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Abstract

Word reordering is a crucial technique
in statistical machine translation in which
syntactic information plays an important
role. Synchronous context-free gram-
mar has typically been used for this pur-
pose with various modifications for adding
flexibilities to its synchronized tree gen-
eration. We permit further flexibilities
in the synchronous context-free grammar
in order to translate between languages
with drastically different word order. Our
method pre-processes a parallel corpus by
abstracting source-side dependency trees,
and performs long-distance reordering on
top of an off-the-shelf phrase-based sys-
tem. Experimental results show that our
method significantly outperforms previous
phrase-based and syntax-based models for
translation between English and Japanese.

1 Introduction

Since the inception of statistical machine trans-
lation (SMT), long-distance word reordering has
been a notable challenge, particularly when trans-
lating between languages with drastically different
word orders, such as subject-verb-object (SVO)
and subject-object-verb (SOV) languages like En-
glish and Japanese, respectively. Phrase-based
models (Koehn et al., 2003; Och and Ney, 2004;
Xiong et al., 2006) have been strong in local
translation and reordering. However, phrase-based
models cannot effectively conduct long-distance
reordering because they are based purely on statis-
tics of syntax-independent phrases. As a comple-
mentary approach to phrase-based models, some
researchers have incorporated syntactic informa-
tion into an SMT framework (Wu, 1997; Yamada
and Knight, 2001; Liu et al., 2006) using syn-
chronous context-free grammar (SCFG) (Aho and
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Figure 1: English abstraction tree example

Ullman, 1972). The original SCFG assumes that
the syntactic trees of the source and target lan-
guages can be derived synchronously. However,
this assumption is too strict for handling paral-
lel sentences that are often comparable rather than
parallel. For alleviating this assumption, some re-
searchers have added flexibilities in synchronized
tree generation (Wu, 1997; Burkett et al., 2010).
In addition, in the SMT framework, there is an
approach that alleviates the assumption by only
generating the source-side syntactic tree and pro-
jecting it to the target-side sentence (Yamada and
Knight, 2001; Liu et al., 2006).

In practice, these existing methods are not flex-
ible enough to handle parallel sentence pairs, es-
pecially those of SVO and SOV languages. There-
fore, we permit further flexibility in SCFG aiming
to effectively conduct long-distance reordering.
We design our method as a pre-processing proce-
dure so that we can use a well-developed phrase-
based system without adding heavy computational
complexity to the system. Specifically, we propose
an abstraction tree that is a shallow and nested
representation, i.e., abstraction of the dependency
tree as Fig. 1 depicts. Our method pre-processes a
parallel corpus by generating source-side abstrac-
tion trees and projecting the trees onto the target-
side sentences. It then decomposes the corpus
by collecting corresponding node pairs as a new
corpus, and finally trains the phrase-based model.
In this manner, the source-side grammar is deter-
mined on the fly for each sentence based on a de-
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pendency parse of the source sentence. The target
side of each production in the grammar is deter-
mined by running the phrase-based decoder.

We empirically show effectiveness of our
method for English-to-Japanese and Japanese-to-
English translations by comparing it to phrase-
based and syntax-based models. Experimental re-
sults show that our method significantly outper-
forms the previous methods with respect to the
BLEU (Papineni et al., 2002) metric.

2 Related Work

For adding flexibilities to SCFG under an SMT
scenario, previous studies generate only a source-
side syntactic tree and project it to the target-side
sentence regardless of the true target-side syntactic
structure. Liu et al. (2006) propose a tree-to-string
model using a source-side constituency tree to ex-
tract correspondences between the source-side tree
and the target-side sentence. Quirk et al. (2005)
and Xie et al. (2011) use a dependency tree for the
same purpose. Since these methods project a fine-
grained source-side syntax tree, an accurate pro-
jection is possible only when the target-side sen-
tence has a syntactic structure that is similar to
the source-side. Zhu and Xiao (2011) and Huang
and Pendus (2013) generalize rules obtained by
the tree-to-string model to increase the chance of
rule matching at decoding. Despite their merits,
none of these methods resolves the problem of tree
projection to the target-side.

The hierarchical phrase-based model (HIERO)
proposed by Chiang (2007) is independent of any
syntactic information and generates SCFG rules
only from parallel sentence pairs. Li et al. (2012)
and Feng et al. (2012) incorporate syntactic infor-
mation into HIERO as soft constraints. Since these
methods are bound by the original HIERO rules
that are independent of syntactic information, their
rules cannot represent the global syntactic struc-
ture of a sentence.

There are also pre-reordering methods for long-
distance reordering in SVO-to-SOV translations
using heuristics designed based on source-side
syntactic structures (Xu et al., 2009; Isozaki et al.,
2010; Isozaki et al., 2012). They are fine-tuned to
handle only specific reordering problems in a pre-
determined language pair. Another approach is to
statistically learn pre-reordering rules from a cor-
pus; however, this requires a highly parallel train-
ing corpus consisting of literal translations to learn

Algorithm 1 CKY-style decoding
Input: Input sentence u and its dependency tree ru, transla-

tion model TM , block-LM bLM , sentence-LM sLM ,
size of m-best m

1: τu ← generate abstraction tree of u using ru

2: NodeTrans[][]← ∅
3: for all node in τu do
4: m-best← Decode(node, TM, bLM,m)
5: (start, end)← start and end indices of node in u
6: NodeTrans[start][end]← m-best
7: end for
8: for start := 1 to |u| do
9: for span := 0 to |u| − 1 do

10: end← start+ span
11: ChildTrans[]← ∅
12: for all (i, j) such that start ≤ i ≤ j ≤ end do
13: if NodeTrans[i][j] 6= ∅ then
14: add NodeTrans[i][j] to ChildTrans
15: end if
16: end for
17: CubePruning(NodeTrans[start][end],

ChildTrans, sLM,m)
18: end for
19: end for

effective rules (Neubig et al., 2012; Navratil et al.,
2012). Such a training dataset is not widely avail-
able in many languages.

3 Overview of the Proposed Method

Our method pre-processes sentences in a paral-
lel corpus based on source-side abstraction trees.
It first generates an abstraction tree τs of a source-
side sentence s by abstracting its dependency tree
rs: (s, rs) → τs. It then projects the tree to the
target-side sentence t for generating a target-side
abstraction tree τt that has exactly the same struc-
ture to τs, i.e., (τs, t) → τt. The abstraction-
tree generation process can be adapted to translat-
ing languages by specifying source-side part-of-
speeches (POSs) as input. Abstraction tree struc-
tures also depend on the dependency grammar that
a parser uses. In this study, we assume commonly
used Stanford typed dependency (de Marneffe et
al., 2006) for English and the chunk-based depen-
dency with ipadic (Asahara and Matsumoto, 2003)
for Japanese. Investigation of effects of different
dependency grammars is our future work.

We decompose the sentence pair into node pairs
according to correspondences between the source
and target abstraction trees, and generate a new
corpus referred to as a block-corpus (Fig. 6). Us-
ing the block-corpus and the original corpus, we
train a phrase-based model. Its translation model
is trained with the block-corpus, and two target-
side language models (LMs) are trained with the
block-corpus (referred to as block-LM) and the
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a pressure cylinder usedhigh ishot water

Figure 2: [N] node detection example

original corpus (referred to as sentence-LM), re-
spectively. Thus the sentence-LM can be trained
using a larger-scale monolingual corpus. Com-
pared to previous methods that also decompose
sentence pairs (Xu et al., 2005; Sudoh et al., 2010),
our method is more syntax-oriented.

In decoding, we adopt the parsing algorithm
with cube-pruning (Huang and Chiang, 2005) into
a phrase-based decoder to translate the abstrac-
tion tree of an input sentence efficiently. As
Algorithm 1 shows, our decoder first generates
the abstraction tree of the input sentence (line
1), and independently translates each node us-
ing the block-LM that models ordering among
non-terminals and lexical words (line 3–7). It
then combines the m-best translation hypotheses
of each node to construct a sentence-level trans-
lation (line 8–19). Specifically, we insert sets of
the m-best translation hypotheses of child nodes
into the m-best hypotheses of their parent node
by replacing the corresponding non-terminals us-
ing the cube-pruning (line 17). The ordering of
these child nodes has been determined in their
parent node by the phrase-based model that re-
gards non-terminals only as single words. By
doing so, long-distance reordering is solved con-
sidering the global syntactic structure and con-
texts (lexical strings) preserved in the node. In
cube-pruning, we use the sentence-LM to com-
pose fluent sentence-level translation. The block-
LM and sentence-LM scores are treated as inde-
pendent features.

The computational complexity of our decoder
(line 3–19) is O(|N |C), where |N | is the number
of nodes in the abstraction-tree and C is a con-
stant representing the complexity of phrase-based
decoder and cube-pruning. Since combinations of
hypotheses in cube-pruning are determined by the
abstraction-tree in our method, the computational
cost is significantly smaller than HIERO’s case.

4 Abstraction Tree Generation

In this section, we provide the formal definition of
an abstraction tree and the generation method.

4.1 Definition of Abstraction Tree
We define an abstraction tree as τ = {N , E},
where N is a set of nodes and E is a set of

when is gradually applied .used ,is[N] [N]

Figure 3: [X] and [P] node detection. Since the word

“used” is a head, it and its governing span are detached from

the root “applied” as a child node.

edges. For conducting abstraction based on syn-
tactic structures, we merge a span governed by a
dependency head as a node and represent it by a
non-terminal in a parent node. As a result, the i-th
nodeNi consists of a sequence of lexical words w
and non-terminals L that replace spans governed
by heads in the corresponding child nodes:

Ni = {Ψ|ψ1, . . . , ψ|Ni|}, ψk ∈ {w,L}.

The edge Eij between a parent node Ni and
its child node Nj corresponds to a governor-
dependent relationship from the head in Ni to its
dependent wx in Nj . wx is another head and gov-
erns other words in Nj . The span covered by Nj

is replaced by a non-terminal in Ni.
We use three kinds of labels to represent L for

explicitly using syntactic information that is use-
ful for long-distance reordering; [N], [P], and [X]
according to the head in the corresponding node.
We label a child node [N] when its head word is
a noun and forms a base noun phrase, [P] when
its head word is an adposition1, and [X] for others
like verb phrases, conjunctive phrases, and rela-
tive phrases. These nodes play different roles in a
sentence. An [N] node, i.e., a base noun phrase,
adds context to a sentence. A [P] node depends
on other phrases and generally appears relatively
freely in a sentence. Thus, we assume that the [P]
node requires special reordering.

The abstraction tree depicted in Fig. 1 has a par-
ent [X] node “when [N] is used” and its child [N]
node “the fluid pressure cylinder 31.” The word
“used” governs “cylinder” in the [N] node, and the
[N] node folds the context in the [X] node.

4.2 Tree Construction
We begin with detecting [N] nodes, then pro-

ceed to [P] and [X] nodes. These processes require
to specify source-side POSs as input for adapting
to translating languages. We finally flatten frag-
mented nodes.

For detecting [N] nodes, we take a POS of noun
as input and identify each noun and its governing
span, i.e., a string of all governed words, using the
source-side dependency tree as Fig. 2 shows. We

1A preposition in English and a postposition in Japanese.
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Algorithm 2 [P] and [X] node detection
Input: Source-side sentence s and its dependency tree rs,

POS list of adpositions PPos, [N] node list N -Nodes
Output: [P] and [X] nodes P -Nodes, X-Nodes

1: P -Nodes[]← ∅, X-Nodes[]← ∅
2: HeadList[]← root of rs

3: repeat
4: head← pop node from HeadList
5: ChildList[]← all dependents of head
6: for all child in ChildList do
7: if child /∈ N -Nodes and child has dependents

then
8: add child to HeadList
9: remove child from ChildList

10: end if
11: end for
12: start← smallest start index of nodes in ChildList
13: end← largest end index of nodes in ChildList
14: if POS of head ∈ PPos then
15: add span [start, end] of s to P -Nodes
16: else
17: add span [start, end] of s to X-Nodes
18: end if
19: remove head from HeadList

20: until HeadList = ∅

regard descendant dependents as being governed
by the noun for detecting a noun phrase of a com-
plete form. We extract the span as a node and re-
place it by an [N] label in the sentence.

Next, we identify [P] and [X] nodes given a list
of source-side POSs of adpositions as input. As
Algorithm 2 shows, after [N] node detection, we
trace the dependency tree from its root to leaves
(line 3–20). We find all the dependents to the root,
then check if each dependent is a head. If a de-
pendent of the root is a head and governs other
words, we detach the dependent to process later
(line 6–11). We then find the smallest start index
and largest end index of dependent words and set
the corresponding span as a node (if a dependent
is in an [N] node, we use the start and end indices
of the [N] node). Each node is labeled accord-
ing to the POS of its head as [P] or [X] (line 14–
18). We then take the detached dependent as a new
root and repeat the process until no more detach-
ment is possible. The computational complexity
is O(|s|2). Through this process, a span with di-
rect dependencies is extracted as a node, and other
spans with descendant dependencies become de-
scendant nodes, replaced by non-terminals in their
parent node as shown in Fig. 3.

4.3 Handling Complex Noun Phrase

As described in Sec. 4.2, we detect a noun phrase
as an [N] node. However, an [N] node be-
comes more complex than a base noun phrase
when the head governs a clause, such as a relative

the cylinder that isusesmachine ……

[N] [X]original [N]

Figure 4: Handling a complex noun phrase

clause. Such a complex node may require long-
distance reordering of an inside clause when trans-
lating. Therefore, we separate the noun phrase and
clause. We take a POS list whose word can be a
head of [P] and [X] nodes (preposition, verb, to,
Wh-determiner/pronoun/adverb, and coordinating
conjunction for English) as input. If the POS of a
noun’s dependent is in the list, we detach the de-
pendency arc, and then re-attach the dependency
arc to the head of the noun. As a result, the base
noun phrase becomes an [N] node and its clause
becomes a [P] or [X] node that is transformed to a
sibling of the [N] node.

In Fig. 4, the word “cylinder” in the original [N]
node has a relative clause and governs “is.” We de-
tach the dependency arc and re-attach it to “uses”
(the head of “cylinder”), so that the noun phrase
and the clause become sibling [N] and [X] nodes.

4.4 Flattening Fragmented Nodes

The above processes are independent of the size
of each node, meaning they produce fragmented
nodes of only a few words. Such fragmented
nodes make the tree projection to the target-side
difficult. To solve this problem, we flatten the ab-
straction tree as shown in Algorithm 3. We pro-
cess an internal node in τs from bottom to top. If
the covering span of an internal node is less than a
threshold γ ∈ N, its child nodes are merged (line 3
and 4, Algorithm 3). Specifically, we reinsert the
child nodes by replacing the corresponding non-
terminals with lexical strings that the child nodes
have been covered by. The computational cost is
O(|N |). We investigate the effect of γ in the fol-
lowing evaluation section (Table 2).

5 Abstraction Tree Projection

In this section, we describe a method for project-
ing the obtained source-side abstraction tree onto
the target-side sentence.

5.1 Tree Structure Projection

We use word alignment results for tree structure
projection. However, accurate word alignment
is challenging when handling language pairs in
which long-distance reordering is needed, and the
alignment noise propagates to the tree projection.
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Algorithm 3 Tree flattening
Input: Abstraction tree τs, threshold γ
Output: Flattened tree τ ′s

1: for all internal node in τs, from bottom to top do
2: (start, end)← start and end indices of node
3: if end− start+ 1 < γ then
4: τ ′s ←MergeChildNodes(node, τs)
5: end if
6: end for

To avoid this problem, we first omit alignment
links of function words whose alignment quality
tends to be lower than that of the content words.
We then complement the quality of word align-
ment by adapting the syntactic cohesion assump-
tion (Yamada and Knight, 2001) that assumes a
word string covered by a sub-tree of the source-
side syntactic tree corresponds to a string of con-
tiguous words in the target-side sentence. Follow-
ing the assumption, we project the k-th node of
the source-side abstraction tree N (s)

k to a string of
contiguous words in the target-side:

N (s)
k 7→ ti, . . . , tj , s.t. 1 ≤ i ≤ j ≤ |t|,

where ti is the i-th word in the target-side sentence
and |t| is the number of words in the sentence.

For each node of the source-side abstraction
tree, we first obtain its covering span. We then
define a vector c ∈ {0, 1}n whose elements repre-
sent word alignment links in a binary manner. If
and only if the i-th target word is aligned to a word
in the span, the i-th element of c becomes 1, oth-
erwise it is 0. Since the original word alignment
represented by the vector c may be noisy, we find
a vector c∗ ∈ {0, 1}n that maximizes the syntac-
tic cohesion assumption. In c∗, only consecutive
elements between two indices i and j are 1, and
others are 0. We derive such c∗ as follows:

Cmin(c) = {c′| argmin
c′

‖c′ − c‖}, (1)

s.t. ∃ i, j, 1 ≤ i ≤ j ≤ n and

c′k =
{

1 i ≤ k ≤ j,
0 otherwise,

c∗ = argmax
c′∈Cmin(c)

‖c′‖. (2)

The operator ‖ · ‖ computes the Euclidean norm
of a vector and c′k is the k-th element of a vector
c′. Finally, c∗ represents the best possible word
links that maximize the syntactic cohesion as-
sumption, i.e., the longest contiguous word string
in the target-side, and that are closest to the orig-
inal word alignment. Specifically, Eq. (1) deter-
mines vectors that have the smallest distance to

Algorithm 4 Tree projection
Input: Source-side abstraction tree τs, target-side sentence

t, word alignmentAw between s and t
Output: Target-side abstraction tree τt

1: τt[]← ∅
2: remove links of function words inAw

3: for span := |s| − 1 to 0 do
4: for start := 1 to |s| do
5: end← start+ span
6: if span [start, end] ∈ τs then
7: c← GenerateV ector([start, end],Aw)
8: c∗ ← Solve(c) � Eq. (1) and Eq. (2)
9: (i, j)← start and end indices of c∗

10: add span [i, j] of t as a node into τt

11: Aw ← UpdateWordAlignment(c, c∗)
12: end if
13: end for
14: end for

the original vector c while satisfying the hard con-
straint, and Eq. (2) selects the one whose norm is
largest, i.e., a vector that has longest contiguous
word links to the target-side. For computational
efficiency, we use the greedy-search so that the
computational cost is O(|t|). When Eq. (2) has
multiple solutions, word links in these solutions
are equally likely, and thus we merge them into a
unique solution. Specifically, we take the union
of the solutions and find the smallest index il and
largest index ir whose elements are 1. We then set
all elements between il and ir to 1.

As Algorithm 4 shows, we conduct this pro-
cess in a top-down manner throughout the abstrac-
tion tree (line 3–14). When processing each node,
word alignment links are updated by overwriting
links in c with the ones in c∗ (line 11). The com-
putational cost isO(|N (s)||t|), where |N (s)| is the
number of nodes in τs. Figure 5 shows a projection
example of a node. A node of “when [N] is used”
covers a span of “when the fluid pressure cylin-
der 31 is used.” The words in the span are aligned
to the 1st, 2nd, and 5th target words (chunks)2;
however, the link to the 5th target word (chunk)
is a mis-alignment. With the alignment vector c
of [1, 1, 0, 0,1, 0, 0], we can remove this misalign-
ment and derive c∗ of [1, 1, 0, 0,0, 0, 0].

5.2 Fixed-Expression Recovery

The abstraction tree generation and projection are
based on a dependency tree, and thus may over-
segment a fixed-expression, such as idioms and
multi-word expressions. Since a fixed-expression
composes a complete meaning using a contiguous
word string, splitting it into different nodes results

2In Japanese, a unit of dependency is a chunk in general,
and thus we conduct chunking before projection.
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Node:

Target 

sentence:

Span: when the pressure cylinder 31 usedfluid is

流体 圧 シリンダ 31 の 場合 は 液体 が 徐々 に 排出 さ れる

こと と なる 。

usediswhen [N]

𝒄 = 1, 1, 0, 0, 1, 0, 0

Figure 5: Abstraction tree projection

in poor translation. To avoid this issue, we gener-
ate a list of fixed-expressions using conventional
methods (Evert, 2008) and force them to remain in
one node. On both the source and target abstrac-
tion trees, we recursively reinsert nodes to their
parent node when such a fixed-expression is over-
segmented and spread over multiple nodes.

5.3 Block-Corpus Construction
After tree structure projection, we extract cor-
responding node pairs as a block-corpus. Each
node pair has a form 〈Ψs,Ψt,AL〉, where Ψs ∈
{Ωs, L}n represents the source-side node of
length n. It consists of a sequence of lexical
words in the source-side vocabulary Ωs and non-
terminals L. Ψt ∈ {Ωt, L}m similarly represents
the target-side node of length m. AL preserves
correspondences between the non-terminals in the
source and target nodes.

Specifically, we extract a pair of leaf nodes as
a pair of lexical strings. As for internal nodes,
we use the same non-terminal labels appearing
in the source-side node at the target-side node.
Namely, the span covered by child nodes are re-
placed by corresponding non-terminal labels in the
source-side node. At the same time, we record the
correspondence between the non-terminals. Fig-
ure 6 shows an example of the block-corpus, in
which the boxed indices indicate correspondences
of non-terminals in the source and target nodes.

6 Evaluation

We evaluate our method in English-to-Japanese
(EJ) and Japanese-to-English (JE) translation
tasks, since long-distance reordering is a serious
problem in this language pair.

6.1 Experiment Corpus
We use NTCIR-7 PATMT (Fujii et al., 2008), a
publicly available standard evaluation dataset, for
EJ and JE machine translation. The dataset is con-
structed using English and Japanese patents and
consists of 1.8 million parallel sentence pairs for
training, 915 sentence pairs for development, and
1, 381 sentence pairs for testing. The development

Input parallel corpus

When the fluid pressure cylinder 31 

is used , fluid is gradually applied .

流体 圧 シリンダ 31 の 場合 は
流体 が 徐々 に 排出 さ れる
こと と なる 。

Block-Corpus

[X] , [N]   is gradually applied .
[X] [N]    が 徐々 に 排出 さ
れる こと と なる 。

when [N] is used [N]    の 場合 は

the fluid pressure cylinder 31 流体 圧 シリンダ 31

fluid 流体

00
0 0

1 1

Figure 6: Block-corpus example. Boxed indices link non-

terminals in the source and target exemplars.

and test sets have one reference per sentence. This
dataset is bidirectional and can be used for both EJ
and JE translation evaluation.

6.2 Implementation of Proposed Method

We implement our method for EJ and JE
translation tasks. In both cases, we use an
in-house implementation of English POS tag-
ger (Collins, 2002) and a Japanese morpholog-
ical analyzer (Kudo et al., 2004) for tokeniza-
tion and POS tagging. As for EJ translation,
we use the Stanford parser (de Marneffe et al.,
2006) to obtain English abstraction trees. We
also use an in-house implementation of a Japanese
chunker (Kudo and Matsumoto, 2002) to obtain
chunks in Japanese sentences. We apply the chun-
ker just before tree projection for using a chunk
as a projection unit, since a chunk is the basic
unit in Japanese. As for JE translation, we use
a popular Japanese dependency parser (Kudo and
Matsumoto, 2002) to obtain Japanese abstraction
trees. We convert Japanese chunk-level depen-
dency tree to a word-level using a simple heuris-
tic. We use GIZA++ (Och and Ney, 2003) with the
grow-diag-final-and heuristic for word alignment.

We use an in-house implementation of
the bracketing transduction grammar (BTG)
model (Xiong et al., 2006) as the phrase-based
model that our method relies on for translation.
Non-terminals in our block-corpus are regarded
as a single word, and their alignments AL deter-
mined in the block-corpus are exclusively used to
align them. We set the maximum phrase length to
5 when training the translation model, since we
find that the performance is stable even setting
larger values as in (Koehn et al., 2003). We then
train the sentence-LM and block-LM using the
original corpus and the obtained block-corpus,
respectively. We ignore a sentence-end tag (</s>)
in the block-LM. With each corpus, we train a
5-gram LM using the SRI toolkit (Stolcke, 2002).
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6.3 Comparison Method

Since our method pre-processes the parallel cor-
pus based on SCFG with increased flexibility and
trains a BTG model using the processed corpus,
we compare our method to another BTG model
trained only with the original corpus (simply re-
ferred to as the BTG model). We also com-
pare to the tree-to-string model and HIERO using
state-of-the-art implementations available in the
Moses system (Koehn et al., 2007), since they are
based on SCFG. The tree-to-string model requires
source-side constituency trees. For EJ transla-
tion, we use a state-of-the-art English constituency
parser (Miyao and Tsujii, 2005; Miyao and Tsujii,
2008). For JE translation, we transform a Japanese
dependency tree into a constituency tree using a
simple heuristic because there is no publicly avail-
able constituency parser. During the translation
model training, we use the same setting as our
method. In addition, we set the maximum span
of rule extraction to infinity for the tree-to-string
model and 10 for HIERO following Moses’ de-
fault. We use the sentence-LM in these models as
they assume.

In addition, we compare our method to Head-
Finalization (Isozaki et al., 2010; Isozaki et al.,
2012) because it has achieved the best BLEU score
in EJ translation by handling long-distance re-
ordering. It is a specialized method to EJ trans-
lation, where a syntactic head in an English sen-
tence is reordered behind its constituents for com-
plying with the head-final nature of the Japanese
language. We pre-process the parallel corpus us-
ing the Head-Finalization and train a BTG model
using the same setting with our method to observe
the effect of different pre-processing methods.

During decoding, we set the translation table
size to 10 for each source string, and the stack
and beam sizes in the cube pruning to 100 for our
method (i.e., m-best = 100) and all other mod-
els. The maximum reordering span in the tree-to-
string model and HIERO is the same as the rule
extraction setting (infinity and 10, respectively).
We set the word reordering limit to infinity for our
method and the BTG model, while we set it to 3
for Head-Finalization as their papers report.

We tune feature weights by the minimum error
rate training (Och, 2003) to maximize the BLEU
score using the development set. As an evaluation
metric, we compute the BLEU score using the test
set, and all the scores discussed in Sec. 6.4 are the

Method EJ JE
Proposed method (γ = 10) 31.78 28.55
BTG 28.82∗∗ 26.98∗∗

HIERO 29.27∗∗ 27.96∗

Tree-to-string 30.97∗∗ 26.28∗∗

Head-Finalization 29.52∗∗ NA

Table 1: Test-set BLEU scores. The symbol ∗∗ represents

a significant difference at the p < .01 level and ∗ indicates a

significant difference at the p < .05 level against our method.

test-set BLEU scores. Significance tests are con-
ducted using bootstrap sampling (Koehn, 2004).

6.4 Result and Discussion

In this section, we present experimental results
and discuss them in detail.

Overall Performance Table 1 shows the BLEU
scores, in which our method significantly outper-
forms all other models for both EJ and JE transla-
tion tasks. These results indicate that our method
effectively incorporates syntactic information into
the phrase-based model and improves the transla-
tion quality.

For EJ translation, our method outperforms
the BTG model by 2.96, the HIERO by 2.51,
the tree-to-string model by 0.81, and the Head-
Finalization3 by 2.26 in terms of BLEU score.
When we compare our method to the Head-
Finalization, both of them improve the BTG model
by pre-processing the parallel corpus. Moreover,
our method outperforms the Head-Finalization us-
ing richer syntactic information.

For JE translation, our method outperforms the
BTG model by 1.57, the HIERO by 0.59, and the
tree-to-string model by 2.27 in terms of BLEU
score. Our method and the tree-to-string model,
which depend on syntactic information, largely
outperform the BTG model and HIERO in EJ
translation. While the BTG model and HIERO,
which are independent of syntactic information,
outperform the tree-to-string model in JE trans-
lation. One reason for this phenomenon is that
English is a strongly configurational language that
has rigid word order while Japanese is an agglu-
tinative language that has relatively free word or-
der. A rigid syntactic structure provides solid clues
for word reordering when translated into a flexible
language, while a flexible structure provides weak
clues for fitting it to a rigid structure.

3The BLEU score reported in this experiment differs from
their papers. This may be because they use a phrase-based
model in the Moses system, while we use the BTG model.
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γ EJ JE
BLEU height BLEU height

0 31.15 4.1 (1.5) 28.41 4.2 (1.4)
3 30.88 3.8 (1.7) 28.34 3.9 (1.6)
5 31.21 3.7 (1.5) 28.39 3.8 (1.5)
8 31.61 3.4 (1.4) 28.52 3.4 (1.4)
10 31.78 3.1 (1.3) 28.55 3.2 (1.3)
12 31.76 2.9 (1.3) 28.54 3.0 (1.3)
15 31.25 2.6 (1.2) 28.21 2.7 (1.2)
∞ 28.82 1.0 (–) 26.98 1.0 (–)

Table 2: Effect of threshold γ

Effect of Flattening Threshold Table 2 shows
BLEU scores when changing the flattening thresh-
old γ in our method, and averages and standard
deviations of the abstraction tree heights (γ = ∞
is equal to the BTG model). The performance im-
proves as we increase the threshold, i.e., increas-
ing the level of abstraction. Our method achieves
the best BLEU score when γ = 10 for both EJ and
JE translation, with the performance degrading as
we further increase the threshold.

This trend shows the trade-off between phrase-
based and syntax-based approaches. When the
threshold is too small, an abstraction tree be-
comes closer to the dependency tree and the tree-
projection becomes difficult. In addition, con-
text information becomes unavailable when con-
ducting long-distance reordering with a deep tree.
On the other hand, when setting the threshold too
large, the abstraction tree becomes too abstracted
and syntactic structures useful for long-distance
word reordering are lost. We need to balance these
effects by setting an appropriate threshold.

Effect of Non-Terminals and Fixed-Expressions
We change the kinds of non-terminal labels in an
abstraction tree to investigate their effect on the
translation quality. When we merge the [P] label
to the [X] label, i.e., use only [N] and [X] labels,
the BLEU score drops 0.40 in EJ translation while
the score is unaffected in JE translation. This is
because flexible Japanese syntax does not differ-
entiate postpositional phrases with others, while
English syntax prohibits such a flexibility.

When we merge all labels and only use the [X]
label, the BLEU score drops 0.57 in EJ transla-
tion and 0.43 in JE translation. This result sup-
ports our design of the abstraction tree that distin-
guishes non-terminals according to their different
functionalities in a sentence.

We also evaluate the effect of fixed-expressions
as described in Sec. 5.2. Results show a significant
change when over-splitting fixed-expressions; the
BLEU score drops 1.13 for EJ and 0.36 for JE
translation without reinserting fixed-expressions.

Method acceptable ↑ global ↓ local ↓
Proposed 52 30 4

BTG 34 38 7
Tree-to-string 47 32 7

Table 3: Error distribution in 100 samples of EJ translation

Error Analysis We randomly sample 100 trans-
lation outputs per our method (γ = 10), BTG, and
tree-to-string models for each EJ and JE transla-
tion tasks, and manually categorize errors based
on (Vilar et al., 2006). We focus primarily on
reordering errors and exclusively categorize the
samples into acceptable translations, translations
with only global or local reordering errors, as well
as others that are complicated combinations of var-
ious errors. An acceptable translation correctly
conveys the information in a source sentence even
if it contains minor grammatical errors.

Table 3 shows the distribution of acceptable
translations and those with global/local reordering
errors in the EJ task (results of JE task are omitted
due to the severe space limitation, but their trend
is similar). It confirms that our method reduces re-
ordering errors, not only for long-distance but for
local reordering, and increases the ratio of accept-
able translations compared to the BTG and tree-
to-string models. We also find that long-distance
reordering was attempted in 85, 66, and 70 sen-
tences by our method, BTG, and tree-to-string, re-
spectively, among these translations. The results
show that our method performs long-distance re-
ordering more frequently than others.

When we compare translations performed by
our method to those performed by the tree-to-
string model, we observe that their effectiveness
depends on a range of reordering. Our method is
effective in long-distance reordering like those of
clauses, while the tree-to-string model performs
middle-range reordering well. This is due to the
trade-off regarding the level of abstraction as dis-
cussed in the flattening threshold experiment.

7 Conclusion and Future Work

We have proposed an abstraction tree for effec-
tively conducting long-distance reordering using
an off-the-shelf phrase-based model. Evaluation
results show that our method outperforms conven-
tional phrase-based and syntax-based models.

We plan to investigate the effect of translating
language pairs and dependency grammars in ab-
straction tree generation. In addition, we will ap-
ply a structure-aware word aligner (Neubig et al.,
2011) to improve the tree projection.
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