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Abstract

We propose a novel technique for adapting
text-based statistical machine translation
to deal with input from automatic speech
recognition in spoken language translation
tasks. We simulate likely misrecognition
errors using only a source language pro-
nunciation dictionary and language model
(i.e., without an acoustic model), and use
these to augment the phrase table of a stan-
dard MT system. The augmented sys-
tem can thus recover from recognition er-
rors during decoding using synthesized
phrases. Using the outputs of five differ-
ent English ASR systems as input, we find
consistent and significant improvements in
translation quality. Our proposed tech-
nique can also be used in conjunction with
lattices as ASR output, leading to further
improvements.

1 Introduction

Spoken language translation (SLT) systems gen-
erally consist of two components: (i) an auto-
matic speech recognition (ASR) system that tran-
scribes source language utterances and (ii) a ma-
chine translation (MT) system that translates the
transcriptions into the target language. These two
components are usually developed independently
and then combined and integrated (Ney, 1999;
Matusov et al., 2006; Casacuberta et al., 2008;
Zhou, 2013; He and Deng, 2013).

While this architecture is attractive since it re-
lies only on components that are independently
useful, such systems face several challenges. First,
spoken language tends to be quite different from
the highly edited parallel texts that are available to
train translation systems. For example, disfluen-
cies, such as repeated words or phrases, restarts,
and revisions of content, are frequent in spon-

taneous speech,1 while these are usually absent
in written texts. In addition, ASR outputs typi-
cally lack explicit segmentation into sentences, as
well as reliable casing and punctuation informa-
tion, which are crucial for MT and other text-based
language processing applications (Ostendorf et al.,
2008). Second, ASR systems are imperfect and
make recognition errors. Even high quality sys-
tems make recognition errors, especially in acous-
tically similar words with similar language model
scores, for example morphological substitutions
like confusing bare stem and past tense forms, and
in high-frequency short words (function words)
which often lack both disambiguating context and
are subject to reduced pronunciations (Goldwater
et al., 2010).

One would expect that training an MT system
on ASR outputs (rather than the usual written-
style texts) would improve matters. Unfortunately,
there are few corpora of speech paired with text
translations into a second language that could be
used for this purpose. This has been an incentive
to various MT adaptation approaches and devel-
opment of speech-input MT systems. MT adapta-
tion has been done via input text pre-processing,
by transformation of spoken language (ASR out-
put) into written language (MT input) (Peitz et
al., 2012; Xu et al., 2012); via decoding ASR n-
best lists (Quan et al., 2005), or confusion net-
works (Bertoldi et al., 2007; Casacuberta et al.,
2008), or lattices (Dyer et al., 2008; Onishi et al.,
2010); via additional translation features captur-
ing acoustic information (Zhang et al., 2004); and
with methods that follow a paradigm of unified de-
coding (Zhou et al., 2007; Zhou, 2013). In line
with the previous research, we too adapt a standard
MT system to a speech-input MT, but by altering
the translation model itself so it is better able to

1Disfluencies constitute about 6% of word tokens in spon-
taneous speech, not including silent pauses (Tree, 1995; Kasl
and Mahl, 1965)
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deal with ASR output (Callison-Burch et al., 2006;
Tsvetkov et al., 2013a).

We address speech translation in a resource-
deficient scenario, specifically, adapting MT sys-
tems to SLT when ASR is unavailable. We aug-
ment a discriminative set that translation models
rescore with synthetic translation options. These
automatically generated translation rules (hence-
forth synthetic phrases) are noisy variants of ob-
served translation rules with simulated plausible
speech recognition errors (§2). To simulate ASR
errors we generate acoustically and distribution-
ally similar phrases to a source (English) phrase
with a phonologically-motivated algorithm (§4).
Likely phonetic substitutions are learned with an
unsupervised algorithm that produces clusters of
similar phones (§3). We show that MT systems
augmented with synthetic phrases increase the
coverage of input sequences that can be translated,
and yield significant improvement in the quality of
translated speech (§6).

This work makes several contributions. Primary
is our framework to adapt MT to SLT by popu-
lating translation models with synthetic phrases.2

Second, we propose a novel method to generate
acoustic confusions that are likely to be encoun-
tered in ASR transcription hypotheses. Third, we
devise simple and effective phone clustering al-
gorithm. All aforementioned algorithms work in
a low-resource scenario, without recourse to au-
dio data, speech transcripts, or ASR outputs: our
method to predict likely recognition errors uses
phonological rather than acoustic information and
does not depend on a specific ASR system. Since
our source language is English, we operate on a
phone level and employ a pronunciation dictionary
and a language model, but the algorithm can in
principle be applied without pronunciation dictio-
nary for languages with a phonemic orthography.

2 Methodology

We adopt a standard ASR-MT cascading approach
and then augment translation models with syn-
thetic phrases. Our proposed system architecture
is depicted in Figure 1.

Synthetic phrases are generated from entries in
the original translation model–phrase translation

2We augment phrase tables only with synthetic phrases
that capture simulated ASR errors, the methodology that we
advocate, however, is applicable to many problems in transla-
tion (Tsvetkov et al., 2013a; Ammar et al., 2013; Chahuneau
et al., 2013).

ASR

ASR LM
(source lang.)

Acoustic 
Model

cat MTחתול

MT LM
(target lang.)

TM+TM' Translation Model 
augmented with 
simulated ASR errors

Figure 1: SLT architecture: ASR and MT are
trained independently and then cascaded. We im-
prove SLT by populating MT translation model
with synthetic phrases. Each synthetic phrase is
a variant of an original phrase pair with simulated
ASR errors on the source side.

pairs acquired from parallel data. From a source
side of an original phrase pair we generate list of
its plausible misrecognition variants (pseudo-ASR
outputs with recognition errors) and add them as
a source side of a synthetic phrase. For k-best
simulated ASR outputs we construct k synthetic
phrases: a simulated ASR output in the source
side is coupled with its translation–an original tar-
get phrase (identical for all k phrases). Synthetic
phrases are annotated with five standard phrasal
translation features (forward and reverse phrase
and lexical translation probabilities and phrase
penalty); these were found in the original phrase
and remain unchanged. In addition, we add three
new features to all phrase pairs, both synthetic and
original. First, we add a boolean feature indi-
cating the origin of a phrase: synthetic or origi-
nal. Two other features correspond to an ASR lan-
guage model score of the source side. One is LM
score of the synthetic phrase, another is a score
of a phrase from which the source side was gener-
ated. We then append synthetic phrases to a phrase
table: k synthetic phrases for each original phrase
pair, with eight features attached to each phrase.
We show synthetic phrases example in Figure 2.

3 Acoustically confusable phones

The phonetic context of a given phone affects its
acoustic realization, and a variability in a produc-
tion of the same phone is possible depending on
coarticulation with its neighboring phones.3 In ad-
dition, there are phonotactic constraints that can
restrict allowed sequences of phones. English has
strong constraints on sequences of consonants; the
sequence [zdr], for example, cannot be a legal En-

3These are the reasons why in context-dependent acous-
tic modeling different HMM models are trained for different
contexts.
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Source
phrase

Target
phrase

Original phrase
translation features

Synthetic
indicator

Synthetic
LM score

Original
LM score

tells the story raconte l’histoire f1, f2, f3, f4, f5 0 3.9×10−3 3.9×10−3

tell their story raconte l’histoire f1, f2, f3, f4, f5 1 5.9×10−3 3.9×10−3

tells a story raconte l’histoire f1, f2, f3, f4, f5 1 2.2×10−3 3.9×10−3

tell the story raconte l’histoire f1, f2, f3, f4, f5 1 1.7×10−3 3.9×10−3

tell a story raconte l’histoire f1, f2, f3, f4, f5 1 1.3×10−3 3.9×10−3

tell that story raconte l’histoire f1, f2, f3, f4, f5 1 1.0×10−3 3.9×10−3

tell their stories raconte l’histoire f1, f2, f3, f4, f5 1 0.9×10−3 3.9×10−3

tells the stories raconte l’histoire f1, f2, f3, f4, f5 1 0.8×10−3 3.9×10−3

tells her story raconte l’histoire f1, f2, f3, f4, f5 1 0.7×10−3 3.9×10−3

chelsea star raconte l’histoire f1, f2, f3, f4, f5 1 0.5×10−3 3.9×10−3

Figure 2: Example of acoustically confusable synthetic phrases. Phrases were synthesized from the
original phrase pair in Row 1 by generating acoustically similar phrases for the English phrase tells the
story. All phrases have the same (target) French translation me raconte l’histoire and the same five basic
phrase-based translation rule features. To these, three additional features are added: a synthetic phrase
indicator, the source language LM score of the source phrase, and the source language LM score of a
source phrase in the original phrase pair.

Tleft Tright TWleft WIHright . . .
T P (T |WIH) . . .
W P (W |T ) . . .
IH P (IH|T ) P (IH|TW ) . . .
ER P (ER|T ) . . .
. . . . . . . . . . . . . . . . . .

Figure 3: A fragment of the co-occurrence matrix
for phone sequence [T W IH T ER]. Rows corre-
spond to phones; columns correspond to left/right
context phones of lengths one and two.

glish syllable onset (Jurafsky and Martin, 2000).
Motivated by the constraining effect of context

on phonetic distribution, we cluster phones using a
distance-based measure. To do so, we build a vec-
tor space model representation of each phone by
creating a co-occurrence matrix from a corpus of
phonetic forms where each row represents a phone
and columns indicate the contextual phones. We
take into account left/right context windows of
lengths one and two. A cell rp,c in the vector space
dictionary matrix represents phone p and context c
using the empirical relative frequency f(p | c), as
estimated from a pronunciation dictionary. Fig-
ure 3 shows a fragment of the co-occurrence ma-
trix constructed from a dictionary containing just
the pronunciation of Twitter – [T W IH T ER].

Under this representation, the similarity of
phones can be easily quantified by measuring their
distance in the vector space, the cosine of the angle
between them:

Sim(p1, p2) = p1·p2

||p1||·||p2||

Armed with this similarity function, we apply the
K-means algorithm4 to partition the phones into
disjoint sets.

4 Plausible misrecognition variants

For an input English sequence we generate top-k
pseudo-ASR outputs, that are added as a source
side of a synthetic phrase. Every ASR output that
we simulate is a plausible misrecognition that has
two distinguishing characteristics: it is acousti-
cally and linguistically confusable with the input
sequence. Former corresponds to phonetic simi-
larity and latter to distributional similarity of these
two phrases in corpus.

Given a reference string–a word or sequence
of words w in the source language, we generate
k-best hypotheses v. This can be modeled as a
weighted finite state transducer:

{v} = G ◦D−1 ◦ T ◦D ◦ {w} (1)

where

• D maps from words to pronunciations

• T is a phone confusion transducer

• D−1 maps from pronunciations to words

• G is an ASR language model

D maps words to their phonetic representation5,
or multiple representations for words with several

4Value of K=12 was determined empirically.
5Using the CMU pronounciation dictionary

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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pronunciation variants. To create a phone con-
fusion transducer T maps source to target phone
sequences by performing a number of edit opera-
tions. Allowed edits are:

• Deletion of a consonant (mapping to ε).

• Doubling of a vowel.

• Insertion of one or two phones in the end of a
sequence from the list of possible suffixes: S
(-s), IX NG (-ing), D (-ed).

• Substitution of a phone by an acousti-
cally similar phone. The clusters of the
similar phones are {Z,S}, {XL,L,R},
{AA,AO,EY,UH}, {AXR,AX}, {XN,XM},
{P,B,F}, {DH,CH,ZH,T,SH}, {OY,AE},
{IY,AY,OW}, {EH,AH,IH,AW,ER,UW}.
The phone clustering algorithm that pro-
duced these is detailed in the previous
section.

After a series of edit operations, D−1 trans-
ducer maps new phonetic sequences from pronun-
ciations to n-grams of words. The k-best variants
resulting from the weighted composition are the
k-best plausible misrecognitions.

One important property of this method is that it
maps words in decoding vocabulary (41,487 types
are possible inputs to transducer D) into CMU
dictionary which is substantially larger (141,304
types are possible outputs of transducer D−1).
This allows to generate out-of-vocabulary (OOV)
words and phrases, which are not only recogni-
tion errors, but also plausible variants of different
source phrases that can be translated to one tar-
get phrase, e.g., verb past tense forms or function
words.

Consider a bigram tells the from our synthetic
phrase example in Figure 2. We first obtain
its phonetic representation [T EH L Z] [DH IY],
and then a sequence of possible edit operations
is Substitute(T, CH), Substitute(Z, S), Delete(DH)
and translation of phonetic sequence [CH EH L S
IY] back to words brings us to chelsea. See Fig-
ure 4 for visualization.

5 Experimental setups

To establish the effectiveness and ro-
bustness of our approach, we conducted
two sets of experiments—expASR and
expMultilingual—with transcribed and

tells the  T EH L Z DH IY
chelsea CH EH L S    IY

Figure 4: Pseudo-ASR output generation exam-
ple for a bigram tells the. Phonetic edits are
Substitute(T, CH), Substitute(Z, S), Delete(DH).

translated TED talks (Cettolo et al., 2012b).6 En-
glish is the source language in all the experiments.

In expASR we used tst2011–the official test
set of the SLT track of the IWSLT 2011 evalu-
ation campaign on the English-French language
pair (Federico et al., 2011).7 This test set com-
prises reference transcriptions of 8 talks (approx-
imately 1.1h of speech, segmented to 818 utter-
ances), 1-best hypotheses from five different ASR
systems, a ROVER combination of four systems
(Fiscus, 1997), and three sets of lattices produced
by the participants of the IWSLT 2011 ASR track.

In this set of experiments we compare baseline
systems performance to a performance of systems
augmented with synthetic phrases on (1) reference
transcriptions, (2) 1-best hypotheses from all re-
leased ASR systems, and (3) a set of ASR lattices
produced by FBK (Ruiz et al., 2011).8 Experi-
ments with individual systems are aimed to val-
idate that MT augmented with synthetic phrases
can better translate ASR outputs with recogni-
tion errors and sequences that were not observed
in the MT training data. Consistency in perfor-
mance across different ASRs is expected if our ap-
proach to generate plausible misrecognition vari-
ants is universal, rather than biased to a specific
system. Comparison of 1-best system with syn-
thetic phrases to lattice decoding setup without
synthetic phrases should demonstrate whether n-
best plausible misrecognition variants that we gen-
erate assemble multiple paths through a lattice.

The purpose of expMultilingual is to
show that translation improvement is consistent
across different target languages. This multilin-
gual experiment is interesting because typologi-
cally different languages pose different challenges
to translation (degree and locality of reordering,
morphological richness, etc.). By showing that
we improve results across languages (even with

6http://www.ted.com/
7http://iwslt2011.org/doku.php?id=06_evaluation#slt_track_

english_to_french
8Pruning threshold for lattices is 0.08.
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the same underlying ASR system), we show that
our technique is robust to the different demands
that languages place on the translation model. We
could not find any publicly available multilingual
data sets of the translated speech,9 therefore we
constructed a new test set.

We use our in-house speech recognizer and
evaluate on locally crawled and pre-processed
TED audio and text data. We build SLT systems
for five target languages: French, German, Rus-
sian, Hebrew, and Hindi. Consequently, our test
systems are diverse typologically and trained on
corpora of different sizes. We sample a test set of
seven talks, representing approximately two hours
of English speech, for which we have translations
to all five languages;10 talks are listed in Table 1.

Due to segmentation differences in the released
TED (text) corpora and then several automatic
preprocessing stages, numbers of sentences for
the same talks are not identical across languages.
Therefore, we select English-French system as an
oracle (this is the largest dataset), and first align it
with the ASR output. Then, we filter out test sets
for non-French MT systems, to retain only sen-
tence pairs that are included in the English-French
test set. Thus, our test sets for non-French MT
systems are smaller, and source-side sentences in
the English-French MT is a superset of source-side
sentences in all five languages. Training, tuning,
and test corpora sizes are listed in Table 2. Same
training and development sets were used in both
expASR and expMultilingual experiments.

Training Dev Test
EN–FR 140,816 2,521 843
EN–DE 130,010 2,373 501
EN–RU 117,638 2,380 735
EN–HE 135,366 2,501 540
EN–HI 126,117 2,000 300

Table 2: Number of sentences in training, dev and
expMultilingual test corpora.

5.1 ASR
In the expMultilingual set of experiments,
we employ the JANUS Recognition Toolkit that
features the IBIS single pass decoder (Soltau et

9After we conducted our experiments, a new multilingual
parallel corpus of translated speech was released for SLT
track of IWSLT 2013 Evaluation Campaign, however, this
data set does not include Russian, Hebrew and Hindi, which
are a subject of this research.

10Since TED translation is a voluntary effort, not all talks
are available in all languages.

al., 2001). The acoustic model is maximum
likelihood system, no speaker adaptation or dis-
criminative training applied. The acoustic model
training data is 186h of Broadcast News-style
data. 5-gram language model with modified
Kneser-Ney smoothing is trained with the SRILM
toolkit (Stolcke, 2002) on the EPPS, TED, News-
Commentary, and the Gigaword corpora. The
Broadcast News test set contains 4h of audio; we
obtain 25.6% word error rate (WER) on this test
set.

We segment the TED test audio by the times-
tamps of transcripts appearance on the screen.
Then, we manually detect and discard noisy hy-
potheses around segmentation boundaries, and
manually align the remaining hypotheses with
the references which are the source side of the
English-French MT test set. The resulting test
set of 843 hypotheses, sentence aligned with tran-
scripts, yields 30.7% WER. Higher error rates (rel-
atively to the Broadcast News baseline) can be
explained by the idiosyncratic nature of the TED
genre, and the fact that our ASR system was not
trained on the TED data.

For the expASR set of experiments the ASR
outputs and lattices in standard lattice format
(SLF) were produces by the participants of IWSLT
2011 evaluation campaign.

5.2 MT

We train and test MT using the TED corpora in
all five languages. For French, German and Rus-
sian we use sentence-aligned training and develop-
ment sets (without our test talks) released for the
IWSLT 2012 evaluation campaign (Cettolo et al.,
2012a); we split Hebrew and Hindi to training and
development respectively.11 We split Hebrew and
Hindi to sentences with simple heuristics, and then
sentence-align with the Microsoft Bilingual Sen-
tence Aligner (Moore, 2002). Punctuation marks
were removed, corpora were lowercased, and tok-
enized using the cdec scripts (Dyer et al., 2010).

In all MT experiments, both for sentence and
lattice translation, we employ the Moses toolkit
(Koehn et al., 2007), implementing the phrase-
based statistical MT model (Koehn et al., 2003)
and optimize parameters with MERT (Och, 2003).
Target language 3-gram Kneser-Ney smoothed

11Since TED Hindi corpus is very small (only about 6K
sentences) we augment it with additional parallel data (Bojar
et al., 2010); however, this improved Hindi system quality
only marginally, probably owing to domain mismatch.
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TED id TED talk
1 Al Gore, 15 Ways to Avert a Climate Crisis, 2006
39 Aubrey de Grey: A roadmap to end aging, 2005
142 Alan Russell: The potential of regenerative medicine, 2006
228 Alan Kay shares a powerful idea about ideas, 2007
248 Alisa Miller: The news about the news, 2008
451 Bill Gates: Mosquitos, malaria and education, 2009
535 Al Gore warns on latest climate trends, 2009

Table 1: Test set of TED talks.

language models are trained on the training part
of each corpus. Results are reported using case-
insensitive BLEU with a single reference and no
punctuation (Papineni et al., 2002). To verify
that our improvements are consistent and are not
just an effect of optimizer instability (Clark et al.,
2011), we train three systems for each MT setup.
Statistical significance is measured with the Mul-
tEval toolkit.12 Reported BLEU scores are aver-
aged over three systems.

In MT adaptation experiments we augment
baseline phrase tables with synthetic phrases. For
each entry in the original phrase table we add (at
most) five13 best acoustic confusions, detailed in
Section 4. Table 3 contains sizes of phrase tables,
original and augmented with synthetic phrases.

Original Synthetic
EN–FR 4,118,702 24,140,004
EN–DE 2,531,556 14,807,308
EN–RU 1,835,553 10,743,818
EN–HE 2,169,397 12,692,641
EN–HI 478,281 2,674,025

Table 3: Sizes of phrase tables from the baseline
systems, and phrase tables with synthetic phrases.

6 Experiments

6.1 expASR

We first measure the phrasal coverage of recog-
nition errors that our technique is able to predict.
We compute a number of 1- and 2-gram phrases
in ASR hypotheses from the tst2011 that are
not in the references: these are ASR errors. Then,
we compare their OOV rate in the English-French
phrase tables, original vs. synthetic. The pur-
pose of synthetic phrases is to capture misrecog-
nized sequences, ergo, reduction in OOV rate of

12https://github.com/jhclark/multeval
13This threshold is of course rather arbitrary. In future ex-

periments we are planning to conduct an in-depth investiga-
tion of the threshold value, based on ASR LM score and pho-
netic distance from the original phrase.

ASR errors in synthetic phrase tables corresponds
to the portion of errors that our method was able
to predict. Table 4 shows that the OOV rate of n-
grams in phrase tables augmented with synthetic
phrases drops dramatically, up to 54%. Consis-
tent reduction of recognized errors across outputs
from five different ASR systems confirms that our
error-prediction approach is ASR-independent.

tst2011 #1-grams #2-grams
system0 29 (50.9%) 230 (20.3%)
system1 27 (41.5%) 234 (21.3%)
system2 36 (36.0%) 230 (20.1%)
system3 34 (44.1%) 275 (20.1%)
system4 46 (52.9%) 182 (16.8%)
ROVER 30 (54.5%) 183 (18.7%)

Table 4: Phrasal coverage of recognition errors
that our technique is able to predict. These are
raw counts of 1-gram and 2-gram types that are
OOVs in the baseline system and are recovered
by our method when we augment the system with
plausible misrecognitions. Percentages in paren-
theses show OOV rate reduction due to recovered
n-grams.

Next, we explore the effect of synthetic phrases
on translation performance, across different (1-
best) ASR outputs. For references, ASR hypothe-
ses, and ROVERed hypotheses we compare trans-
lations produced by MT systems trained with and
without synthetic phrases. We detail our findings
in Table 5.

Improvements in translation are significant for
all systems with synthetic phrases. This experi-
ment corroborates the underlying assumption that
simulated ASR errors are paired with correct tar-
get phrases. Moreover, this experiment supports
the claim that incorporating noisier translations in
the translation model successfully adapts MT to
SLT scenario and has indeed a positive effect on
speech translation. Interestingly, improvement of
reference translations is also observed. We spec-
ulate that this stems from better lexical selection
due to a smoothing effect that our technique may
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WER BLEU
Baseline

BLEU
Synthetic p

references - 30.8 31.2 0.05
system0 22.0 24.3 25.0 <0.01
system1 23.3 23.8 24.3 <0.01
system2 21.1 23.9 24.4 0.02
system3 32.4 20.8 21.3 <0.01
system4 19.5 24.5 25.0 0.01
ROVER 17.4 25.0 25.6 0.01

Table 5: Comparison of the baseline translation
systems with the systems augmented with syn-
thetic phrases. We measure EN–FR MT perfor-
mance on the tst2011 test set: reference tran-
scripts and ASR outputs on from five systems
and their ROVER combination. Improvements in
translation of all ASR outputs are statistically sig-
nificant. This confirms the claim that incorporat-
ing simulated ASR errors via synthetic phrases ef-
fectively adapts MT to SLT scenario.

have.
Finally, we contrast the proposed approach of

translation models adaptation to a conventional
method of lattice translation. We decode FBK lat-
tices produced for IWSLT 2011 Evaluation Cam-
paign, and compare results to FBK 1-best transla-
tion results, which correspond to system1 in Table
5. Table 6 summarizes our main finding: 1-best
system with synthetic phrases significantly outper-
forms lattice decoding setup with baseline trans-
lation table.14 The additional small improvement
in lattice decoding with synthetic phrases suggests
that lattice decoding and phrase table adaptation
are two complementary strategies and their com-
bination is beneficial.

6.2 expMultilingual

In the multilingual experiment we train ten MT se-
tups: five baseline setups and five systems with
synthetic phrases, three systems per setup. For
each system we compare translations of the refer-
ence transcripts and ASR hypotheses on the multi-
lingual test set described in Section 6. We evaluate
translations produced by MT systems trained with
and without synthetic phrases. Table 7 summa-
rizes experimental results, along with the test set
WER for each language.

14Automatic evaluation results (in terms of BLEU) pub-
lished during the IWSLT 2011 Evaluation Campaign (Fed-
erico et al., 2011) (p. 21) are 26.1 for FBK systems. Unsur-
prisingly, performance of our systems is lower, as we focus
only on translation table and do not optimize factors, such as
LMs and others.

BLEU
Baseline

BLEU
Synthetic

FBK 1-best 23.8 24.3
FBK lattices 24.0 24.4

Table 6: Comparison of the baseline EN–FR trans-
lation systems with the systems augmented with
synthetic phrases, in 1-best and lattice decoding
setups. 1-best synthetic system significantly out-
performs baseline lattice decoding setup. Addi-
tional improvement in lattice decoding with syn-
thetic phrases suggests that lattice decoding and
phrase table adaptation are two complementary
strategies.

WER Baseline Synthetic
Ref ASR Ref ASR

EN–FR 30.7 23.3 17.8 23.9 18.1
EN–DE 33.6 14.0 11.1 14.2 11.4
EN–RU 30.7 12.3 10.7 12.2 10.6
EN–HE 29.7 9.2 7.0 9.5 7.2
EN–HI 32.1 5.5 4.5 5.6 4.8

Table 7: Comparison of the baseline translation
systems with the systems augmented with syn-
thetic phrases. We measure MT performance on
the reference transcripts and ASR outputs. Con-
sistent improvements are observed in four out of
five languages.

Modest but consistent improvements are ob-
served in four out of five setups with synthetic
phrases. Only French setup yielded statistically
significant improvement (p < .01). However,
if we concatenate the outputs of all languages,
the improvement in translation of references with
BLEU score averaged over all systems becomes
statistically significant (p = .03), improving from
16.8 for the baseline system to 17.3 for the adapted
MT outputs. While more careful evaluation is re-
quired in order to estimate the effect of acous-
tic confusions, the accumulated result show that
synthetic phrases facilitate MT adaptation to SLT
across languages.

7 Analysis

We conducted careful manual analysis of actual
usages of synthetic phrases in translation. The pur-
pose of this qualitative analysis is to verify that
predicted ASR errors are paired with phrases that
contribute to better translation to a target language.
Table 8 shows some examples. In the first sentence
from the tst2011 test set (output from system 4)
the word area was erroneously recognized as airy,
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English ref so what they do is they move into an area
ASR output so what they do is they move into an airy
Baseline MT donc ce qu’ils font c’est qu’ils se déplacer dans un airy
Synthetic MT donc ce qu’ils font c’est qu’ils se déplacer dans une zone
French ref donc ce qu’ils font c’est qu’ils emménagent dans une zone
English ref so i started thinking and listing what all it was that i thought would make a perfect biennial
ASR output so on i started a thinking and listing was all it was that i thought would make a pretty by neil
Baseline MT donc j’ai commencé à une pensée et listing était tout c’était que je pensais ferait un assez par neil
Synthetic MT donc j’ai commencé à penser et une liste était tout c’était que je pensais ferait un assez par neil
French ref alors j’ai commencé à penser et à lister tout ce qui selon moi ferait une biennale parfaite

Table 8: Examples of translations improved with synthetic phrases.

which is an OOV word for the baseline system.
Our confusion generation algorithm also produced
the word airy as a plausible misrecognition variant
for the word area and attached it to a correct tar-
get phrase zone, and this synthetic phrase was se-
lected during decoding, yielding to a correct trans-
lation for the ASR error. Second example shows a
similar behavior for an indefinite article a. Third
example is taken from the English-Russian system
in the multilingual test set. Gauge was produced
as a plausible misrecognition variant to age, and
therefore correctly translated (albeit incorrectly in-
flected) as возраста(age+sg+m+acc). Synthetic
phrases were also used in translations contain-
ing misrecognized function words, segmentation-
related examples, and longer n-grams.

8 Related work

Predicting ASR errors to improve speech recog-
nition quality has been explored in several previ-
ous studies. Jyothi and Fosler-Lussier (2009) de-
velop weighted finite-state transducer framework
for error prediction. They build a confusion ma-
trix FST between phones to model acoustic errors
made by the recognizer. Costs in the confusion
matrix combine acoustic variations in the HMM
representations of the phones (information from
the acoustic model) and word-based phone confu-
sions (information from the pronunciation model).
In their follow-up work, Jyothi and Fosler-Lussier
(2010) employ this error-predicting framework to
train the parameters of a global linear discrimina-
tive language model that improves ASR.

Sagae et al. (2012) examined three protocols
for ‘hallucinating’ ASR n-best lists. First ap-
proach generates confusions on the phone level,
with a phone-based finite-state transducer that em-
ploys real n-best lists produced by the ASR sys-
tem. Second is generating confusions at the word
level with a MT-based approach. Third is a phrasal
cohorts approach, in which acoustically confus-

able phrases are extracted from ASR n-best lists,
based on pivots–identical left and right contexts of
a phrase. All three methods were evaluated on the
task of ASR improvement through decoding with
discriminative language models. Discriminative
language models trained on simulated n-best lists
produced with phrasal cohorts method yielded the
largest WER reduction on the telephone speech
recognition task.

Our approach to generating plausible ASR mis-
recognitions is similar to previously explored FST-
based methods. The fundamental difference, how-
ever, is in speech-free phonetic confusion trans-
ducer that does not employ any data extracted
from acoustic models or ASR outputs. Simulated
ASR errors are typically used to improve ASR ap-
plications. To the best of our knowledge no prior
work has been done on integrating ASR errors di-
rectly in the translation models.

9 Conclusion

The idea behind the novel ASR error-prediction
algorithm that we devise is to identify phonolog-
ical neighbors with similar distributional proper-
ties, i.e. similar sounding words for which lan-
guage model probabilities are insufficient for their
disambiguation. These sequences have been iden-
tified as significant contributors to ASR errors
(Goldwater et al., 2010). Additional and even
more important factors that cause recognition er-
rors are disfluencies in speech (Tsvetkov et al.,
2013b). In the task of adapting MT to SLT these
and other irregularities can effectively be incor-
porated in a useful general framework: synthetic
phrases that augment phrase tables. Our exper-
iments show that simulated acoustic confusions
capture real ASR errors and that proposed frame-
work effectively exploits them to improve transla-
tion.
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