Designing Language Technology Applications:
A Wizard of Oz Driven Prototyping Framework

S. Schlogl
MCI Management Center Innsbruck
Management, Communication & IT
Innsbruck, AUSTRIA
schlogl@mci.edu

Abstract

Wizard of Oz (WOZ) prototyping employs
a human wizard to simulate anticipated
functions of a future system. In Natural
Language Processing this method is usu-
ally used to obtain early feedback on di-
alogue designs, to collect language cor-
pora, or to explore interaction strategies.
Yet, existing tools often require complex
client-server configurations and setup rou-
tines, or suffer from compatibility prob-
lems with different platforms. Integrated
solutions, which may also be used by de-
signers and researchers without technical
background, are missing. In this paper
we present a framework for multi-lingual
dialog research, which combines speech
recognition and synthesis with WOZ. All
components are open source and adaptable
to different application scenarios.

1 Introduction

In recent years Language Technologies (LT) such
as Automatic Speech Recognition (ASR), Ma-
chine Translation (MT) and Text-to-Speech Syn-
thesis (TTS) have found their way into an increas-
ing number of products and services. Technolog-
ical advances in the field have created new possi-
bilities, and ubiquitous access to modern technol-
ogy (i.e. smartphones, tablet computers, etc.) has
inspired novel solutions in multiple application ar-
eas. Still, the technology at hand is not perfect and
typically substantial engineering effort (gathering
of corpora, training, tuning) is needed before pro-
totypes involving such technologies can deliver a
user experience robust enough to allow for poten-
tial applications to be evaluated with real users.
For graphical interfaces, well-known prototyping
methods like sketching and wire-framing allow for
obtaining early impressions and initial user feed-
back. These low-fidelity prototyping techniques

P. Milhorat*, G. Chollet*, J. Boudy'
Institut Mines-Télécom

*Télécom ParisTech & TTélécom SudParis

Paris, FRANCE

milhorat@telecom-paristech. fr

85

do not, however, work well with speech and nat-
ural language. The Wizard of Oz (WOZ) method
can be employed to address this shortcoming. By
using a human ‘wizard’ to mimic the functional-
ity of a system, either completely or in part, WOZ
supports the evaluation of potential user experi-
ences and interaction strategies without the need
for building a fully functional product first (Gould
etal., 1983). It furthermore supports the collection
of domain specific language corpora and the easy
exploration of varying dialog designs (Wirén et al.,
2007). WOZ tools, however, are often application
dependent and built for very specific experimental
setups. Rarely, are they re-used or adapted to other
application scenarios. Also, when used in combi-
nation with existing technology components such
as ASR or TTS, they usually require complex soft-
ware installations and server-client configurations.
Thus, we see a need for an easy ‘out-of-the-box’
type solution. A tool that does not require great
technical experience and therefore may be used by
researchers and designers outside the typical NLP
research and development community. This demo
is the result of our recent efforts aimed at building
such an integrated prototyping tool.

We present a fully installed and configured
server image that offers multi-lingual (i.e. English,
German, French, Italian) ASR and TTS integrated
with a web-based WOZ platform. All components
are open-source (i.e. adaptable and extendable)
and connected via a messaging server and a num-
ber of Java programs. When started the framework
requires only one single script to be executed (i.e.
there is a separate script for each language so that
the components are started using the right param-
eters) in order to launch a WOZ driven system en-
vironment. With such a pre-configured setup we
believe that also non-NLP experts are able to suc-
cessfully conduct extended user studies for lan-
guage technologies applications.

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 85-88,

Gothenburg, Sweden, April 26-30 2014. (©2014 Association for Computational Linguistics

2 Existing Comparable Tools

Following the literature, existing tools and frame-
works that support prototyping of language tech-
nology applications can be separated into two cat-
egories. The first category consists of so-called
Dialogue Management (DM) tools, which focus
on the evaluation of Language Technologies (LTs)
and whose primary application lies in the areas of
NLP and machine learning. Two well-known ex-
amples are the CSLU toolkit (Sutton et al., 1998)
and the Olympus dialogue framework (Bohus et
al., 2007). Others include the Jaspis dialogue man-
agement system (Turunen and Hakulinen, 2000)
and the EPFL dialogue platform (Cenek et al.,
2005). DM tools explore the language-based inter-
action between a human and a machine and aim at
improving this dialogue. They usually provide an
application development interface that integrates
different LTs such as ASR and TTS, which is then
used by an experimenter to specify a pre-defined
dialogue flow. Once the dialogue is designed, it
can be tested with human participants. The main
focus of these tools lies on testing and improving
the quality of the employed technology compo-
nents and their interplay. Unlike DM tools, rep-
resentatives from the second category, herein af-
ter referred to as WOZ tools, tend to rely entirely
on human simulation. This makes them more in-
teresting for early feedback, as they better sup-
port the aspects of low-fidelity prototyping. While
these applications often offer more flexibility, they
rarely integrate actual working LTs. Instead, a hu-
man mimics the functions of the machine, which
allows for a less restrictive dialogue design and
facilitates the testing of user experiences that are
not yet supported by existing technologies. Most
WOZ tools, however, should be categorized as
throwaway applications i.e. they are built for one
scenario and only rarely re-used in other settings.
Two examples that allow for a more generic ap-
plication are SUEDE (Klemmer et al., 2000) and
Richard Breuer’s WOZ tool'.

While both DM and WOZ tools incorporate
useful features, neither type provides a full range
of support for low-fidelity prototyping of LT ap-
plications. DM tools lack the flexibility of ex-
ploring aspects that are currently not supported by
technology, and pure WOZ applications often de-
pend too much on the actions of the wizard, which
can lead to unrealistic human-like behaviour and

"http://www.softdoc.de/woz/index.html

86

inconsistencies with its possible bias on evalua-
tion results. A combination of both types of tools
can outweigh their deficiencies and furthermore
allow for supporting different stages of prototyp-
ing. That is, a wizard might complement exist-
ing technology on a continuum by first taking on
the role of a ‘controller’ who simulates technol-
ogy. Then, in a second stage one could act as a
‘monitor’ who approves technology output, before
finally moving on to being a ‘supervisor’ who only
overrides output in cases where it is needed (Dow
et al., 2005). However, to allow for such variation
an architecture is required that on the one hand
supports a flexible use of technology components
and on the other hand offers an interface for real-
time human intervention.

3 Integrated Prototyping Framework

In order to offer a flexible and easy to use pro-
totyping framework for language technology ap-
plications we have integrated a number of exist-
ing technology components using an Apache AcC-
TIVEMQ messaging server’ and several Java pro-
grams. Our framework consists of the JULIUS
Large Vocabulary Continuous Speech Recogni-
tion engine®, an implementation of the GOOGLE
SPEECH API*, the WEBWOZ Wizard of Oz
Prototyping Platform® and the MARY Text-to-
Speech Synthesis Platform®. All components are
fully installed and connected running on a VIR-
TUAL BOX server image’ (i.e. Ubuntu 12.04 LTS
Linux Server). Using this configuration we offer
a platform that supports real-time speech recogni-
tion as well as speech synthesis in English, French,
German and Italian. Natural Language Under-
standing (NLU), Dialog Management (DM), and
Natural Language Generation (NLG) is currently
performed by the human ‘wizard’. Respective
technology components may, however, be inte-
grated in future versions of the framework. The
following sections describe the different compo-
nents in some more detail and elaborate on how
they are connected.

2http://activemq.apache.org/
3http://julius.sourceforge.jp/en_index.php
“http://www.google.com/intl/en/chrome/demos/speech.html
Shttps://github.com/stephanschloegl/WebWOZ
®http://mary.dfki.de/
"https://www.virtualbox.org/

3.1 Automatic Speech Recognition

The JULIUS open-source Large Vocabulary Con-
tinuous Speech Recognition engine (LVCSR) uses
n-grams and context-dependent Hidden Markov
Models (HMM) to transform acoustic input into
text output (Lee et al., 2008). Its recognition
performance depends on the availability of lan-
guage dependent resources i.e. acoustic models,
language models, and language dictionaries. Our
framework includes basic language resources for
English, German, Italian and French. As those
resources are still very limited we have also in-
tegrated online speech recognition for these four
languages using the Google Speech API. This al-
lows for conducting experiments with users while
at the same time collecting the necessary data for
augmenting and filling in JULIUS language re-
sources.

3.2 Text-to-Speech Synthesis

MARY TTS is a state-of-the-art, open source
speech synthesis platform supporting a variety
of different languages and accents (Schréder and
Trouvain, 2003). For the here presented multi-
lingual prototyping framework we have installed
synthesized voices for US English (cmu-slt-
hsmm), Italian (istc-lucia-hsmm), German (dfki-
pavoque-neutral) as well as French (enst-dennys-
hsmm). Additional voices can be downloaded and
added through the MARY component installer.

3.3 Wizard of Oz

WebWOZ is a web-based prototyping platform for
WOZ experiments that allows for a flexible inte-
gration of existing LTs (Schlogl et al., 2010). It
was implemented using modern web technologies
(i.e. Java, HTML, CSS) and therefore runs in any
current web browser. It usually uses web services
to integrate a set of pre-configured LT components
(i.e. ASR, MT, TTS). For the presented prototyp-
ing framework, however, we have integrated Web-
WOZ with our ASR solution (i.e. the combined
Google/JULIUS engine) and MARY TTS. Conse-
quently ASR output is displayed in the top area
of the wizard interface. A wizard is then able to
select an appropriate response from a set of pre-
viously defined utterances or use a free-text field
to compose a response on the fly. In both cases
the utterance is sent to the MARY TTS server and
spoken out by the system.

87

3.4 Messaging Server and Gluing Programs

In order to achieve the above presented integration
of ASR, WOZ and TTS we use an Apache AC-
TIVEMQ messaging server and a number of Java
programs. One of these programs takes the output
from our ASR component and inserts it into the
WebWOZ input stream. In addition it publishes
this output to a specific ASR ActiveMQ queue so
that other components (e.g. potentially an NLU
component) may also be able to process it. Once
an ASR result is available within WebWOZ, it is
up to the human wizard to respond. WebWOZ
was slightly modified so that wizard responses are
not only sent to the internal WebWOZ log, but
also to a WIZARD ActiveMQ queue. A second
Java program then takes the wizard responses from
the WIZARD queue and pushes them to a sepa-
rate MARY queue. While it may seem unneces-
sary to first take responses from one queue just to
publish them to another queue, it allows for the
easy integration of additional components. For
example, we have also experimented with a dis-
tinct NLG component. Putting this component
between the WIZARD and the MARY queue we
were able to conduct experiments where a wiz-
ard instead of sending entire text utterance would
rather send text-based semantic frames (i.e. a se-
mantically unified representation of a user’s in-
put). Such shows the flexibility of using the de-
scribed queue architecture. Finally we use a third
Java program to take text published to the MARY
queue (i.e. either directly coming from the wiz-
ard or produced by an NLG component as with
one of our experimental settings) and send it to the
MARY TTS server. Figure 1 illustrates the differ-
ent framework components and how they are con-
nected to each other.

4 Demo Setup

The optimal setup for the demo uses two computer
stations, one for a wizard and one for a test user.
The stations need to be connected via a LAN con-
nection. The test user station runs the prototyping
framework, which is a fully installed and config-
ured Virtual Box software image (Note: any com-
puter capable of running Virtual Box can serve as a
test user station). The wizard station only requires
a modern web browser to interact with the test user
station. A big screen size (e.g. 17 inch) for the
wizard is recommended as such eases his/her task.
Both stations will be provided by the authors.

e I
Virtual Box Image (Ubuntu 12.04 LTS Server)
Apache ActiveMQ messaging server
Automatic I gl Text-to-Speech
Speech Wizard of OZ |2 & | Synthesis
Recognition g o g
52 5|
I_ o Z 0
JOLUS WebWOZ I
LVCSREngine || _ £ oo LE £l = MARY
4 H 2 & 1zar O_OZ z o - sEL ¢S £ | Text-to-Speech
29 Prototyping 20 LN R
Google & Platf = £ £ System
Speech API attorm | |
L —
- —]
Potential
AsR]/NW/DM | Twizaro MARY
queue || coEpoient g queue queue
- /

Figure 1: Prototyping Framework Components.

5 Summary and Future Work

This demo presents an integrated prototyping
framework for running WOZ driven language
technology application scenarios. Gluing together
existing tools for ASR, WOZ and TTS we have
created an easy to use environment for spoken di-
alog design and research. Future work will focus
on adding additional language technology compo-
nents (e.g. NLU, DM, NLG) and on improving the
currently limited ASR language resources.

Acknowledgments

The presented research is conducted as part of the
vAssist project (AAL-2010-3-106), which is par-
tially funded by the European Ambient Assisted
Living Joint Programme and the National Funding
Agencies from Austria, France and Italy.

References

D. Bohus, A. Raux, T. K. Harris, M. Eskenazi, and A. 1.
Rudnicky. 2007. Olympus: An open-source frame-
work for conversational spoken language interface
research. In Proc. of NAACL-HLT, pages 32-39.

Cenek, M. Melichar, and M. Rajman. 2005. A
framework for rapid multimodal application design.
In Proceedings of TSD, pages 393-403.

. Dow, B. Macintyre, J. Lee, C. Oezbek, J. D. Bolter,
and M. Gandy. 2005. Wizard of oz support through-
out an iterative design process. I[EEE Pervasive
Computing, 4(4):18-26.

88

J. D. Gould, J. Conti, and T. Hovanyecz. 1983. Com-
posing letters with a simulated listening typewriter.
Communications of the ACM, 26(4):295-308.

. R. Klemmer, A. K. Sinha, J. Chen, J. A. Landay,
N. Aboobaker, and A. Wang. 2000. SUEDE: A wiz-
ard of oz prototyping tool for speech user interfaces.
In Proc. of UIST, pages 1-10.

. Lee, S. Jung, and G. G. Lee. 2008. Robust dia-
log management with n-best hypotheses using di-
alog examples and agenda. In Proc. of ACL-HLT,
pages 630-637.

. Schlogl, G. Doherty, N. Karamanis, and S Luz.
2010. WebWOZ: a wizard of oz prototyping frame-
work. In Proc. of the ACM EICS Symposium on En-
gineering Interactive Systems, pages 109-114.

M. Schréder and J. Trouvain. 2003. The German
text-to-speech synthesis system MARY: A tool for
research, development and teaching. International
Journal of Speech Technology.

S. Sutton, R. Cole, J. de Vielliers, J. Schalkwyk, P. Ver-
meulen, M. Macon, Y. Yan, E. Kaiser, B. Rundle,
K. Shobaki, P. Hosom, A. Kain, J. Wouters, D. Mas-
saro, and M. Cohen. 1998. Universal speech tools:
The CSLU toolKkit.

M. Turunen and J. Hakulinen. 2000. Jaspis- a frame-
work for multilingual adaptive speech applications.
In Proc. of ICSLP, pages 719-722.

M. Wirén, R. Eklund, F. Engberg, and J. Westermark.
2007. Experiences of an In-Service Wizard-of-
Oz Data Collection for the Deployment of a Call-
Routing Application. In Proc. of NAACL-HLT,
pages 56—63.

