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Abstract

This paper explores the generation of ar-
tificial errors for correcting grammatical
mistakes made by learners of English as
a second language. Artificial errors are in-
jected into a set of error-free sentences in a
probabilistic manner using statistics from
a corpus. Unlike previous approaches, we
use linguistic information to derive error
generation probabilities and build corpora
to correct several error types, including
open-class errors. In addition, we also
analyse the variables involved in the selec-
tion of candidate sentences. Experiments
using the NUCLE corpus from the CoNLL
2013 shared task reveal that: 1) training
on artificially created errors improves pre-
cision at the expense of recall and 2) dif-
ferent types of linguistic information are
better suited for correcting different error

types.
1 Introduction

Building error correction systems using machine
learning techniques can require a considerable
amount of annotated data which is difficult to ob-
tain. Available error-annotated corpora are often
focused on particular groups of people (e.g. non-
native students), error types (e.g. spelling, syn-
tax), genres (e.g. university essays, letters) or top-
ics so it is not clear how representative they are
or how well systems based on them will gener-
alise. On the other hand, building new corpora is
not always a viable solution since error annotation
is expensive. As a result, researchers have tried
to overcome these limitations either by compiling
corpora automatically from the web (Mizumoto et
al., 2011; Tajiri et al., 2012; Cahill et al., 2013) or
using artificial corpora which are cheaper to pro-
duce and can be tailored to their needs.
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Artificial error generation allows researchers to
create very large error-annotated corpora with lit-
tle effort and control variables such as topic and
error types. Errors can be injected into candidate
texts using a deterministic approach (e.g. fixed
rules) or probabilities derived from manually an-
notated samples in order to mimic real data.

Although artificial errors have been used in pre-
vious work, we present a new approach based on
linguistic information and evaluate it using the test
data provided for the CoNLL 2013 shared task on
grammatical error correction (Ng et al., 2013).

Our work makes the following contributions.
First, we are the first to use linguistic informa-
tion (such as part-of-speech (PoS) information or
semantic classes) to characterise contexts of natu-
rally occurring errors and replicate them in error-
free text. Second, we apply our technique to a
larger number of error types than any other pre-
vious approach, including open-class errors. The
resulting datasets are used to train error correction
systems aimed at learners of English as a second
language (ESL). Finally, we provide a detailed de-
scription of the variables that affect artificial error
generation.

2 Related work

The use of artificial data to train error correction
systems has been explored by other researchers us-
ing a variety of techniques.

Izumi et al. (2003), for example, use artificial
errors to target article mistakes made by Japanese
learners of English. A corpus is created by replac-
ing a, an, the or the zero article by a different ar-
ticle chosen at random in more than 7,500 correct
sentences and used to train a maximum entropy
model. Results show an improvement for omis-
sion errors but no change for replacement errors.

Brockett et al. (2006) describe the use of a sta-
tistical machine translation (SMT) system for cor-
recting a set of 14 countable/uncountable nouns
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which are often confusing for ESL learners. Their
training corpus consists of a large number of sen-
tences extracted from news articles which were de-
liberately modified to include typical countability
errors based on evidence from a Chinese learner
corpus. Their approach to artificial error injec-
tion is deterministic, using hand-coded rules to
change quantifiers (much — many), generate plu-
rals (advice — advices) or insert unnecessary de-
terminers. Experiments show their system was
generally able to beat the standard Microsoft Word
2003 grammar checker, although it produced a rel-
atively higher rate of erroneous corrections.

SMT systems are also used by Ehsan and Faili
(2013) to correct grammatical errors and context-
sensitive spelling mistakes in English and Farsi.
Training corpora are obtained by injecting arti-
ficial errors into well-formed treebank sentences
using predefined error templates. Whenever an
original sentence from the corpus matches one of
these templates, a pair of correct and incorrect sen-
tences is generated. This process is repeated mul-
tiple times if a single sentence matches more than
one error template, thereby generating many pairs
for the same original sentence. A comparison be-
tween the proposed systems and rule-based gram-
mar checkers show they are complementary, with
a hybrid system achieving the best performance.

2.1 Probabilistic approaches

A few researchers have explored probabilistic
methods in an attempt to mimic real data more ac-
curately. Foster and Andersen (2009), for exam-
ple, describe a tool for generating artificial errors
based on statistics from other corpora, such as the
Cambridge Learner Corpus (CLC).! Their experi-
ments show a drop in accuracy when artificial sen-
tences are used as a replacement for real incorrect
sentences, suggesting that they may not be as use-
ful as genuine text. Their report also includes an
extensive summary of previous work in the area.

Rozovskaya and Roth propose more sophis-
ticated probabilistic methods to generate artifi-
cial errors for articles (2010a) and prepositions
(2010b; 2011), also based on statistics from an
ESL corpus. In particular, they compile a set of
sentences from the English Wikipedia and apply
the following generation methods:

"http://www.cup.cam.ac.uk/gb/elt/
catalogue/subject/custom/item3646603/
Cambridge-International-Corpus—
Cambridge—-Learner—Corpus/
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General

Target words (e.g. articles) are replaced with oth-
ers of the same class with probability = (varying
from 0.05 to 0.18). Each new word is chosen uni-
formly at random.

Distribution before correction (in ESL data)

Target words in the error-free text are changed
to match the distribution observed in ESL error-
annotated data before any correction is made.

Distribution after correction (in ESL data)

Target words in the error-free text are changed
to match the distribution observed in ESL error-
annotated data after corrections are made.

Native language-specific distributions

It has been observed that second language produc-
tion is affected by a learner’s native language (L.1)
(Lee and Seneff, 2008; Leacock et al., 2010). A
common example is the difficulty in using English
articles appropriately by learners whose L1 has
no article system, such as Russian or Japanese.
Because word choice errors follow systematic pat-
terns (i.e. they do not occur randomly), this infor-
mation is extremely valuable for generating errors
more accurately.

L1-specific errors can be imitated by computing
word confusions in an error-annotated ESL cor-
pora and using these distributions to change tar-
get words accordingly in error-free text. More
specifically, if we estimate P(source|target) in an
error-tagged corpus (i.e. the probability of an
incorrect source word being used when the cor-
rect farget is expected), we can generate more ac-
curate confusion sets where each candidate has
an associated probability depending on the ob-
served word. For example, supposing that a
group of learners use the preposition fo in 10%
of cases where the preposition for should be used
(that is, P(source=to|target=for)=0.10), we can
replicate this error pattern by replacing the oc-
currences of the preposition for with to with a
probability of 0.10 in a corpus of error-free sen-
tences. When the source and target words are the
same, P(source=x|target=x) expresses the proba-
bility that a learner produces the correct/expected
word.

Because errors are generally sparse (and there-
fore error rates are low), replicating mistakes
based on observed probabilities can easily lead to



low recall. In order to address this issue during ar-
tificial error generation, Rozovskaya et al. (2012)
propose an inflation method that boosts confusion
probabilities in order to generate a larger propor-
tion of artificial instances. This reformulation is
shown to improve F-scores when correcting deter-
miners and prepositions.

Experiments reveal that these approaches yield
better results than assuming uniform probabilis-
tic distributions where all errors and correc-
tions are equally likely. In particular, classifiers
trained on artificially generated data outperformed
those trained on native error-free text (Rozovskaya
and Roth, 2010a; Rozovskaya and Roth, 2011).
However, it has also been shown that using arti-
ficially generated data as a replacement for non-
native error-corrected data can lead to poorer per-
formance (Sjobergh and Knutsson, 2005; Foster
and Andersen, 2009). This would suggest that ar-
tificial errors are more useful than native data but
less useful than corrected non-native data.

Rozovskaya and Roth also control other vari-
ables in their experiments. On the one hand, they
only evaluate their systems on sentences that have
no spelling mistakes so as to avoid degrading per-
formance. This is particularly important when
training classifiers on features extracted with lin-
guistic tools (such as parsers or taggers) as they
could provide inaccurate results for malformed in-
put. On the other hand, the authors work on a lim-
ited set of error types (mainly articles and preposi-
tions) which are closed word classes and therefore
have reduced confusion sets. Thus, it becomes in-
teresting to investigate how their ideas extrapolate
to open-class error types, like verb form or content
word errors.

Their probabilistic error generation approach
has also been used by other researchers. Imamura
et al. (2012), for example, applied this method to
generate artificial incorrect sentences for Japanese
particle correction with an inflation factor ranging
from 0.0 (no errors) to 2.0 (double error rates).
Their results show that the performance of artifi-
cial corpora depends largely on the inflation rate
but can achieve good results when domain adapta-
tion is applied.

In a more exhaustive study, Cahill et al.
(2013) investigate the usefulness of automatically-
compiled sentences from Wikipedia revisions
for correcting preposition errors. A number
of classifiers are trained using error-free text,
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automatically-compiled annotated corpora and ar-
tificial sentences generated using error probabili-
ties derived from Wikipedia revisions and Lang-
8.2 Their results reveal a number of interesting
points, namely that artificial errors provide com-
petitive results and perform robustly across differ-
ent test sets. A learning curve analysis also shows
system performance increases as more training
data is used, both real and artificial.

More recently, some teams have also reported
improvements by using artificial data in their
submissions to the CoNLL 2013 shared task.
Rozovskaya et al. (2013) apply their inflation
method to train a classifier for determiner errors
that achieves state-of-the-art performance while
Yuan and Felice (2013) use naively-generated arti-
ficial errors within an SMT framework that places
them third in terms of precision.

3 Advanced generation of artificial
€rrors

Our work is based on the hypothesis that using
carefully generated artificial errors improves the
performance of error correction systems. This im-
plies generating errors in a way that resembles
available error-annotated data, using similar texts
and accurate injection methods. Like other proba-
bilistic approaches, our method assumes we have
access to an error-corrected reference corpus from
which we can compute error generation probabili-
ties.

3.1 Base text selection

We analyse a set of variables that we consider im-
portant for collecting suitable texts for error injec-
tion, namely:

Topic

Replicating errors on texts about the same topic
as the training/test data is more likely to produce
better results than out-of-domain data, as vocab-
ulary and word senses are more likely to be sim-
ilar. In addition, similar texts are more likely to
exhibit suitable contexts for error injection and
consequently help the system focus on particularly
useful information.

Genre

In cases where no a priori information about topic
is available (for example, because the test set is

http://lang-8.com/



unknown or the system will be used in different
scenarios), knowing the genre or type of text the
system will process can also be useful. Example
genres include expository (descriptions, essays,
reports, etc.), narrative (stories), persuasive (re-
views, advertisements, etc.), procedural (instruc-
tions, recipes, experiments, etc.) and transactional
texts (letters, interviews, etc.).

Style/register

As with the previous aspects, style (colloquial,
academic, etc.) and register (from formal writ-
ten to informal spoken) also affect production and
should therefore be modelled accurately in the
training data.

Text complexity/language proficiency

Candidate texts should exhibit the same reading
complexity as training/test texts and be written by
or targeted at learners with similar English profi-
ciency. Otherwise, the overlap in vocabulary and
grammatical structures is more likely to be small
and thus hinder error injection.

Native language

Because second language production is known to
be affected by a learner’s L1, using candidate texts
produced by groups of the same L1 as the train-
ing/test data should provide more suitable contexts
for error injection. When such texts are not avail-
able, using data by speakers of other L1s that ex-
hibit similar phenomena (e.g. no article system,
agglutinative languages, etc.) might also be use-
ful. However, finding error-free texts written in
English by a specific population can be difficult,
which is why most approaches resort to native
English text.

In our experiments, the aforementioned vari-
ables are manually controlled although we believe
many of them could be assessed automatically.
For example, topics could be estimated using text
similarity measures, genres could be predicted us-
ing structural information and L1s could be in-
ferred using a native language identifier.?

For an analysis of other variables such as do-
main and error distributions, the reader should re-
fer to Cahill et al. (2013).

3See the First Edition of the Shared Task on Native
Language Identification (Tetreault et al., 2013) at ht tps: //
sites.google.com/site/nlisharedtask2013/
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3.2 Error replication

Our approach to artificial error generation is sim-
ilar to the one proposed by Rozovskaya and Roth
(2010a) in that we also estimate probabilities in
a corpus of ESL learners which are then used to
distort error-free text. However, unlike them, we
refine our probabilities by imposing restrictions
on the linguistic functions of the words and the
contexts where they occur. Because we extend
generation to open-class error types (such as verb
form errors), this refinement becomes necessary to
overcome disambiguation issues and lead to more
accurate replication.

Our work is the first to exploit linguistic infor-
mation for error generation, as described below.

Error type distributions

We compute the probability of each error type p(t)
occurring over the total number of relevant in-
stances (e.g. noun phrases are relevant instances
for article errors). During generation, p(t) is uni-
formly distributed over all the possible choices for
the error type (e.g. for articles, choices are a, an,
the or the zero article). Relevant instances are de-
tected in the base text and changed for an alter-
native at random using the estimated probabilities.
The probability of leaving relevant instances un-
changed is 1 — p(t).

Morphology

We believe morphological information such as
person or number is particularly useful for identi-
fying and correcting specific error types, such as
articles, noun number or subject-verb agreement.
Thus, we compute the conditional probability of
words in specific classes for different morpholog-
ical contexts (such as noun number or PoS). The
following example shows confusion probabilities
for singular head nouns requiring an:

P(source-det=an|target-det=annead-noun=xn) = 0.942
P(source-det=the|target-det=anncad-noun=nn) = 0.034
P(source-det=a|target-det=anpead-noun=nn) = 0.015
P(source-det=other|target-det=anncad-noun=nn) = 0.005

P(source-det=9|target-det=anncad-noun=nn) = 0.004

PoS disambiguation

Most approaches to artificial error generation are
aimed at correcting closed-class words such as
articles or prepositions, which rarely occur with



a different part of speech in the text. However,
when we consider open-class error types, we
should perform PoS disambiguation since the
same surface form could play different roles in
a sentence. For example, consider generating
artificial verb form errors for the verb fo play after
observing its distribution in an error-annotated
corpus. By using PoS tags, we can easily deter-
mine if an occurrence of the word play is a verb or
a noun and thus compute or apply the appropriate
probabilities:

P(source=play|target=playy) = 0.98
P(source=plays|target=playy) = 0.02

P(source=play|target=playn) = 0.84
P(source=plays|target=playn) = 0.16

Semantic classes

We hypothesise that semantic information about
concepts in the sentences can shed light on
specific usage patterns that may otherwise be
hidden. For example, we could refine confusion
sets for prepositions according to the type of
object they are applied to (a location, a recipient,
an instrument, etc.):

P(prep=in|noun_class=location) = 0.39
P(prep=to|noun_class=location) = 0.31
P(prep=at|noun_class=location) = 0.16
P(prep=from|noun_class=location) = 0.07
P(prep=2|noun_class=location) = 0.05
P(prep=other|noun_class=location) = 0.03

By abstracting from surface forms, we can also
generate faithful errors for words that have not
been previously observed, e.g. we may have not
seen hospital but we may have seen school, my
sister’s house or church.

Word senses

Polysemous words with the same PoS can exhibit
different patterns of usage for each of their mean-
ings (e.g. one meaning may co-occur with a spe-
cific preposition more often than the others). For
this reason, we introduce probabilities for each
word sense in an attempt to capture more accurate
usage. As an example, consider a hypothetical sit-
uation in which a group of learners confuse prepo-
sitions used with the word bank as a financial insti-
tution but they produce the right preposition when
it refers to a river bed:
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P(prep=in|noun=bank;) = 0.76
P(prep=at|noun=bank;) = 0.18
P(prep=on|noun=bank;) = 0.06

P(prep=on|noun=bank,) = 1.00

Although it is rare that occurrences of the same
word will refer to different meanings within a
document (the so-called ‘one sense per discourse’
assumption (Gale et al., 1992)), this is not the
case when large corpora containing different doc-
uments are used for characterising and generating
errors. In such scenarios, word sense disambigua-
tion should produce more accurate results.

Table 1 lists the actual probabilities computed
from each type of information and the errors they
are able to generate.

4 Experimental setup

4.1 Corpora and tools

We use the NUCLE v2.3 corpus (Dahlmeier et
al., 2013) released for the CoNLL 2013 shared
task on error correction, which comprises error-
annotated essays written in English by students
at the National University of Singapore. These
essays cover topics such as environmental pollu-
tion, health care, welfare, technology, etc. All the
sentences were manually annotated by human ex-
perts using a set of 27 error types, but we used the
filtered version containing only the five types se-
lected for the shared task: ArtOrDet (article or de-
terminer), Nn (noun number), Prep (preposition),
SVA (subject-verb agreements) and Vform (verb
form) errors. The training set of the NUCLE cor-
pus contains 57,151 sentences and 1,161,567 to-
kens while the test set comprises 1,381 sentences
and 29,207 tokens. The training portion of the cor-
pus was used to estimate the required conditional
probabilities and train a few variations of our sys-
tems while the test set was reserved to evaluate
performance.

Candidate native texts for error injection were
extracted from the English Wikipedia, controlling
the variables described Section 3.1 as follows:

Topic: We chose an initial set of 50 Wikipedia
articles based on keywords in the NUCLE
training data and proceeded to collect related
articles by following hyperlinks in their ‘See
also’ section. We retrieved a total of 494 arti-
cles which were later preprocessed to remove



Information

Probability

Generated error types

Error type distribution

P(error_type)

ArtOrDet, Nn, Prep, SVA, Vform

Morphology

P(source=determiner|target=determiner, head_noun_tag)
P(source=verb_tag|target=verb_tag, subj_head_noun_tag)

ArtOrDet, SVA

PoS disambiguation

P(source=word|target=word, PoS)

Nn, Vform

Semantic classes

P(source=determiner|target=determiner, head_noun_class)
P(source=preposition|target=preposition, head_noun_class)

ArtOrDet, Prep

Word senses

P(source=preposition|verb_sense + obj_head_noun_sense)
P(source=preposition|target=preposition, head_noun_sense)
P(source=preposition|target=preposition, dep_adj_sense)
P(source=determiner|target=determiner, head_-noun_sense)
P(source=verb_tag|target=verb_tag, subj_head_noun_sense)

ArtOrDet, Prep, SVA

Table 1: Probabilities computed for each type of linguistic information. Error codes correspond to the
five error types in the CoNLL 2013 shared task: ArtOrDet (article or determiner), Nn (noun number),
Prep (prepositions), SVA (subject-verb agreement) and Vform (verb form).

wikicode tags, yielding 54,945 sentences and
approximately 1,123,739 tokens.

Genre: Both NUCLE and Wikipedia contain ex-
pository texts, although they are not necessar-
ily similar.

Style/register: Written, academic and formal.

Text complexity/language proficiency: Essays
in the NUCLE corpus are written by ad-
vanced university students and are therefore
comparable to standard English Wikipedia
articles. For less sophisticated language,
the Simple English Wikipedia could be an
alternative.

Native language: English Wikipedia articles are
mostly written by native speakers whereas
NUCLE essays are not. This is the only dis-
cordant variable.

PoS tagging was performed using RASP
(Briscoe et al., 2006). Word sense dis-
ambiguation was carried out using the
WordNet::SenseRelate:AllWords  Perl module
(Pedersen and Kolhatkar, 2009) which assigns
a sense from WordNet (Miller, 1995) to each
content word in a text. As for semantic in-
formation, we use WordNet classes which are
readily available in NLTK (Bird et al., 2009).
WordNet classes respond to a classification in
lexicographers’ files* and are defined for content
words as shown in Table 2, depending on their
location in the hierarchy.

‘nttp://wordnet.princeton.edu/man/
lexnames.5WN.html
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WordNet classification

all, pertainyms, participial

all

act, animal, artifact, attribute, body,
cognition, communication, event,
feeling, food, group, location, motive,
object, person, phenomenon, plant,
possession, process, quantity, relation,
shape, state, substance, time

body, change, cognition,
communication, competition,
consumption, contact, creation,
emotion, motion, perception,
possession, social, stative, weather

Part of speech
Adjective
Adverb

Noun

Verb

Table 2: WordNet classes for content words.

Name Composition

ED errors based on error type distributions
MORPH | errors based on morphology

POS errors based on PoS disambiguation
SC errors based on semantic classes
WSD errors based on word senses

Table 3: Generated artificial corpora based on dif-
ferent types of linguistic information.

4.2 Error generation

For each type of information in Table 1, we com-
pute the corresponding conditional probabilities
using the NUCLE training set. These probabili-
ties are then used to generate six different artificial
corpora using the inflation method (Rozovskaya et
al., 2012), as listed in Table 3.

4.3 System training

We approach the error correction task as a transla-
tion problem from incorrect into correct English.
Systems are built using an SMT framework and
different combinations of NUCLE and our artifi-
cial corpora, where the source side contains in-



Original Revised
C M U P R Fy C M U P R F,
NUCLE (baseline) | 181 | 1462 | 513 | 0.2608 | 0.1102 | 0.1549 | 200 | 1483 | 495 | 0.2878 | 0.1188 | 0.1682
ED 53 | 1590 | 150 | 0.2611 | 0.0323 | 0.0574 | 62 | 1621 | 141 | 0.3054 | 0.0368 | 0.0657
MORPH 74 | 1569 | 333 | 0.1818 | 0.0450 | 0.0722 | 83 | 1600 | 324 | 0.2039 | 0.0493 | 0.0794
POS 42 1 1601 | 99 | 0.2979 | 0.0256 | 0.0471 | 42 | 1641 | 99 | 0.2979 | 0.0250 | 0.0461
SC 80 | 1563 | 543 | 0.1284 | 0.0487 | 0.0706 | 87 | 1596 | 536 | 0.1396 | 0.0517 | 0.0755
WSD 82 | 1561 | 305 | 0.2119 | 0.0499 | 0.0808 | 91 | 1592 | 296 | 0.2351 | 0.0541 | 0.0879
NUCLE+ED 173 | 1470 | 411 | 0.2962 | 0.1053 | 0.1554 | 194 | 1489 | 390 | 0.3322 | 0.1153 | 0.1712
NUCLE+MORPH | 163 | 1480 | 427 | 0.2763 | 0.0992 | 0.1460 | 182 | 1501 | 408 | 0.3085 | 0.1081 | 0.1601
NUCLE+POS 164 | 1479 | 365 | 0.3100 | 0.0998 | 0.1510 | 182 | 1501 | 347 | 0.3440 | 0.1081 | 0.1646
NUCLE+SC 162 | 1481 | 488 | 0.2492 | 0.0986 | 0.1413 | 181 | 1502 | 469 | 0.2785 | 0.1075 | 0.1552
NUCLE+WSD 163 | 1480 | 413 | 0.2830 | 0.0992 | 0.1469 | 181 | 1502 | 395 | 0.3142 | 0.1075 | 0.1602

Table 4: Evaluation of our correction systems over the original and revised NUCLE test set using the M?
Scorer. Columns C, M and U show the number of correct, missed and unnecessary corrections suggested
by each system. Results in bold show improvements over the baseline.

correct sentences and the target side contains their
corrected versions. Our setup is similar to the one
described by Yuan and Felice (2013) in that we
train a PoS-factored phrase-based model (Koehn,
2010) using Moses (Koehn et al., 2007), Giza++
(Och and Ney, 2003) for word alignment and the
IRSTLM Toolkit (Federico et al., 2008) for lan-
guage modelling. However, unlike them, we do
not optimise decoding parameters but use default
values instead.

We build 11 different systems in total: a base-
line system using only the NUCLE training set,
one system per artificial corpus and other addi-
tional systems using combinations of the NUCLE
training data and our artificial corpora. Each of
these systems uses a single translation model that
tackles all error types at the same time.

5 Results

Each system was evaluated in terms of precision,
recall and F; on the NUCLE test data using the
M? Scorer (Dahlmeier and Ng, 2012), the official
evaluation script for the CoNLL 2013 shared task.
Table 4 shows results of evaluation on the original
test set (containing only one gold standard correc-
tion per error) and a revised version (which allows
for alternative corrections submitted by participat-
ing teams).

Results reveal our ED and POS corpora are able
to improve precision for both test sets. It is surpris-
ing, however, that the least informed dataset (ED)
is one of the best performers although this seems
reasonable if we consider it is the only dataset that
includes artificial instances for all error types (see
Table 1). Hybrid datasets containing the NUCLE
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training set plus an artificial corpus also gener-
ally improve precision, except for NUCLE+SC. It
could be argued that the reason for this improve-
ment is corpus size, since our hybrid datasets are
double the size of each individual set, but the small
differences in precision between the ED and POS
datasets and their corresponding hybrid versions
seem to contradict that hypothesis. In fact, re-
sults would suggest artificial and naturally occur-
ring errors are not interchangeable but rather com-
plementary.

The observed improvement in precision, how-
ever, comes at the expense of recall, for which
none of the systems is able to beat the baseline.
This contradicts results by Rozovskaya and Roth
(2010a), who show their error inflation method in-
creases recall, although this could be due to differ-
ences in the training paradigm and data. Still, re-
sults are encouraging since precision is generally
preferred over recall in error correction scenarios
(Yuan and Felice, 2013).

We also evaluated performance by error type on
the original (Table 5) and revised (Table 6) test
data using an estimation approach similar to the
one in CoNLL 2013. Results show that the per-
formance of each dataset varies by error type, sug-
gesting that certain types of information are bet-
ter suited for specific error types. In particular,
we find that on the original test set, ED achieves
the highest precision for article and determiners,
WSD maximises precision for prepositions and
SC achieves the highest recall and F;. When us-
ing hybrid sets, results improve overall, with the
highest precision being as follows: NUCLE+POS
(ArtOrDet), NUCLE+ED (Nn), NUCLE+WSD



ArtOrDet Nn Prep SVA/Vform Other

P R Fq P R Fy P R Fy P R Fy C/M|U
NUCLE (b) 0.2716 | 0.1551 | 0.1974 | 0.4625 | 0.0934 | 0.1555 | 0.1333 | 0.0386 | 0.0599 | 0.2604 | 0.1016 | 0.1462 | 0 | O | 34
ED 0.2813 | 0.0391 | 0.0687 | 0.6579 | 0.0631 | 0.1152 | 0.0233 | 0.0032 | 0.0056 | 0.0000 | 0.0000 —10] 0] 5
MORPH 0.1862 | 0.1058 | 0.1349 — | 0.0000 — | 0.0000 | 0.0000 — | 0.1429 | 0.0041 | 0.0079 | O | O | 7
POS 0.0000 | 0.0000 — | 0.4405 | 0.0934 | 0.1542 | 0.0000 | 0.0000 — |1 0.1515 | 0.0203 | 0.0358 | 0| 0| 10
SC 0.1683 | 0.0739 | 0.1027 — | 0.0000 — | 0.0986 | 0.0932 | 0.0959 | 0.0000 | 0.0000 — 1 0] 0]21
WSD 0.2219 | 0.1029 | 0.1406 | 0.0000 | 0.0000 — | 0.1905 | 0.0257 | 0.0453 | 0.1875 | 0.0122 | 0.0229 | 0| O | 8
NUCLE+ED 0.3185 | 0.1348 | 0.1894 | 0.5465 | 0.1187 | 0.1950 | 0.1304 | 0.0386 | 0.0596 | 0.2658 | 0.0854 | 0.1292 | 0 | 0 | 35
NUCLE+MORPH | 0.2857 | 0.1507 | 0.1973 | 0.4590 | 0.0707 | 0.1225 | 0.1719 | 0.0354 | 0.0587 | 0.2817 | 0.0813 | 0.1262 | 0 | O | 30
NUCLE+POS 0.3384 | 0.1290 | 0.1868 | 0.4659 | 0.1035 | 0.1694 | 0.1884 | 0.0418 | 0.0684 | 0.2625 | 0.0854 | 0.1288 | 0 | O | 29
NUCLE+SC 0.2890 | 0.1290 | 0.1784 | 0.4500 | 0.0682 | 0.1184 | 0.1492 | 0.0868 | 0.1098 | 0.2836 | 0.0772 | 0.1214 | 0 | O | 34
NUCLE+WSD 0.3003 | 0.1449 | 0.1955 | 0.4667 | 0.0707 | 0.1228 | 0.1948 | 0.0482 | 0.0773 | 0.2632 | 0.0813 | 0.1242 | 0 | 0| 30

Table 5: Error type analysis of our correction systems over the original NUCLE test set using the M?
Scorer. Columns C, M and U show the number of correct, missed and unnecessary corrections outside
the main categories suggested by each system. Results in bold show improvements over the baseline.

ArtOrDet Nn Prep SVA/Vform Other

P R F P R T P R F P R F, |[C|M]|U
NUCLE (b) 0.3519 | 0.2026 | 0.2572 | 0.6163 | 0.1302 | 0.2150 | 0.2069 | 0.0682 | 0.1026 | 0.4105 | 0.1718 | 0.2422 | 0 | O | 34
ED 0.4063 | 0.0579 | 0.1014 | 0.7297 | 0.0684 | 0.1250 | 0.0465 | 0.0077 | 0.0132 | 0.1818 | 0.0183 | 0.0332 | 0| O| 5
MORPH 0.2270 | 0.1311 | 0.1662 — | 0.0000 — | 0.0000 | 0.0000 — | 0.2857 | 0.0092 | 0.0179 | O | O | 7
POS 0.0000 | 0.0000 — | 0.5465 | 0.1169 | 0.1926 | 0.0000 | 0.0000 — | 0.4242 | 0.0631 | 0.1098 | 0 | 0| 10
Ne 0.2112 | 0.0944 | 0.1305 — | 0.0000 — | 0.1088 | 0.1221 | 0.1151 | 0.0000 | 0.0000 — 1 0] 0]21
WSD 0.2781 | 0.1313 | 0.1784 | 0.0000 | 0.0000 — | 0.2143 | 0.0347 | 0.0598 | 0.2000 | 0.0138 | 0.0259 | 0| O | 8
NUCLE+ED 0.4334 | 0.1849 | 0.2592 | 0.7000 | 0.1552 | 0.2540 | 0.1685 | 0.0575 | 0.0857 | 0.4744 | 0.1630 | 0.2426 | 0 | O | 35
NUCLE+MORPH | 0.3791 | 0.2006 | 0.2624 | 0.6308 | 0.1017 | 0.1752 | 0.2295 | 0.0536 | 0.0870 | 0.4714 | 0.1454 | 0.2222 | 0| O | 30
NUCLE+POS 0.4601 | 0.1761 | 0.2547 | 0.6087 | 0.1383 | 0.2254 | 0.2424 | 0.0613 | 0.0979 | 0.4430 | 0.1549 | 0.2295 | 0 | 0|29
NUCLE+SC 0.3961 | 0.1773 | 0.2450 | 0.6154 | 0.0993 | 0.1709 | 0.1844 | 0.1250 | 0.1490 | 0.4848 | 0.1410 | 0.2184 | 0 | O | 34
NUCLE+WSD 0.3994 | 0.1933 | 0.2605 | 0.6308 | 0.1017 | 0.1752 | 0.2432 | 0.0690 | 0.1075 | 0.4667 | 0.1535 | 0.2310 | 0 | O | 30

Table 6: Error type analysis of our correction systems over the revised NUCLE test set using the M?
Scorer. Columns C, M and U show the number of correct, missed and unnecessary corrections outside
the main categories suggested by each system. Results in bold show improvements over the baseline.

(Prep) and NUCLE+SC (SVA/Vform). As ex-
pected, the use of alternative annotations in the re-
vised test set improves results but it does not reveal
any qualitative difference between datasets.

Finally, when compared to other systems in the
CoNLL 2013 shared task in terms of F;, our best
systems would rank 9th on both test sets. This
would suggest that using an off-the-shelf SMT
system trained on a combination of real and ar-
tificial data can yield better results than other ma-
chine learning techniques (Yi et al., 2013; van den
Bosch and Berck, 2013; Berend et al., 2013) or
rule-based approaches (Kunchukuttan et al., 2013;
Putra and Szabo, 2013; Flickinger and Yu, 2013;
Sidorov et al., 2013).

6 Conclusions

This paper presents early results on the genera-
tion and use of artificial errors for grammatical
error correction. Our approach uses conditional
probabilities derived from an ESL error-annotated
corpus to replicate errors in native error-free data.
Unlike previous work, we propose using linguistic
information such as PoS or sense disambiguation
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to refine the contexts where errors occur and thus
replicate them more accurately. We use five differ-
ent types of information to generate our artificial
corpora, which are later evaluated in isolation as
well as coupled to the original ESL training data.

General results show error distributions and PoS
information produce the best results, although this
varies when we analyse each error type separately.
These results should allow us to generate errors
more efficiently in the future by using the best ap-
proach for each error type.

We have also observed that precision improves
at the expense of recall and this is more pro-
nounced when using purely artificial sets. Finally,
artificially generated errors seem to be a comple-
ment rather than an alternative to genuine data.

7 Future work

There are a number of issues we plan to address in
future research, as described below.
Scaling up artificial data

The experiments presented here use a small and
manually selected collection of Wikipedia articles.



However, we plan to study the performance of our
systems as corpus size is increased. We are cur-
rently using a larger selection of Wikipedia ar-
ticles to produce new artificial datasets ranging
from 50K to 5M sentences. The resulting corpora
will be used to train new error correction systems
and study how precision and recall vary as more
data is added during the training process, similar
to Cahill et al. (2013).

Reducing differences between datasets

As shown in Table 1, we are unable to produce
the same set of errors for each different type of in-
formation. This is a limitation of our conditional
probabilities which encode different information
in each case. In consequence, comparing overall
results between datasets seems unfair as they do
not target the same error types. In order to over-
come this problem, we will define new probabili-
ties so that we can generate the same types of error
in all cases.

Exploring larger contexts

Our current probabilities model error contexts
in a limited way, mostly by considering rela-
tions between two or three words (e.g. arti-
cle+noun, verb+preposition+noun, etc.). In or-
der to improve error injection, we will define
new probabilities using larger contexts, such as
P(source=verb|target=verb, subject_class, auxil-
iary_verbs, object_class) for verb form errors.
Using more specific contexts can also be useful for
correcting complex error types, such as the use of
pronouns, which often requires analysing corefer-
ence chains.

Using new linguistic information

In this work we have used five types of linguis-
tic information. However, we believe other types
of information and their associated probabilities
could also be useful, especially if we aim to cor-
rect more error types. Examples include spelling,
grammatical relations (dependencies) and word
order (syntax). Additionally, we believe the use
of semantic role labels can be explored as an al-
ternative to semantic classes, as they have proved
useful for error correction (Liu et al., 2010).

Mixed error generation

In our current experiments, each artificial corpus is
generated using only one type of information at a
time. However, having found that certain types of
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information are more suitable than others for cor-
recting specific error types (see Tables 5 and 6), we
believe better artificial corpora could be created by
generating instances of each error type using only
the most appropriate linguistic information.
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