance
et al. (2015) use English as the pivot language,
Søgaard et al. (2015) learn multilingual word em-

2wiktionary.org

beddings for many languages using Wikipedia en-
tries which are the same for many languages.
However, their approach is limited to languages
covered in Wikipedia and seems to under-perform
other methods. Ammar et al. (2016) propose two
algorithms, MultiCluster and MultiCCA, for mul-
tilingual word embeddings using set of bilingual
lexicons. MultiCluster first builds the graph where
nodes are lexical items and edges are translations.
Each cluster in this graph is an anchor point for
building multilingual word embeddings. Multi-
CCA is an extension of Faruqui and Dyer (2014),
performing canonical correlation analysis (CCA)
for multiple languages using English as the pivot.
A shortcoming of MultiCCA is that it ignores pol-
ysemous translations by retaining only one-to-one
dictionary pairs (Gouws et al., 2015), disregard-
ing much information. As a simple solution, we
propose a simple post hoc method by mapping the
English parts of each bilingual word embedding
to each other. In this way, the mapping is always
exact and one-to-one.

Duong et al. (2016) constructed bilingual word
embeddings based on monolingual data and Pan-
Lex. In this way, their approach can be ap-
plied to more languages as PanLex covers more
than a thousand languages. They solve the pol-
ysemy problem by integrating an EM algorithm
for selecting a lexicon. Relative to many previous
crosslingual word embeddings, their joint training
algorithm achieved state-of-the-art performance
for the bilingual lexicon induction task, perform-
ing significantly better on monolingual similarity
and achieving a competitive result on cross lin-
gual document classification. Here we also adopt
their approach, and extend it to multilingual em-
beddings.

2.1 Base model for bilingual embeddings
We briefly describe the base model (Duong et al.,
2016), an extension of the continuous bag-of-word
(CBOW) model (Mikolov et al., 2013a) with neg-
ative sampling. The original objective function is

∑
i∈D

(
log σ(u>wi

hi)+
p∑

j=1

log σ(−u>wij
hi)
)
, (1)

where D is the training data, hi =
1
2k

∑k
j=−k;j 6=0 vwi+j is a vector encoding the

context over a window of size k centred around
position i, V and U ∈ R|Ve|×d are learned
matrices referred to as the context and centre word
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embeddings, where Ve is the vocabulary and p is
the number of negative examples randomly drawn
from a noise distribution, wij ∼ Pn(w).

Duong et al. (2016) extend the CBOW model
for application to two languages, using monolin-
gual text in both languages and a bilingual lexicon.
Their approach augments CBOW by generating
not only the middle word, but also its translation
in the other language. This is done by first select-
ing a translation w̄i from the lexicon for the mid-
dle word wi, based on the cosine distance between
the context hi and the context embeddings V for
each candidate foreign translation. In this way
source monolingual training contexts must gen-
erate both source and target words, and similarly
target monolingual training contexts also generate
source and target words. Overall this results in
compatible word embeddings across the two lan-
guages, and highly informative nearest neighbours
across the two languages. This leads to the new
objective function

∑
i∈Ds∪Dt

(
log σ(u>wi

hi) + log σ(u>w̄i
hi)

+
p∑

j=1

log σ(−u>wij
hi)
)

+δ
∑

w∈Vs∪Vt

‖uw−vw‖22 ,

(2)

where Ds and Dt are source and target monolin-
gual data, Vs and Vt are source and target vocab-
ulary. Comparing with the CBOW objective func-
tion in Equation (1), this represents two additions:
the translation cross entropy log σ(u>̄wi

hi), and a
regularisation term

∑
w∈Vs∪Vt

‖uw − vw‖22 which
penalises divergence between context and cen-
ter word embedding vectors for each word type,
which was shown to improve the embedding qual-
ity (Duong et al., 2016).

3 Post hoc Unification of Embeddings

Our goal is to learn multilingual word embeddings
over more than two languages. One simple way to
do this is to take several learned bilingual word
embeddings which share a common target lan-
guage (here, English), and map these into a shared
space (Mikolov et al., 2013a; Faruqui and Dyer,
2014). In this section we propose post hoc meth-
ods, however in §4 we develop an integrated mul-
tilingual method using joint inference.

Formally, the input to the post hoc combination
methods are a set of n pre-trained bilingual word

de

en

it

en

es

en

nlen

Wde Wes

Wnl

Figure 1: Examples of unifying four bilingual
word embeddings between en and it, de,
es, nl to the same space using post hoc linear
transformation.

embedding matrices, i.e., Ci = {(Ei, Fi)} with
i ∈ F is the set of foreign languages (not English),
Ei ∈ R|Vei |×d are the English word embeddings
and Fi ∈ R|Vfi

|×d are foreign language word em-
beddings for language i, with Vei and Vfi

being
the English and foreign language vocabularies and
d is the embedding dimension. These bilingual
embeddings can be produced by any method, e.g.,
those discussed in §2.

Linear Transformation. The simplest method
is to learn a linear transformation which maps
the English part of each bilingual word embed-
ding into the same space (inspired by Mikolov
et al. (2013a)), as illustrated in Figure 1. One
language pair is chosen as the pivot, en-it in
this example, and the English side of the other
language pairs, en-de, en-es, en-nl, are
mapped to closely match the English side of the
pivot, en-it. This is achieved through learn-
ing linear transformation matrices for each lan-
guage, Wde,Wes and Wnl, respectively, where
each Wi ∈ Rd×d is learned to minimize the objec-
tive function ‖Ei×Wi−Epivot‖22 where Epivot is
the English embedding of the pivot pair, en-it.

Each foreign language fi is then mapped to the
same space using the learned matrixWi, i.e., F ′i =
Fi × Wi. These projected foreign embeddings
are then used in evaluation, along with the En-
glish side of the language pair with largest English
vocabulary coverage, i.e., biggest |Vei |. Together
these embeddings allow for querying of monolin-
gual and cross-lingual word similarity, and multi-
lingual transfer of trained models.

The advantage of this approach is that it is very
fast and simple to train, since the objective func-
tion is strictly convex and has a closed form so-
lution. Moreover, unlike Mikolov et al. (2013a)
who learn the projection from a source to a target
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Figure 2: Examples of our multilingual joint train-
ing model without mapping for learning multilin-
gual embeddings for three languages en, it,
de using joint inference.

language, we learn the projection from English to
English, thus do not require a lexicon, sidestep-
ping the polysemy problem.3

4 Multilingual Joint Training

Instead of combining bilingual word embeddings
in the post-processing step, it might be more bene-
ficial to do it during training, so that languages can
interact with each other more freely. We extend
the method in §2.1 to jointly learn the multilin-
gual word embeddings during training. The input
to the model is the combined monolingual data for
each language and the set of lexicons between any
language pair.

We modify the base model (Duong et al., 2016)
to accommodate more languages. For the first
step, instead of just predicting the translation for
a single target language, we predict the translation
for all languages in the lexicon. That is, we com-
pute wf

i = argmax
w∈dictfe (we

i )
cos(vw, context),

which is the best translation in language f of
source word we

i in language e, given the bilin-
gual lexicon dictfe and the context. For the sec-
ond step, we jointly predict word we

i and all trans-
lations wf

i in all foreign languages f ∈ T that
we have dictionary dictfe as illustrated in Figure 2.

3A possible criticism of this approach is that a linear trans-
formation is not powerful enough for the required mapping.
We experimented with non-linear transformations but did not
observe any improvements. Faruqui and Dyer (2014) ex-
tended Mikolov et al. (2013a) as they projected both source
and target languages to the same space using canonical cor-
relation analysis (CCA). We also adopted this approach for
multilingual environment by applying multi-view CCA to
map the English part of each pre-trained bilingual word em-
bedding to the same space. However, we only observe minor
improvements.

The English word cat might have several transla-
tions in German {Katze, Raupe, Typ} and Italian
{gatto, gatta}. In the first step, we select the clos-
est translation given the context for each language,
i.e. Katze and gatto for German and Italian respec-
tively. In the second step, we jointly predict the
English word cat together with selected transla-
tions Katze and gatto using the following modified
objective function:

O =
∑

i∈Dall

(
log σ(u>we

i
hi) +

∑
f∈T

log σ(u>
wf

i

hi)

+
p∑

j=1

log σ(−u>wij
hi)
)

+δ
∑

w∈Vall

‖uw−vw‖22 ,

(3)

whereDall and Vall are the combined monolingual
data and vocabulary for all languages. Each of the
p negative samples, wij , are sampled from a uni-
gram model over the combined vocabulary Vall.

Explicit mapping. As we keep adding more lan-
guages to the model, the hidden layer in our model
– shared between all languages – might not be
enough to accommodate all languages. However,
we can combine the strength of the linear trans-
formation proposed in §3 to our joint model as
described in Equation (3). We explicitly learn
the linear transformation jointly during training by
adding the following regularization term to the ob-
jective function:

O′ = O + α
∑
i∈De

∑
f∈F
‖u

wf
i
Wf − uwe

i
‖22 , (4)

where De is the English monolingual data (since
we use English as the pivot language), F is the set
of foreign languages (not English), Wf ∈ Rd×d

is the linear transformation matrix, and α controls
the contribution of the regularization term and will
be tuned in §6.4 Thus, the set of learned parame-
ters for the model are the word and context em-
beddings U,V and |F| linear transformation ma-
trices, {Wf}f∈F. After training is finished, we lin-
early transform the foreign language embeddings
with the corresponding learned matrix Wf , such
that all embeddings are in the same space.

5 Experiment Setup

Our experimental setup is based on that of Duong
et al. (2016). We use the first 5 million sen-

4For an efficient implementation, we apply this constraint
to only 10% of English monolingual data.
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Model
it-en es-en nl-en nl-es Average

rec1 rec5 rec1 rec5 rec1 rec5 rec1 rec5 rec1 rec5

B
as

el
in

es
MultiCluster 35.6 64.3 34.9 62.5 - - - - - -
MultiCCA 63.4 77.3 58.5 72.7 - - - - - -
MultiSkip 57.6 68.5 49.3 58.9 - - - - - -
MultiTrans 72.1 83.1 71.5 82.2 - - - - - -

O
ur

s

Linear 78.5 88.2 69.3 81.8 74.9 87.0 66.3 79.7 72.2 84.2
Joint 79.4 89.7 73.6 84.6 76.6 89.6 69.4 82.0 74.7 86.5
+ Mapping 81.6 90.5 74.6 87.4 77.9 91.4 71.6 83.5 76.4 88.2

BiWE 80.8 90.4 74.7 85.4 79.1 90.5 71.7 80.7 76.6 86.7

Table 1: Bilingual lexicon induction performance for four pairs. Bilingual word embeddings (BiWE) is
the state-of-the-art result from Duong et al. (2016) where each pair is trained separately. Our proposed
methods including linear transformation (Linear), joint prediction as in Equation (3) (Joint) and joint
prediction with explicit mapping as in Equation (4) (+mapping). We report recall at 1 and 5 with respect
to four baseline multilingual word embeddings. The best scores for are shown in bold.

tences from the tokenized monolingual data from
the Wikipedia dump from Al-Rfou et al. (2013).5

The dictionary is from PanLex which covers more
than 1,000 language varieties. We build multilin-
gual word embeddings for 5 languages (en, it,
es, nl, de) jointly using the same parameters
as Duong et al. (2016).6 During training, for a
fairer comparison, we only use lexicons between
English and each target language. However, it is
straightforward to incorporate a lexicon between
any pair of languages into our model. The pre-
trained bilingual word embeddings for the post-
processing experiment in §3 are also from Duong
et al. (2016).

In the following sections, we evaluate the per-
formance of our multilingual word embeddings in
comparison with bilingual word embeddings and
previous published multilingual word embeddings
(MultiCluster, MultiCCA, MultiSkip and Multi-
Trans) for three tasks: bilingual lexicon induction
(§6), monolingual similarity (§7) and crosslingual
document classification (§8). MultiCluster and
MultiCCA are the models proposed from Am-
mar et al. (2016) trained on monolingual data us-
ing bilingual lexicons extracted from aligning Eu-
roparl corpus. MultiSkip is the reimplementation
of the multilingual skipgram model from Coul-

5We will use the whole data if there are less than 5 million
sentences.

6Default learning rate of 0.025, negative sampling with
25 samples, subsampling rate of value 1e−4, embedding di-
mension d = 200, window size 48, run for 15 epochs and
δ = 0.01 for combining word and context embeddings.

mance et al. (2015). MultiTrans is the multilin-
gual version of the translation invariance model
from Huang et al. (2015). Both MultiSkip and
MultiTrans are trained directly on parallel data
from Europarl. All the previous work is trained
with 512 dimensions on 12 languages acquired di-
rectly from Ammar et al. (2016).

6 Bilingual Lexicon Induction

In this section we evaluate our multilingual mod-
els on the bilingual lexicon induction (BLI) task,
which tests the bilingual quality of the model.
Given a word in the source language, the model
must predict the translation in the target language.
We report recall at 1 and 5 for the various mod-
els listed in Table 1. The evaluation data for
it-en, es-en, and nl-en pairs was manually
constructed (Vulić and Moens, 2015). We extend
the evaluation for nl-es pair which do not in-
volve English.7

The BiWE results for pairs involving English in
Table 1 are from Duong et al. (2016), the current
state of the art in this task. For the nl-es pair,
we cannot build bilingual word embeddings, since
we do not have a corresponding bilingual lexicon.
Instead, we use English as the pivot language. To
get the nl-es translation, we use two bilingual
embeddings of nl-en and es-en from Duong
et al. (2016). We get the best English transla-
tion for the Dutch word, and get the top 5 Spanish

7We build 1,000 translation pairs for nl-es pair with the
source word from Vulić and Moens (2015) and ground truth
candidates from Google Translate but manually verified.
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translations with respect to the English word. This
simple trick performs surprisingly well, probably
because bilingual word embeddings involving En-
glish such as nl-en and es-en from Duong et
al. (2016) are very accurate.

For the linear transformation, we use the first
pair it-en as the pivot and learn to project
es-en, de-en, nl-en pairs to this space
as illustrated in Figure 1. We use English part
(E′biggest) from transformed de-en pair as the En-
glish output. Despite simplicity, linear transforma-
tion performs surprisingly well.

Our joint model to predict all target languages
simultaneously, as described in Equation (3), per-
forms consistently better in contrast with linear
transformation at all language pairs. The joint
model with explicit mapping as described in Equa-
tion (4) can be understood as the combination
of joint model and linear transformation. For
this model, we need to tune α in Equation (4).
We tested α with value in range {10−i}5i=0 us-
ing es-en pair on BLI task. α = 0.1 gives the
best performance. To avoid over-fitting, we use the
same value of α for all experiments and all other
pairs. With this tuned value α, our joint model
with mapping clearly outperforms other proposed
methods on all pairs. More importantly, this re-
sult is substantially better than all the baselines
across four language pairs and two evaluation met-
rics. Comparing with the state of the art (BiWE),
our final model (joint + mapping) are more general
and more widely applicable, however achieves rel-
atively better result, especially for recall at 5.

7 Monolingual similarity

The multilingual word embeddings should pre-
serve the monolingual property of the languages.
We evaluate using the monolingual similarity task
proposed in Luong et al. (2015). In this task, the
model is asked to give the similarity score for a
pair of words in the same language. This score
is then measured against human judgment. Fol-
lowing Duong et al. (2016), we evaluate on three
datasets, WordSim353 (WS-en), RareWord (RW-
en), and the German version of WordSim353
(WS-de) (Finkelstein et al., 2001; Luong et al.,
2013; Luong et al., 2015).

Table 2 shows the result of our multilingual
word embeddings with respect to several base-
lines. The trend is similar to the bilingual lex-
icon induction task. Linear transformation per-

Model WS-de WS-en RW-en

B
as

el
in

es MultiCluster 51.0 [98.3] 53.9 [100] 38.1 [57.6]

MultiCCA 60.2 [99.7] 66.3 [100] 43.1 [71.1]

MultiSkip 48.4 [96.6] 51.2 [99.7] 33.9 [55.4]

MultiTrans 56.4 [92.6] 61.1 [97.2] 51.1 [23.1]

O
ur

s Linear 67.5 [99.4] 74.7 [100] 45.4 [75.5]

Joint 68.5 [99.4] 74.6 [100] 43.8 [75.5]

Joint + Mapping 70.4 [99.4] 74.4 [100] 45.1 [75.5]

BiWE 71.1 [99.4] 76.2 [100] 44.0 [75.5]

Table 2: Spearman’s rank correlation for monolin-
gual similarity measurement for various models on
3 datasets WS-de (353 pairs), WS-en (353 pairs)
and RW-en (2034 pairs). We compare against 4
baseline multilingual word embeddings. BiWE is
the result from Duong et al. (2016) where each
pair is trained separately which serves as the refer-
ence for the best bilingual word embeddings. The
best results for multilingual word embeddings are
shown in bold. Numbers in square brackets are the
coverage percentage.

forms surprisingly well. Our joint model achieves
a similar result, with linear transformation (better
on WS-de but worse on WS-en and RW-en). Our
joint model with explicit mapping regains the drop
and performs slightly better than linear transfor-
mation. More importantly, this model is substan-
tially better than all baselines, except for Multi-
Trans on RW-en dataset. This can probably be
explained by the low coverage of MultiTrans on
this dataset. Our final model (Joint + Mapping)
is also close to the best bilingual word embed-
dings (BiWE) performance reported by Duong et
al. (2016).

8 Crosslingual Document Classification

In the previous sections, we have shown that our
methods for building multilingual word embed-
dings, either in the post-processing step or dur-
ing training, preserved high quality bilingual and
monolingual relations. In this section, we demon-
strate the usefulness of multi-language crosslin-
gual word embeddings through the crosslingual
document classification (CLDC) task.

This task exploits transfer learning, where the
document classifier is trained on the source lan-
guage and tested on the target language. The
source language classifier is transferred to the tar-
get language using crosslingual word embeddings
as the document is represented as the sum of bag-
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en→de de→en it→de it→es en→es Avg

B
as

el
in

es
MultiCluster 92.9 69.1 79.1 81.0 63.1 77.0
MultiCCA 69.2 50.7 83.1 79.0 45.3 65.5
MultiSkip 79.9 63.5 71.8 76.3 60.4 70.4
MultiTrans 87.7 75.2 70.4 64.4 56.1 70.8

O
ur

s

Linear 83.8 75.7 74.8 67.3 57.4 71.8
Joint 86.2 75.7 82.3 70.7 56.0 74.2
Joint + Mapping 89.5 81.6 84.3 74.1 53.9 76.7

B
ili

ng
ua

l Luong et al. (2015) 88.4 80.3 - - - -
Chandar A P et al. (2014) 91.8 74.2 - - - -
Duong et al. (2016) 86.3 76.8 - - 53.8 -

Table 3: Crosslingual document classification accuracy for various model. Chandar A P et al. (2014) and
Luong et al. (2015) achieved a state-of-the-art result for en→de and de→en respectively, served as the
reference. The best results for bilingual and multilingual word embeddings are bold.

of-word embeddings weighted by tf.idf. This set-
ting is useful for target low-resource languages
where the annotated data is insufficient.

The train and test data are from multilin-
gual RCV1/RCV2 corpus (Lewis et al., 2004)
where each document is annotated with labels
from 4 categories: CCAT (Corporate/Industrial),
ECAT (Economics), GCAT (Government/Social)
and MCAT (Markets). We extend the evaluation
from Klementiev et al. (2012) to cover more lan-
guage pairs. We use the same data split for
en→de and de→en pairs but additionally con-
struct the train and test data for it→de, it→es
and en→es. For each pair, we use 1,000 docu-
ments in the source language as the training data
and 5,000 documents in the target language as the
test data. The training data is randomly sampled,
but the test data (for es) is evenly balanced among
labels.

Table 3 shows the accuracy for the CLDC task
for many pairs and models with respect to the
baselines. For all bilingual models (Duong et al.,
2016; Luong et al., 2015; Chandar A P et al.,
2014), the bilingual word embeddings are con-
structed for each pair separately. In this way, they
can only get the pairs involving English since there
are many bilingual resources involving English on
one side. For all our models, including Linear,
Joint and Joint + Mapping, the embedding space
is available for multiple languages; this is why we
can exploit different relations, such as it→es.
This is the motivation for the work reported in this
paper. Suppose we want to build a document clas-

sifier for es but lack any annotations. It is com-
mon to build en-es crosslingual word embed-
dings for transfer learning, but this only achieves
53.8 % accuracy. Yet when we use it as the
source, we get 81.0% accuracy. This is motivated
by the fact that it and es are very similar.

The trend observed in Table 3 is consistent
with previous observations. Linear transforma-
tion performs well. Joint training performs bet-
ter especially for the it→de pair. The joint
model with explicit mapping is generally our best
model, even better than the base bilingual model
from Duong et al. (2016). The de→en result
improves on the existing state of the art reported
in Luong et al. (2015). Our final model (Joint +
Mapping) achieved competitive results compared
with four strong baseline multilingual word em-
beddings, achieving best results for two out of five
pairs. Moreover, the best scores for each language
pairs are all from multilingual training, emphasiz-
ing the advantages over bilingual training.

9 Analysis

Mikolov et al. (2013b) showed that monolingual
word embeddings capture some analogy relations
such as ~Paris − ~France + ~Italy ≈ ~Rome. It seems
that in our multilingual embeddings, these rela-
tions still hold. Table 4 shows some examples
of such relations where each word in the analogy
query is in different languages.

All our baselines (MultiCluster, MultiCCA,
MultiSkip, MultiTrans) are trained using differ-
ent datasets. While MultiSkip and MultiTrans
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chicoes - bruderde + sorellait
(boy - brother + sister)

ehemannde - padrees + madreit
(husband - father + mother)

principeit - jungede + meisjenl
(prince - boy + girl)

chicaes (girl) echtgenotenl (wife) principessait (princess)
ragazzait (girl) moglieit (wife) princessen
meisjenl (girl) heren princesaes (princess)
girlen maritoit (husband) prı́ncipees (prince)
mädchende (girl) haarnl (her) prinzessinde (princess)

Table 4: Top five closest words in our embeddings for multilingual word analogy. The transliteration is
provided in parentheses. The correct output is bold.

Tasks MultiCluster MultiCCA Our model

Extrinsic
multilingual Dependency Parsing 61.0 58.7 61.2
multilingual Document Classification 92.1 92.1 90.8

Intrinsic

monolingual word similarity 38.0 43.0 40.9
multilingual word similarity 58.1 66.6 69.8
word translation 43.7 35.7 45.7
monolingual QVEC 10.3 10.7 11.9
multilingual QVEC 9.3 8.7 8.6
monolingual QVEC-CCA 62.4 63.4 46.4
multilingual QVEC-CCA 43.3 41.5 31.0

Table 5: Performance of our model compared with MultiCluster and MultiCCA using extrinsic and
intrinsic evaluation tasks on 12 languages proposed in Ammar et al. (2016), all models are trained on the
same dataset. The best score for each task is bold.

are trained on parallel corpora, MultiCluster and
MultiCCA use monolingual corpora and bilingual
lexicons which are similar to our proposed meth-
ods. Therefore, for a strict comparison8, we train
our best model (Joint + Mapping) using the same
monolingual data and set of bilingual lexicons on
the same 12 languages with MultiCluster and Mul-
tiCCA. Table 5 shows the performance on intrin-
sic and extrinsic tasks proposed in Ammar et al.
(2016). Multilingual dependency parsing and doc-
ument classification are trained on a set of source
languages and test on a target language in the
transfer learning setting. Monolingual word simi-
larity task is similar with our monolingual similar-
ity task described in §7, multilingual word similar-
ity is an extension of monolingual word similarity
task but tested for pair of words in different lan-
guages. Monolingual QVEC, multilingual QVEC
test the linguistic content of word embeddings in
monolingal and multilingual setting. Monolingual
QVEC-CCA and multilingual QVEC-CCA are the

8also with respect to the word coverage since MultiSkip
and MultiTrans usually have much lower word coverage, bi-
asing the intrinsic evaluations.

extended versions of monolingual QVEC and mul-
tilingual QVEC also proposed in Ammar et al.
(2016). Table 5 shows that our model achieved
competitive results, best at 4 out of 9 evaluation
tasks.

10 Conclusion

In this paper, we introduced several methods for
building unified multilingual word embeddings.
These represent an improvement because they
exploit more relations and combine information
from many languages. The input to our model is
just a set of monolingual data and a set of bilingual
lexicons between any language pairs. We induce
the bilingual relationship for all language pairs
while keeping high quality monolingual relations.
Our multilingual joint training model with explicit
mapping consistently achieves better performance
compared with linear transformation. We achieve
new state-of-the-art performance on bilingual lex-
icon induction task for recall at 5, similar excellent
results with the state-of-the-art bilingual word em-
beddings on monolingual similarity task (Duong
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et al., 2016). Moreover, our model is competitive
at the crosslingual document classification task,
achieving a new state of the art for de→en and
it→de pair.
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Ivan Vulić and Marie-Francine Moens. 2015. Bilin-
gual word embeddings from non-parallel document-
aligned data applied to bilingual lexicon induction.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers), pages
719–725, Beijing, China, July. Association for Com-
putational Linguistics.

Mengqiu Wang, Wanxiang Che, and Christopher D.
Manning. 2013. Joint word alignment and bilingual
named entity recognition using dual decomposition.
In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1073–1082, Sofia, Bulgaria,
August. Association for Computational Linguistics.

903



Min Xiao and Yuhong Guo, 2014. Proceedings of the
Eighteenth Conference on Computational Natural
Language Learning, chapter Distributed Word Rep-
resentation Learning for Cross-Lingual Dependency
Parsing, pages 119–129. Association for Computa-
tional Linguistics.

David Yarowsky and Grace Ngai. 2001. Inducing mul-
tilingual POS taggers and NP bracketers via robust
projection across aligned corpora. In Proceedings
of the Second Meeting of the North American Chap-
ter of the Association for Computational Linguistics
on Language technologies, NAACL ’01, pages 1–8,
Pittsburgh, Pennsylvania.

Barret Zoph and Kevin Knight. 2016. Multi-source
neural translation. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 30–34, San Diego, Cal-
ifornia, June. Association for Computational Lin-
guistics.

904


