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Abstract
Sentences form coherent relations in a
discourse without discourse connectives
more frequently than with connectives.
Senses of these implicit discourse rela-
tions that hold between a sentence pair,
however, are challenging to infer. Here,
we employ Brown cluster pairs to rep-
resent discourse relation and incorporate
coreference patterns to identify senses of
implicit discourse relations in naturally
occurring text. Our system improves the
baseline performance by as much as 25%.
Feature analyses suggest that Brown clus-
ter pairs and coreference patterns can re-
veal many key linguistic characteristics of
each type of discourse relation.

1 Introduction

Sentences must be pieced together logically in a
discourse to form coherent text. Many discourse
relations in the text are signaled explicitly through
a closed set of discourse connectives. Simply
disambiguating the meaning of discourse connec-
tives can determine whether adjacent clauses are
temporally or causally related (Pitler et al., 2008;
Wellner et al., 2009). Discourse relations and their
senses, however, can also be inferred by the reader
even without discourse connectives. These im-
plicit discourse relations in fact outnumber explicit
discourse relations in naturally occurring text. In-
ferring types or senses of implicit discourse re-
lations remains a key challenge in automatic dis-
course analysis.

A discourse parser requires many subcompo-
nents which form a long pipeline. The implicit
discourse relation discovery has been shown to be
the main performance bottleneck of an end-to-end
parser (Lin et al., 2010). It is also central to many
applications such as automatic summarization and
question-answering systems.

Existing systems, which make heavy use of
word pairs, suffer from data sparsity problem as
a word pair in the training data may not appear
in the test data. A better representation of two
adjacent sentences beyond word pairs could have
a significant impact on predicting the sense of
the discourse relation that holds between them.
Data-driven theory-independent word classifica-
tion such as Brown clustering should be able
to provide a more compact word representation
(Brown et al., 1992). Brown clustering algorithm
induces a hierarchy of words in a large unanno-
tated corpus based on word co-occurrences within
the window. The induced hierarchy might give
rise to features that we would otherwise miss. In
this paper, we propose to use the cartesian product
of Brown cluster assignment of the sentence pair
as an alternative abstract word representation for
building an implicit discourse relation classifier.

Through word-level semantic commonalities
revealed by Brown clusters and entity-level rela-
tions revealed by coreference resolution, we might
be able to paint a more complete picture of the
discourse relation in question. Coreference resolu-
tion unveils the patterns of entity realization within
the discourse, which might provide clues for the
types of the discourse relations. The information
about certain entities or mentions in one sentence
should be carried over to the next sentence to form
a coherent relation. It is possible that coreference
chains and semantically-related predicates in the
local context might show some patterns that char-
acterize types of discourse relations. We hypoth-
esize that coreferential rates and coreference pat-
terns created by Brown clusters should help char-
acterize different types of discourse relations.

Here, we introduce two novel sets of features
for implicit discourse relation classification. Fur-
ther, we investigate the effects of using Brown
clusters as an alternative word representation and
analyze the impactful features that arise from
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Number of instances
Implicit Explicit

COMPARISON 2503 (15.11%) 5589 (33.73%)
CONTINGENCY 4255 (25.68%) 3741 (22.58%)
EXPANSION 8861 (53.48%) 72 (0.43%)
TEMPORAL 950 (5.73%) 3684 (33.73%)
Total 16569 (100%) 13086 (100%)

Table 1: The distribution of senses of implicit dis-
course relations is imbalanced.

Brown cluster pairs. We also study coreferential
patterns in different types of discourse relations in
addition to using them to boost the performance
of our classifier. These two sets of features along
with previously used features outperform the base-
line systems by approximately 5% absolute across
all categories and reveal many important charac-
teristics of implicit discourse relations.

2 Sense annotation in Penn Discourse
Treebank

The Penn Discourse Treebank (PDTB) is the
largest corpus richly annotated with explicit
and implicit discourse relations and their senses
(Prasad et al., 2008). PDTB is drawn from
Wall Street Journal articles with overlapping an-
notations with the Penn Treebank (Marcus et al.,
1993). Each discourse relation contains the infor-
mation about the extent of the arguments, which
can be a sentence, a constituent, or an incontigu-
ous span of text. Each discourse relation is also
annotated with the sense of the relation that holds
between the two arguments. In the case of implicit
discourse relations, where the discourse connec-
tives are absent, the most appropriate connective
is annotated.

The senses are organized hierarchically. Our fo-
cus is on the top level senses because they are the
four fundamental discourse relations that various
discourse analytic theories seem to converge on
(Mann and Thompson, 1988). The top level senses
are COMPARISON, CONTINGENCY, EXPANSION,
and TEMPORAL.

The explicit and implicit discourse relations al-
most orthogonally differ in their distributions of
senses (Table 1). This difference has a few im-
plications for studying implicit discourse relations
and uses of discourse connectives (Patterson and
Kehler, 2013). For example, TEMPORAL relations
constitute only 5% of the implicit relations but
33% of the explicit relations because they might
not be as natural to create without discourse con-

nectives. On the other hand, EXPANSION rela-
tions might be more cleanly achieved without ones
as indicated by its dominance in the implicit dis-
course relations. This imbalance in class distri-
bution requires greater care in building statistical
classifiers (Wang et al., 2012).

3 Experiment setup

We followed the setup of the previous studies
for a fair comparison with the two baseline sys-
tems by Pitler et al. (2009) and Park and Cardie
(2012). The task is formulated as four sepa-
rate one-against-all binary classification problems:
one for each top level sense of implicit discourse
relations. In addition, we add one more classifica-
tion task with which to test the system. We merge
ENTREL with EXPANSION relations to follow the
setup used by the two baseline systems. An argu-
ment pair is annotated with ENTREL in PDTB if
an entity-based coherence and no other type of re-
lation can be identified between the two arguments
in the pair. In this study, we assume that the gold
standard argument pairs are provided for each re-
lation. Most argument pairs for implicit discourse
relations are a pair of adjacent sentences or adja-
cent clauses separated by a semicolon and should
be easily extracted.

The PDTB corpus is split into a training set, de-
velopment set, and test set the same way as in the
baseline systems. Sections 2 to 20 are used to train
classifiers. Sections 0–1 are used for developing
feature sets and tuning models. Section 21–22 are
used for testing the systems.

The statistical models in the following exper-
iments are from MALLET implementation (Mc-
Callum, 2002) and libSVM (Chang and Lin,
2011). For all five binary classification tasks, we
try Balanced Winnow (Littlestone, 1988), Maxi-
mum Entropy, Naive Bayes, and Support Vector
Machine. The parameters and the hyperparame-
ters of each classifier are set to their default values.
The code for our model along with the data ma-
trices is available at github.com/attapol/
brown_coref_implicit.

4 Features

Unlike the baseline systems, all of the features
in the experiments use the output from automatic
natural language processing tools. We use the
Stanford CoreNLP suite to lemmatize and part-
of-speech tag each word (Toutanova et al., 2003;
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Toutanova and Manning, 2000), obtain the phrase
structure and dependency parses for each sentence
(De Marneffe et al., 2006; Klein and Manning,
2003), identify all named entities (Finkel et al.,
2005), and resolve coreference (Raghunathan et
al., 2010; Lee et al., 2011; Lee et al., 2013).

4.1 Features used in previous work
The baseline features consist of the following:
First, last, and first 3 words, numerical ex-
pressions, time expressions, average verb phrase
length, modality, General Inquirer tags, polarity,
Levin verb classes, and production rules. These
features are described in greater detail by Pitler et
al. (2009).

4.2 Brown cluster pair features
To generate Brown cluster assignment pair fea-
tures, we replace each word with its hard Brown
cluster assignment. We used the Brown word
clusters provided by MetaOptimize (Turian et
al., 2010). 3,200 clusters were induced from
RCV1 corpus, which contains about 63 million to-
kens from Reuters English newswire. Then we
take the Cartesian product of the Brown clus-
ter assignments of the words in Arg1 and the
ones of the words in Arg2. For example, sup-
pose Arg1 has two words w1,1, w1,2, Arg2 has
three words w2,1, w2,2, w2,3, and then B(.) maps
a word to its Brown cluster assignment. A
word wij is replaced by its corresponding Brown
cluster assignment bij = B(wij). The result-
ing word pair features are (b1,1, b2,1), (b1,1, b2,2),
(b1,1, b2,3), (b1,2, b2,1), (b1,2, b2,2), and (b1,2, b2,3).

Therefore, this feature set can generate
O(32002) binary features. The feature set size is
orders of magnitude smaller than using the actual
words, which can generate O(V 2) distinct binary
features where V is the size of the vocabulary.

4.3 Coreference-based features
We want to take advantage of the semantics of
the sentence pairs even more by considering how
coreferential entities play out in the sentence pairs.
We consider various inter-sentential coreference
patterns to include as features and also to better
describe each type of discourse relation with re-
spect to its place in the coreference chain.

For compactness in explaining the following
features, we define similar words to be the words
assigned to the same Brown cluster.
Number of coreferential pairs: We count the

number of inter-sentential coreferential pairs.
We expect that EXPANSION relations should be
more likely to have coreferential pairs because the
detail or information about an entity mentioned
in Arg1 should be expanded in Arg2. Therefore,
entity sharing might be difficult to avoid.
Similar nouns and verbs: A binary feature
indicating whether similar or coreferential nouns
are the arguments of the similar predicates. Predi-
cates and arguments are identified by dependency
parses. We notice that sometimes the author uses
synonyms while trying to expand on the previous
predicates or entities. The words that indicate the
common topics might be paraphrased, so exact
string matching cannot detect whether the two ar-
guments still focus on the same topic. This might
be useful for identifying CONTINGENCY relations
as they usually discuss two causally-related events
that involve two seemingly unrelated agents
and/or predicates.
Similar subject or main predicates: A binary
feature indicating whether the main verbs of the
two arguments have the same subjects or not
and another binary feature indicating whether the
main verbs are similar or not. For our purposes,
the two subjects are said to be the same if they
are coreferential or assigned to the same Brown
cluster. We notice that COMPARISON relations
usually have different subjects for the same main
verbs and that TEMPORAL relations usually have
the same subjects but different main verbs.

4.4 Feature selection and training sample
reweighting

The nature of the task and the dataset poses at
least two problems in creating a classifier. First,
the classification task requires a large number of
features, some of which are too rare and incon-
ducive to parameter estimation. Second, the la-
bel distribution is highly imbalanced (Table 1) and
this might degrade the performance of the classi-
fiers (Japkowicz, 2000). Recently, Park and Cardie
(2012) and Wang et al. (2012) addressed these
problems directly by optimally select a subset of
features and training samples. Unlike previous
work, we do not discard any of data in the training
set to balance the label distribution. Instead, we
reweight the training samples in each class during
parameter estimation such that the performance on
the development set is maximized. In addition, the
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Current Park and Cardie (2012) Pitler et al. (2009)
P R F1 F1 F1

COMPARISON vs others 27.34 72.41 39.70 31.32 21.96
CONTINGENCY vs others 44.52 69.96 54.42 49.82 47.13
EXPANSION vs others 59.59 85.50 70.23 - -
EXP+ENTREL vs others 69.26 95.92 80.44 79.22 76.42
TEMPORAL vs others 18.52 63.64 28.69 26.57 16.76

Table 2: Our classifier outperform the previous systems across all four tasks without the use of gold-
standard parses and coreference resolution.

COMPARISON
Feature set F1 % change
All features 39.70 -
All excluding Brown cluster pairs 35.71 -10.05%
All excluding Production rules 37.27 -6.80%
All excluding First, last, and First 3 39.18 -1.40%
All excluding Polarity 39.39 -0.79%

CONTINGENCY
Feature set F1 % change
All 54.42 -
All excluding Brown cluster pairs 51.50 -5.37%
All excluding First, last, and First 3 53.56 -1.58%
All excluding Polarity 53.82 -1.10%
All excluding Coreference 53.92 -0.92%

EXPANSION
Feature set F1 % change
All 70.23 -
All excluding Brown cluster pairs 67.48 -3.92%
All excluding First, last, and First 3 69.43 -1.14%
All excluding Inquirer tags 69.73 -0.71%
All excluding Polarity 69.92 -0.44%

TEMPORAL
Feature set F1 % change
All 28.69 -
All excluding Brown cluster pairs 24.53 -14.50%
All excluding Production rules 26.51 -7.60%
All excluding First, last, and First 3 26.56 -7.42%
All excluding Polarity 27.42 -4.43%

Table 3: Ablation study: The four most impact-
ful feature classes and their relative percentage
changes are shown. Brown cluster pair features
are the most impactful across all relation types.

number of occurrences for each feature must be
greater than a cut-off, which is also tuned on the
development set to yield the highest performance
on the development set.

5 Results

Our experiments show that the Brown cluster and
coreference features along with the features from
the baseline systems improve the performance for
all discourse relations (Table 2). Consistent with
the results from previous work, the Naive Bayes

classifier outperforms MaxEnt, Balanced Winnow,
and Support Vector Machine across all tasks re-
gardless of feature pruning criteria and training
sample reweighting. A possible explanation is that
the small dataset size in comparison with the large
number of features might favor a generative model
like Naive Bayes (Jordan and Ng, 2002). So we
only report the performance from the Naive Bayes
classifiers.

It is noteworthy that the baseline systems use
the gold standard parses provided by the Penn
Treebank, but ours does not because we would
like to see how our system performs realistically in
conjunction with other pre-processing tasks such
as lemmatization, parsing, and coreference reso-
lution. Nevertheless, our system still manages to
outperform the baseline systems in all relations by
a sizable margin.

Our preliminary results on implicit sense classi-
fication suggest that the Brown cluster word rep-
resentation and coreference patterns might be in-
dicative of the senses of the discourse relations,
but we would like to know the extent of the im-
pact of these novel feature sets when used in con-
junction with other features. To this aim, we con-
duct an ablation study, where we exclude one of
the feature sets at a time and then test the result-
ing classifier on the test set. We then rank each
feature set by the relative percentage change in
F1 score when excluded from the classifier. The
data split and experimental setup are identical to
the ones described in the previous section but only
with Naive Bayes classifiers.

The ablation study results imply that Brown
cluster features are the most impactful feature set
across all four types of implicit discourse rela-
tions. When ablated, Brown cluster features de-
grade the performance by the largest percentage
compared to the other feature sets regardless of the
relation types(Table 3). TEMPORAL relations ben-
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efit the most from Brown cluster features. With-
out them, the F1 score drops by 4.12 absolute or
14.50% relative to the system that uses all of the
features.

6 Feature analysis

6.1 Brown cluster features
This feature set is inspired by the word pair fea-
tures, which are known for its effectiveness in pre-
dicting senses of discourse relations between the
two arguments. Marcu et al (2002), for instance,
artificially generated the implicit discourse rela-
tions and used word pair features to perform the
classification tasks. Those word pair features work
well in this case because their artificially gener-
ated dataset is an order of magnitude larger than
PDTB. Ideally, we would want to use the word
pair features instead of word cluster features if
we have enough data to fit the parameters. Con-
sequently, other less sparse handcrafted features
prove to be more effective than word pair features
for the PDTB data (Pitler et al., 2009). We remedy
the sparsity problem by clustering the words that
are distributionally similar together and greatly re-
duce the number of features.

Since the ablation study is not fine-grained
enough to spotlight the effectiveness of the indi-
vidual features, we quantify the predictiveness of
each feature by its mutual information. Under
Naive Bayes conditional independence assump-
tion, the mutual information between the features
and the labels can be efficiently computed in a
pairwise fashion. The mutual information be-
tween a binary feature Xi and class label Y is de-
fined as:

I(Xi, Y ) =
∑

y

∑
x=0,1

p̂(x, y) log
p̂(x, y)

p̂(x)p̂(y)

p̂(·) is the probability distribution function whose
parameters are maximum likelihood estimates
from the training set. We compute mutual infor-
mation for all four one-vs-all classification tasks.
The computation is done as part of the training
pipeline in MALLET to ensure consistency in pa-
rameter estimation and smoothing techniques. We
then rank the cluster pair features by mutual in-
formation. The results are compactly summa-
rized in bipartite graphs shown in Figure 1, where
each edge represents a cluster pair. Since mu-
tual information itself does not indicate whether
a feature is favored by one or the other label, we

also verify the direction of the effects of each of
the features included in the following analysis by
comparing the class conditional parameters in the
Naive Bayes model.

The most dominant features for COMPARISON

classification are the pairs whose members are
from the same Brown clusters. We can distinctly
see this pattern from the bipartite graph because
the nodes on each side are sorted alphabetically.
The graph shows many parallel short edges, which
suggest that many informative pairs consist of the
same clusters. Some of the clusters that participate
in such pair consist of named-entities from vari-
ous categories such as airlines (King, Bell, Virgin,
Continental, ...), and companies (Thomson, Volk-
swagen, Telstra, Siemens). Some of the pairs form
a broad category such as political agents (citizens,
pilots, nationals, taxpayers) and industries (power,
insurance, mining). These parallel patterns in the
graph demonstrate that implicit COMPARISON re-
lations might be mainly characterized by juxtapos-
ing and explicitly contrasting two different entities
in two adjacent sentences.

Without the use of a named-entity recogni-
tion system, these Brown cluster pair features ef-
fectively act as features that detect whether the
two arguments in the relation contain named-
entities or nouns from the same categories or not.
These more subtle named-entity-related features
are cleanly discovered through replacing words
with their data-driven Brown clusters without the
need for additional layers of pre-processing.

If the words in one cluster semantically relates
to the words in another cluster, the two clusters
are more likely to become informative features
for CONTINGENCY classification. For instance,
technical terms in stock and trading (weighted,
Nikkei, composite, diffusion) pair up with eco-
nomic terms (Trading, Interest, Demand, Produc-
tion). The cluster with analysts and pundits pairs
up with the one that predominantly contains quan-
tifiers (actual, exact, ultimate, aggregate). In ad-
dition to this pattern, we observed the same par-
allel pair pattern we found in COMPARISON clas-
sification. These results suggest that in establish-
ing a CONTINGENCY relation implicitly the au-
thor might shape the sentences such that they have
semantically related words if they do not mention
named-entities of the same category.

Through Brown cluster pairs, we obtain features
that detect a shift between generality and speci-
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Arg 1 COMPARISON Arg 2
’ ’

American American
Bank Big,Human,Civil,Greater,...

Centre,Bay,Park,Hospital,... Board,Corps
Congress Centre,Bay,Park,Hospital,...

East Congress
Exchange East
Fed,CWB Fed,CWB

Israelis,Moslems,Jews,terrorists,... GM,Ford,Barrick,Anglo,...
Japan Israelis,Moslems,Jews,terrorists,...

King,Bell,Virgin,Continental,... Japan

March King,Bell,Virgin,Continental,...
Miert,Lumpur,der,Metall,... March

Olivetti,Eurotunnel,Elf,Lagardere,... Miert,Lumpur,der,Metall,...
Power,Insurance,Mining,Engineering,... Olivetti,Eurotunnel,Elf,Lagardere,...

Soviet,Homeland,Patriotic Power,Insurance,Mining,Engineering,...
Standard,Hurricane,Time,Long,... Soviet,Homeland,Patriotic

Thomson,Volkswagen,Telstra,Siemens,... Standard,Hurricane,Time,Long,...
advertising,ad Thomson,Volkswagen,Telstra,Siemens,...

agency actual,exact,ultimate,aggregate,...
analysts,pundits advertising,ad

auto,semiconductor,automotive,automobile,... agency
average average

cash bank
chemicals,entertainment,machinery,packaging,... cars,vehicles,tyres,vans,...

citizens,pilots,nationals,taxpayers,... cash
closed chemicals,entertainment,machinery,packaging,...

common citizens,pilots,nationals,taxpayers,...
computer,mainframe closed

sales common
computer,mainframe

Arg 1 CONTINGENCY Arg 2
: &,und

Bank –
Christopher,Simitis,Perry,Waigel,... 10

Electric,Motor,Life,Chemical,... ;
Friday Bank

Holdings,Industries,Investments,Foods,... Bill,Mrs.
If,Unless,Whether,Maybe,... Christopher,Simitis,Perry,Waigel,...

King,Bell,Virgin,Continental,... Dow,shuttle,DAX,Ifo,...
Major,Howard,Arthuis,Chang,... Electric,Motor,Life,Chemical,...

March Friday
Power,Insurance,Mining,Engineering,... GM,Ford,Barrick,Anglo,...

Royal,Port,Cape,Santa,... Holdings,Industries,Investments,Foods,...
Senate,senate I

age,identity,integrity,identification,... If,Unless,Whether,Maybe,...

also King,Bell,Virgin,Continental,...
am,’m Major,Howard,Arthuis,Chang,...

analysts,pundits March
average Power,Insurance,Mining,Engineering,...

back Royal,Port,Cape,Santa,...
her Senate,senate
his To,Would

index Trading,Interest,Demand,Production,...

market actual,exact,ultimate,aggregate,...
no age,identity,integrity,identification,...

now ago
our all

they
weighted,Nikkei,composite,diffusion,...

world

Arg 1 EXPANSION Arg 2
American –

Analysts,Economists,Diplomats,Forecasters,... American
But,Saying Boeing,BT,Airbus,Netscape,...
Democrats December

Dow,shuttle,DAX,Ifo,... Exchange
Dutroux,Lopez,Morris,Hamanaka,... GM,Ford,Barrick,Anglo,...

Electric,Motor,Life,Chemical,... I
For,Like Lynch,Fleming,Reagan,Brandford,...

Net,Operating,Primary,Minority,... No
Olivetti,Eurotunnel,Elf,Lagardere,... Olivetti,Eurotunnel,Elf,Lagardere,...

Plc,Oy,NV,AB,... Plc,Oy,NV,AB,...
S&P,Burns,Tietmeyer,Rifkind,... Republicans,Bonds,Rangers,Greens,...

Soviet,Homeland,Patriotic Senate,senate
Telecommunications,Broadcasting,Futures,Rail,... Soviet,Homeland,Patriotic

Texas,Queensland,Ohio,Illinois,... That
U.S. Trading,Interest,Demand,Production,...

VW,Conrail,Bre-X,Texaco,... U.S.
advertising,ad VW,Conrail,Bre-X,Texaco,...

am,’m We,Things
businesses all

dollar,greenback,ecu analyst,meteorologist
five-year,three-year,two-year,four-year,... because

get been
if,whenever,wherever business

investors cents,pence,p.m.,a.m.,...
no compared,coupled,compares

occupation,Index,Kurdistan,Statements,... could
plan

stocks
under

Arg 1 TEMPORAL Arg 2
’ve ’

*,@,**,—,... ’re
14,13,16 ’ve

20 *,@,**,—,...
30 0.5,44,0.2,0.3,...

50,1.50,0.50,0.05,... 10
: 10-year,collective,dual,30-year,...

American 17,19,21
British 1991,1989,1949,1979,...
Friday 200,300,150,120,...

Investors,Banks,Companies,Farmers,... 26,28,29
Prices,Results,Sales,Thousands,... 27,22,23

Sept,Nov.,Oct.,Oct,... 3,A1,C1,C3,...
Trading,Interest,Demand,Production,... 30

Treasury,mortgage-backed 50,1.50,0.50,0.05,...
York,York-based

age,identity,integrity,identification,...
bond,floating-rate

books,words,budgets,clothes,...
consumer

convertible,bonus,Brady,subordinated,...
increase
interest

loss
months

no-fly,year-ago,corresponding,buffer,...
people
quarter
results

rose
there

Figure 1: The bipartite graphs show the top 40 non-stopword Brown cluster pair features for all four
classification tasks. Each node on the left and on the right represents word cluster from Arg1 and Arg2
respectively. We only show the clusters that appear fewer than six times in the top 3,000 pairs to exclude
stopwords. Although the four tasks are interrelated, some of the highest mutual information features vary
substantially across tasks.

ficity within the scope of the relation. For exam-
ple, a cluster with industrial categories (Electric,
Motor, Life, Chemical, Automotive) couples with
specific brands or companies (GM, Ford, Barrick,
Anglo). Or such a pair might simply reflects a shift
in plurality e.g. businesses - business and Analysts
-analyst. EXPANSION relations capture relations
in which one argument provides a specification of
the previous and relations in which one argument

provides a generalization of the other. Thus, these
shift detection features could help distinguish EX-
PANSION relations.

We found a few common coreference patterns
of names in written English to be useful. First and
last name are used in the first sentence to refer to a
person who just enters the discourse. That person
is referred to just by his/her title and last name in
the following sentence. This pattern is found to be
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Figure 2: The coreferential rate for TEMPORAL

relations is significantly higher than the other three
relations (p < 0.05, corrected for multiple com-
parison).

informative for EXPANSION relations. For exam-
ple, the edges (not shown in the graph due to lack
of space) from the first name clusters to the title
(Mr, Mother, Judge, Dr) cluster.

Time expressions constitutes the majority of the
nodes in the bipartite graph for TEMPORAL rela-
tions. More strikingly, the specific dates (e.g. clus-
ters that have positive integers smaller than 31)
are more frequently found in Arg2 than Arg1 in
implicit TEMPORAL relations. It is possible that
TEMPORAL relations are more naturally expressed
without a discourse connective if a time point is
clearly specified in Arg2 but not in Arg1.

TEMPORAL relations might also be implicitly
inferred through detecting a shift in quantities. We
notice that clusters whose words indicate changes
e.g. increase, rose, loss pair with number clusters.
Sentences in which such pairs participate might be
part of a narrative or a report where one expects a
change over time. These changes conveyed by the
sentences constitute a natural sequence of events
that are temporally related but might not need ex-
plicit temporal expressions.

6.2 Coreference features
Coreference features are very effective given that
they constitute a very small set compared to the
other feature sets. In particular, excluding them
from the model reduces F1 scores for TEMPORAL

and CONTINGENCY relations by approximately
1% relative to the system that uses all of the
features. We found that the sentence pairs in these
two types of relations have distinctive coreference
patterns.

We count the number of pairs of arguments that
are linked by a coreference chain for each type of
relation. The coreference chains used in this study
are detected automatically from the training set
through Stanford CoreNLP suite (Raghunathan et
al., 2010; Lee et al., 2011; Lee et al., 2013). TEM-
PORAL relations have a significantly higher coref-
erential rate than the other three relations (p <
0.05, pair-wise t-test corrected for multiple com-
parisons). The differences between COMPARI-
SON, CONTINGENCY, and EXPANSION, however,
are not statistically significant (Figure 2).

The choice to use or not to use a discourse
connective is strongly motivated by linguistic fea-
tures at the discourse levels (Patterson and Kehler,
2013). Additionally, it is very uncommon to
have temporally-related sentences without using
explicit discourse connectives. The difference in
coreference patterns might be one of the factors
that influence the choice of using a discourse con-
nective to signal a TEMPORAL relation. If sen-
tences are coreferentially linked, then it might be
more natural to drop a discourse connective be-
cause the temporal ordering can be easily inferred
without it. For example,

(1) Her story is partly one of personal down-
fall. [previously] She was an unstinting
teacher who won laurels and inspired stu-
dents... (WSJ0044)

The coreference chain between the two
temporally-related sentences in (1) can easily
be detected. Inserting previously as suggested
by the annotation from the PDTB corpus does
not add to the temporal coherence of the sen-
tences and may be deemed unnecessary. But the
presence of coreferential link alone might bias
the inference toward TEMPORAL relation while
CONTINGENCY might also be inferred.

Additionally, we count the number of pairs of
arguments whose grammatical subjects are linked
by a coreference chain to reveal the syntactic-
coreferential patterns in different relation types.
Although this specific pattern seems rare, more
than eight percent of all relations have coreferen-
tial grammatical subjects. We observe the same
statistically significant differences between TEM-
PORAL relations and the other three types of re-
lations. More interestingly, the subject coreferen-
tial rate for CONTINGENCY relations is the lowest
among the three categories (p < 0.05, pair-wise
t-test corrected for multiple comparisons).
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It is possible that coreferential subject patterns
suggest temporal coherence between the two sen-
tences without using an explicit discourse connec-
tive. CONTINGENCY relations, which can only in-
dicate causal relationships when realized implic-
itly, impose the temporal ordering of events in the
arguments; i.e. if Arg1 is causally related to Arg2,
then the event described in Arg1 must temporally
precede the one in Arg2. Therefore, CONTIN-
GENCY and TEMPORAL can be highly confusable.
To understand why this pattern might help distin-
guish these two types of relations, consider these
examples:

(2) He also asserted that exact questions weren’t
replicated. [Then] When referred to the ques-
tions that match, he said it was coincidental.
(WSJ0045)

(3) He also asserted that exact questions weren’t
replicated. When referred to the questions
that match, she said it was coincidental.

When we switch out the coreferential subject
for an arbitrary uncoreferential pronoun as we do
in (3), we are more inclined to classify the relation
as CONTINGENCY.

7 Related work

Word-pair features are known to work very well
in predicting senses of discourse relations in an
artificially generated corpus (Marcu and Echi-
habi, 2002). But when used with a realistic cor-
pus, model parameter estimation suffers from data
sparsity problem due to the small dataset size. Bi-
ran and McKeown (2013) attempts to solve this
problem by aggregating word pairs and estimating
weights from an unannotated corpus but only with
limited success.

Recent efforts have focused on introducing
meaning abstraction and semantic representation
between the words in the sentence pair. Pitler et al.
(2009) uses external lexicons to replace the one-
hot word representation with semantic information
such as word polarity and various verb classifica-
tion based on specific theories (Stone et al., 1968;
Levin, 1993). Park and Cardie (2012) selects an
optimal subset of these features and establishes the
strongest baseline to best of our knowledge.

Brown word clusters are hierarchical clusters
induced by frequency of co-occurrences with other
words (Brown et al., 1992). The strength of this

word class induction method is that the words that
are classified to the same clusters usually make
an interpretable lexical class by the virtue of their
distributional properties. This word representation
has been used successfully to augment the perfor-
mance of many NLP systems (Ritter et al., 2011;
Turian et al., 2010).

Louis et al. (2010) uses multiple aspects of
coreference as features to classify implicit dis-
course relations without much success while sug-
gesting many aspects that are worth exploring. In a
corpus study by Louis and Nenkova (2010), coref-
erential rates alone cannot explain all of the rela-
tions, and more complex coreference patterns have
to be considered.

8 Conclusions

We present statistical classifiers for identifying
senses of implicit discourse relations and intro-
duce novel feature sets that exploit distributional
similarity and coreference information. Our clas-
sifiers outperform the classifiers from previous
work in all types of implicit discourse relations.
Altogether these results present a stronger base-
line for the future research endeavors in implicit
discourse relations.

In addition to enhancing the performance of the
classifier, Brown word cluster pair features dis-
close some of the new aspects of implicit dis-
course relations. The feature analysis confirms
our hypothesis that cluster pair features work well
because they encapsulate relevant word classes
which constitute more complex informative fea-
tures such as named-entity pairs of the same cat-
egories, semantically-related pairs, and pairs that
indicate specificity-generality shift. At the dis-
course level, Brown clustering is superior to a
one-hot word representation for identifying inter-
sentential patterns and the interactions between
words.

Coreference chains that traverse through the
discourse in the text shed the light on differ-
ent types of relations. The preliminary analy-
sis shows that TEMPORAL relations have much
higher inter-argument coreferential rates than the
other three senses of relations. Focusing on only
subject-coreferential rates, we observe that CON-
TINGENCY relations show the lowest coreferential
rate. The coreference patterns differ substantially
and meaningfully across discourse relations and
deserve further exploration.
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