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Abstract

The current state-of-the-art in statistical
machine translation (SMT) suffers from is-
sues of sparsity and inadequate modeling
power when translating into morphologi-
cally rich languages. We model both in-
flection and word-formation for the task
of translating into German. We translate
from English words to an underspecified
German representation and then use linear-
chain CRFs to predict the fully specified
German representation. We show that im-
proved modeling of inflection and word-
formation leads to improved SMT.

1 Introduction

Phrase-based statistical machine translation
(SMT) suffers from problems of data sparsity
with respect to inflection and word-formation
which are particularly strong when translating to
a morphologically rich target language, such as
German. We address the problem of inflection
by first translating to a stem-based representation,
and then using a second process to inflect these
stems. We study several models for doing
this, including: strongly lexicalized models,
unlexicalized models using linguistic features,
and models combining the strengths of both of
these approaches. We address the problem of
word-formation for compounds in German, by
translating from English into German word parts,
and then determining whether to merge these
parts to form compounds.

We make the following new contributions: (i)
we introduce the first SMT system combining
inflection prediction with synthesis of portman-
teaus and compounds. (ii) For inflection, we com-

pare the mostly unlexicalized prediction of lin-
guistic features (with a subsequent surface form
generation step) versus the direct prediction of
surface forms, and show that both approaches
have complementary strengths. (iii) We com-
bine the advantages of the prediction of linguis-
tic features with the prediction of surface forms.
We implement this in a CRF framework which
improves on a standard phrase-based SMT base-
line. (iv) We develop separate (but related) pro-
cedures for inflection prediction and dealing with
word-formation (compounds and portmanteaus),
in contrast with most previous work which usu-
ally either approaches both problems as inflec-
tional problems, or approaches both problems as
word-formation problems.

We evaluate on the end-to-end SMT task of
translating from English to German of the 2009
ACL workshop on SMT. We achieve BLEU score
increases on both the test set and the blind test set.

2 Overview of the translation process for
inflection prediction

The work we describe is focused on generaliz-
ing phrase-based statistical machine translation to
better model German NPs and PPs. We particu-
larly want to ensure that we can generate novel
German NPs, where what we mean by novel is
that the (inflected) realization is not present in the
parallel German training data used to build the
SMT system, and hence cannot be produced by
our baseline (a standard phrase-based SMT sys-
tem). We first present our system for dealing with
the difficult problem of inflection in German, in-
cluding the inflection-dependent phenomenon of
portmanteaus. Later, after performing an exten-
sive analysis of this system, we will extend it
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to model compounds, a highly productive phe-
nomenon in German (see Section 8).

The key linguistic knowledge sources that we
use are morphological analysis and generation of
German based on SMOR, a morphological ana-
lyzer/generator of German (Schmid et al., 2004)
and the BitPar parser, which is a state-of-the-art
parser of German (Schmid, 2004).

2.1 Issues of inflection prediction

In order to ensure coherent German NPs, we
model linguistic features of each word in an NP.
We model case, gender, and number agreement
and whether or not the word is in the scope of
a determiner (such as a definite article), which
we label in-weak-context (this linguistic feature
is necessary to determine the type of inflection of
adjectives and other words: strong, weak, mixed).
This is a diverse group of features. The number
of a German noun can often be determined given
only the English source word. The gender of a
German noun is innate and often difficult to deter-
mine given only the English source word. Case
is a function of the slot in the subcategorization
frame of the verb (or preposition). There is agree-
ment in all of these features in an NP. For instance
the number of an article or adjective is determined
by the head noun, while the type of inflection of an
adjective is determined by the choice of article.

We can have a large number of surface forms.
For instance, English blue can be translated as
German blau, blaue, blauer, blaues, blauen. We
predict which form is correct given the context.
Our system can generate forms not seen in the
training data. We follow a two-step process: in
step-1 we translate to blau (the stem), in step-2 we
predict features and generate the inflected form.1

2.2 Procedure

We begin building an SMT system by parsing the
German training data with BitPar. We then extract
morphological features from the parse. Next, we
lookup the surface forms in the SMOR morpholog-
ical analyzer. We use the morphological features
in the parse to disambiguate the set of possible
SMOR analyses. Finally, we output the “stems”
of the German text, with the addition of markup
taken from the parse (discussed in Section 2.3).

1E.g., case=nominative, gender=masculine, num-
ber=singular, in-weak-context=true; inflected: blaue.

We then build a standard Moses system trans-
lating from English to German stems. We obtain
a sequence of stems and POS2 from this system,
and then predict the correct inflection using a se-
quence model. Finally we generate surface forms.

2.3 German Stem Markup

The translation process consists of two major
steps. The first step is translation of English
words to German stems, which are enriched with
some inflectional markup. The second step is
the full inflection of these stems (plus markup)
to obtain the final sequence of inflected words.
The purpose of the additional German inflectional
markup is to strongly improve prediction of in-
flection in the second step through the addition of
markup to the stems in the first step.

In general, all features to be predicted are
stripped from the stemmed representation because
they are subject to agreement restrictions of a
noun or prepositional phrase (such as case of
nouns or all features of adjectives). However, we
need to keep all morphological features that are
not dependent on, and thus not predictable from,
the (German) context. They will serve as known
input for the inflection prediction model. We now
describe this markup in detail.
Nouns are marked with gender and number: we
consider the gender of a noun as part of its stem,
whereas number is a feature which we can obtain
from English nouns.
Personal pronouns have number and gender an-
notation, and are additionally marked with nom-
inative and not-nominative, because English pro-
nouns are marked for this (except for you).
Prepositions are marked with the case their ob-
ject takes: this moves some of the difficulty in pre-
dicting case from the inflection prediction step to
the stem translation step. Since the choice of case
in a PP is often determined by the PP’s meaning
(and there are often different meanings possible
given different case choices), it seems reasonable
to make this decision during stem translation.
Verbs are represented using their inflected surface
form. Having access to inflected verb forms has a
positive influence on case prediction in the second

2We use an additional target factor to obtain the coarse
POS for each stem, applying a 7-gram POS model. Koehn
and Hoang (2007) showed that the use of a POS factor only
results in negligible BLEU improvements, but we need ac-
cess to the POS in our inflection prediction models.
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input decoder output inflected merged

in in<APPR><Dat> in imdie<+ART><Def> dem
contrast Gegensatz<+NN><Masc><Sg>Gegensatz Gegensatz
to zu<APPR><Dat> zu zurthe die<+ART><Def> der
animated lebhaft<+ADJ><Pos> lebhaften lebhaften
debate Debatte<+NN><Fem><Sg> Debatte Debatte

Table 1: Re-merging of prepositions and articles after
inflection to form portmanteaus, in dem means in the.

step through subject-verb agreement.
Articles are reduced to their stems (the stem itself
makes clear the definite or indefinite distinction,
but lemmatizing involves removing markings of
case, gender and number features).
Other words are also represented by their stems
(except for words not covered by SMOR, where
surface forms are used instead).

3 Portmanteaus

Portmanteaus are a word-formation phenomenon
dependent on inflection. As we have discussed,
standard phrase-based systems have problems
with picking a definite article with the correct
case, gender and number (typically due to spar-
sity in the language model, e.g., a noun which
was never before seen in dative case will often
not receive the correct article). In German, port-
manteaus increase this sparsity further, as they
are compounds of prepositions and articles which
must agree with a noun.

We adopt the linguistically strict definition of
the term portmanteau: the merging of two func-
tion words.3 We treat this phenomena by split-
ting the component parts during training and re-
merging during generation. Specifically for
German, this requires splitting the words which
have German POS tag APPRART into an APPR

(preposition) and an ART (article). Merging is re-
stricted, the article must be definite, singular4 and
the preposition can only take accusative or dative
case. Some prepositions allow for merging with
an article only for certain noun genders, for exam-
ple the preposition inDative is only merged with
the following article if the following noun is of
masculine or neuter gender. The definite article

3Some examples are: zum (to the) = zu (to) + dem (the)
[German], du (from the) = de (from) + le (the) [French] or al
(to the) = a (to) + el (the) [Spanish].

4This is the reason for which the preposition + article in
Table 2 remain unmerged.

must be inflected before making a decision about
whether to merge a preposition and the article into
a portmanteau. See Table 1 for examples.

4 Models for Inflection Prediction

We present 5 procedures for inflectional predic-
tion using supervised sequence models. The first
two procedures use simple N-gram models over
fully inflected surface forms.
1. Surface with no features is presented with an
underspecified input (a sequence of stems), and
returns the most likely inflected sequence.
2. Surface with case, number, gender is a hybrid
system giving the surface model access to linguis-
tic features. In this system prepositions have addi-
tionally been labeled with the case they mark (in
both the underspecified input and the fully spec-
ified output the sequence model is built on) and
gender and number markup is also available.

The rest of the procedures predict morpholog-
ical features (which are input to a morphological
generator) rather than surface words. We have de-
veloped a two-stage process for predicting fully
inflected surface forms. The first stage takes a
stem and predicts morphological features for that
stem, based on the surrounding context. The aim
of the first stage is to take a stem and predict
four morphological features: case, gender, num-
ber and type of inflection. We experiment with
a number of models for doing this. The sec-
ond stage takes the stems marked with morpho-
logical features (predicted in the first stage) and
uses a morphological generator to generate the
full surface form. For the second stage, a modified
version of SMOR (Schmid et al., 2004) is used,
which, given a stem annotated with morphologi-
cal features, generates exactly one surface form.

We now introduce our first linguistic feature
prediction systems, which we call joint sequence
models (JSMs). These are standard language
models, where the “word” tokens are not repre-
sented as surface forms, but instead using POS
and features. In testing, we supply the input as a
sequence in underspecified form, where some of
the features are specified in the stem markup (for
instance, POS=Noun, gender=masculine, num-
ber=plural), and then use Viterbi search to find the
most probable fully specified form (for instance,
POS=Noun, gender=masculine, number=plural,
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output decoder input prediction output prediction inflected forms gloss
haben<VAFIN> haben-V haben-V haben have
Zugang<+NN><Masc><Sg> NN-Sg-Masc NN-Masc.Acc.Sg.in-weak-context=false Zugang access
zu<APPR><Dat> APPR-zu-Dat APPR-zu-Dat zu to
die<+ART><Def> ART-in-weak-context=true ART-Neut.Dat.Pl.in-weak-context=true den the
betreffend<+ADJ><Pos> ADJA ADJA-Neut.Dat.Pl.in-weak-context=true betreffenden respective
Land<+NN><Neut><Pl> NN-Pl-Neut NN-Neut.Dat.Pl.in-weak-context=true Ländern countries

Table 2: Overview: inflection prediction steps using a single joint sequence model. All words except verbs and
prepositions are replaced by their POS tags in the input. Verbs are inflected in the input (“haben”, meaning
“have” as in “they have”, in the example). Prepositions are lexicalized (“zu” in the example) and indicate which
case value they mark (“Dat”, i.e., Dative in the example).

case=nominative, in-weak-context=true).5

3. Single joint sequence model on features. We
illustrate the different stages of the inflection pre-
diction when using a joint sequence model. The
stemmed input sequence (cf. Section 2.3) contains
several features that will be part of the input to
the inflection prediction. With the exception of
verbs and prepositions, the representation for fea-
ture prediction is based on POS-tags.

As gender and number are given by the heads
of noun phrases and prepositional phrases, and
the expected type of inflection is set by articles,
the model has sufficient information to compute
values for these features and there is no need to
know the actual words. In contrast, the prediction
of case is more difficult as it largely depends on
the content of the sentence (e.g. which phrase is
object, which phrase is subject). Assuming that
verbs and prepositions indicate subcategorization
frames, the model is provided crucial information
for the prediction of case by keeping verbs (recall
that verbs are produced by the stem translation
system in their inflected form) and prepositions
(the prepositions also have case markup) instead
of replacing them with their tags.

After having predicted a single label with val-
ues for all features, an inflected word form for the
stem and the features is generated. The prediction
steps are illustrated in Table 2.
4. Using four joint sequence models (one for
each linguistic feature). Here the four linguistic
feature values are predicted separately. The as-
sumption that the different linguistic features can
be predicted independently of one another is a rea-

5Joint sequence models are a particularly simple HMM.
Unlike the HMMs used for POS-tagging, an HMM as used
here only has a single emission possibility for each state,
with probability 1. The states in the HMM are the fully
specified representation. The emissions of the HMM are the
stems+markup (the underspecified representation).

sonable linguistic assumption to make given the
additional German markup that we use. By split-
ting the inflection prediction problem into 4 com-
ponent parts, we end up with 4 simpler models
which are less sensitive to data sparseness.

Each linguistic feature is modeled indepen-
dently (by a JSM) and has a different input rep-
resentation based on the previously described
markup. The input consists of a sequence of
coarse POS tags, and for those stems that are
marked up with the relevant feature, this feature
value. Finally, we combine the predicted fea-
tures together to produce the same final output as
the single joint sequence model, and then generate
each surface form using SMOR.
5. Using four CRFs (one for each linguistic fea-
ture). The sequence models already presented are
limited to the n-gram feature space, and those that
predict linguistic features are not strongly lexi-
calized. Toutanova et al. (2008) uses an MEMM
which allows the integration of a wide variety of
feature functions. We also wanted to experiment
with additional feature functions, and so we train
4 separate linear chain CRF6 models on our data
(one for each linguistic feature we want to pre-
dict). We chose CRFs over MEMMs to avoid the
label bias problem (Lafferty et al., 2001).

The CRF feature functions, for each German
word wi, are in Table 3. The common feature
functions are used in all models, while each of the
4 separate models (one for each linguistic feature)
includes the context of only that linguistic feature.
We use L1 regularization to eliminate irrelevant
feature functions, the regularization parameter is
optimized on held out data.

6We use the Wapiti Toolkit (Lavergne et al., 2010) on 4
x 12-Core Opteron 6176 2.3 GHz with 256GB RAM to train
our CRF models. Training a single CRF model on our data
was not tractable, so we use one for each linguistic feature.
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Common lemmawi−5...wi+5 , tagwi−7...wi+7

Case casewi−5...wi+5

Gender genderwi−5...wi+5

Number numberwi−5...wi+5

in-weak-context in-weak-contextwi−5...wi+5

Table 3: Feature functions used in CRF models (fea-
ture functions are binary indicators of the pattern).

5 Experimental Setup

To evaluate our end-to-end system, we perform
the well-studied task of news translation, us-
ing the Moses SMT package. We use the En-
glish/German data released for the 2009 ACL
Workshop on Machine Translation shared task on
translation.7 There are 82,740 parallel sentences
from news-commentary09.de-en and 1,418,115
parallel sentences from europarl-v4.de-en. The
monolingual data contains 9.8 M sentences.8

To build the baseline, the data was tokenized
using the Moses tokenizer and lowercased. We
use GIZA++ to generate alignments, by running
5 iterations of Model 1, 5 iterations of the HMM
Model, and 4 iterations of Model 4. We sym-
metrize using the “grow-diag-final-and” heuris-
tic. Our Moses systems use default settings. The
LM uses the monolingual data and is trained as
a five-gram9 using the SRILM-Toolkit (Stolcke,
2002). We run MERT separately for each sys-
tem. The recaser used is the same for all systems.
It is the standard recaser supplied with Moses,
trained on all German training data. The dev set
is wmt-2009-a and the test set is wmt-2009-b, and
we report end-to-end case sensitive BLEU scores
against the unmodified reference SGML file. The
blind test set used is wmt-2009-blind (all lines).

In developing our inflection prediction sys-
tems (and making such decisions as n-gram order
used), we worked on the so-called “clean data”
task, predicting the inflection on stemmed refer-
ence sentences (rather than MT output). We used
the 2000 sentence dev-2006 corpus for this task.

Our contrastive systems consist of two steps,
the first is a translation step using a similar
Moses system (except that the German side is
stemmed, with the markup indicated in Sec-

7http://www.statmt.org/wmt09/translation-task.html
8However, we reduced the monolingual data (only) by

retaining only one copy of each unique line, which resulted
in 7.55 M sentences.

9Add-1 smoothing for unigrams and Kneser-Ney
smoothing for higher order n-grams, pruning defaults.

tion 2.3), and the second is inflection prediction
as described previously in the paper. To derive
the stem+markup representation we first parse
the German training data and then produce the
stemmed representation. We then build a sys-
tem for translating from English words to Ger-
man stems (the stem+markup representation), on
the same data (so the German side of the parallel
data, and the German language modeling uses the
stem+markup representation). Likewise, MERT
is performed using references which are in the
stem+markup representation.

To train the inflection prediction systems, we
use the monolingual data. The basic surface form
model is trained on lowercased surface forms,
the hybrid surface form model with features is
trained on lowercased surface forms annotated
with markup. The linguistic feature prediction
systems are trained on the monolingual data pro-
cessed as described previously (see Table 2).

Our JSMs are trained using the SRILM Toolkit.
We use the SRILM disambig tool for predicting
inflection, which takes a “map” that specifies the
set of fully specified representations that each un-
derspecified stem can map to. For surface form
models, it specifies the mapping from stems to
lowercased surface forms (or surface forms with
markup for the hybrid surface model).

6 Results for Inflection Prediction

We build two different kinds of translation sys-
tem, the baseline and the stem translation system
(where MERT is used to train the system to pro-
duce a stem+markup sequence which agrees with
the stemmed reference of the dev set). In this sec-
tion we present the end-to-end translation results
for the different inflection prediction models de-
fined in Section 4, see Table 4.

If we translate from English into a stemmed
German representation and then apply a unigram
stem-to-surface-form model to predict the surface
form, we achieve a BLEU score of 9.97 (line 2).
This is only presented for comparison.

The baseline10 is 14.16, line 1. We compare
this with a 5-gram sequence model11 that predicts

10This is a better case-sensitive score than the baselines
on wmt-2009-b in experiments by top-performers Edinburgh
and Karlsruhe at the shared task. We use Moses with default
settings.

11Note that we use a different set, the “clean data” set, to
determine the choice of n-gram order, see Section 7. We use
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surface forms without access to morphological
features, resulting in a BLEU score of 14.26. In-
troducing morphological features (case on prepo-
sitions, number and gender on nouns) increases
the BLEU score to 14.58, which is in the same
range as the single JSM system predicting all lin-
guistic features at once.

This result shows that the mostly unlexicalized
single JSM can produce competitive results with
direct surface form prediction, despite not having
access to a model of inflected forms, which is the
desired final output. This strongly suggests that
the prediction of morphological features can be
used to achieve additional generalization over di-
rect surface form prediction. When comparing the
simple direct surface form prediction (line 3) with
the hybrid system enriched with number, gender
and case (line 4), it becomes evident that feature
markup can also aid surface form prediction.

Since the single JSM has no access to lexical
information, we used a language model to score
different feature predictions: for each sentence of
the development set, the 100 best feature predic-
tions were inflected and scored with a language
model. We then optimized weights for the two
scores LM (language model on surface forms)
and FP (feature prediction, the score assigned by
the JSM). This method disprefers feature predic-
tions with a top FP-score if the inflected sen-
tence obtains a bad LM score and likewise dis-
favors low-ranked feature prediction with a high
LM score. The prediction of case is the most
difficult given no lexical information, thus scor-
ing different prediction possibilities on inflected
words is helpful. An example is when the case of
a noun phrase leads to an inflected phrase which
never occurs in the (inflected) language model
(e.g., case=genitive vs. case=other). Applying
this method to the single JSM leads to a negligible
improvement (14.53 vs. 14.56). Using the n-best
output of the stem translation system did not lead
to any improvement.

The comparison between different feature pre-
diction models is also illustrative. Performance
decreases somewhat when using individual joint
sequence models (one for each linguistic feature)
compared to one single model (14.29, line 6).

The framework using the individual CRFs for

a 5-gram for surface forms and a 4-gram for JSMs, and the
same smoothing (Kneser-Ney, add-1 for unigrams, default
pruning).

1 baseline 14.16
2 unigram surface (no features) 9.97
3 surface (no features) 14.26
4 surface (with case, number, gender features) 14.58
5 1 JSM morphological features 14.53
6 4 JSMs morphological features 14.29
7 4 CRFs morphological features, lexical information 14.72

Table 4: BLEU scores (detokenized, case sensitive) on
the development test set wmt-2009-b

each linguistic feature performs best (14.72, line
7). The CRF framework combines the advantages
of surface form prediction and linguistic feature
prediction by using feature functions that effec-
tively cover the feature function spaces used by
both forms of prediction. The performance of the
CRF models results in a statistically significant
improvement12 (p < 0.05) over the baseline. We
also tried CRFs with bilingual features (projected
from English parses via the alignment output by
Moses), but obtained only a small improvement of
0.03, probably because the required information
is transferred in our stem markup (also a poor im-
provement beyond monolingual features is con-
sistent with previous work, see Section 8.3). De-
tails are omitted due to space.

We further validated our results by translating
the blind test set from wmt-2009, which we have
never looked at in any way. Here we also had
a statistically significant difference between the
baseline and the CRF-based prediction, the scores
were 13.68 and 14.18.

7 Analysis of Inflection-based System

Stem Markup. The first step of translating
from English to German stems (with the markup
we previously discussed) is substantially easier
than translating directly to inflected German (we
see BLEU scores on stems+markup that are over
2.0 BLEU higher than the BLEU scores on in-
flected forms when running MERT). The addition
of case to prepositions only lowered the BLEU
score reached by MERT by about 0.2, but is very
helpful for prediction of the case feature.
Inflection Prediction Task. Clean data task re-
sults13 are given in Table 5. The 4 CRFs outper-
form the 4 JSMs by more than 2%.

12We used Kevin Gimpel’s implementation of pairwise
bootstrap resampling with 1000 samples.

1326,061 of 55,057 tokens in our test set are ambiguous.
We report % surface form matches for ambiguous tokens.
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Model Accuracy
unigram surface (no features) 55.98
surface (no features) 86.65
surface (with case, number, gender features) 91.24
1 JSM morphological features 92.45
4 JSMs morphological features 92.01
4 CRFs morphological features, lexical information 94.29

Table 5: Comparing predicting surface forms directly
with predicting morphological features.

training data 1 model 4 models
7.3 M sentences 92.41 91.88
1.5 M sentences 92.45 92.01
100000 sentences 90.20 90.64
1000 sentences 83.72 86.94

Table 6: Accuracy for different training data sizes of
the single and the four separate joint sequence models.

As we mentioned in Section 4, there is a spar-
sity issue at small training data sizes for the sin-
gle joint sequence model. This is shown in Ta-
ble 6. At the largest training data sizes, model-
ing all 4 features together results in the best pre-
dictions of inflection. However using 4 separate
models is worth this minimal decrease in perfor-
mance, since it facilitates experimentation with
the CRF framework for which the training of a
single model is not currently tractable.

Overall, the inflection prediction works well for
gender, number and type of inflection, which are
local features to the NP that normally agree with
the explicit markup output by the stem transla-
tion system (for example, the gender of a com-
mon noun, which is marked in the stem markup,
is usually successfully propagated to the rest of
the NP). Prediction of case does not always work
well, and could maybe be improved through hier-
archical labeled-syntax stem translation.
Portmanteaus. An example of where the sys-
tem is improved because of the new handling of
portmanteaus can be seen in the dative phrase
im internationalen Rampenlicht (in the interna-
tional spotlight), which does not occur in the par-
allel data. The accusative phrase in das interna-
tionale Rampenlicht does occur, however in this
case there is no portmanteau, but a one-to-one
mapping between in the and in das. For a given
context, only one of accusative or dative case is
valid, and a strongly disfluent sentence results
from the incorrect choice. In our system, these
two cases are handled in the same way (def-article
international Rampenlicht). This allows us to

generalize from the accusative example with no
portmanteau and take advantage of longer phrase
pairs, even when translating to something that will
be inflected as dative and should be realized as a
portmanteau. The baseline does not have this ca-
pability. It should be noted that the portmanteau
merging method described in Section 3 remerges
all occurrences of APPR and ART that can techni-
cally form a portmanteau. There are a few cases
where merging, despite being grammatical, does
not lead to a good result. Such exceptions require
semantic interpretation and are difficult to capture
with a fixed set of rules.

8 Adding Compounds to the System

Compounds are highly productive in German and
lead to data sparsity. We split the German com-
pounds in the training data, so that our stem trans-
lation system can now work with the individual
words in the compounds. After we have trans-
lated to a split/stemmed representation, we deter-
mine whether to merge words together to form a
compound. Then we merge them to create stems
in the same representation as before and we per-
form inflection and portmanteau merging exactly
as previously discussed.

8.1 Details of Splitting Process

We prepare the training data by splitting com-
pounds in two steps, following the technique of
Fritzinger and Fraser (2010). First, possible split
points are extracted using SMOR, and second, the
best split points are selected using the geometric
mean of word part frequencies.

compound word parts gloss
Inflationsrate Inflation Rate inflation rate
auszubrechen aus zu brechen out to break (to break out)

Training data is then stemmed as described in
Section 2.3. The formerly modifying words of the
compound (in our example the words to the left
of the rightmost word) do not have a stem markup
assigned, except for two cases: i) they are nouns
themselves or ii) they are particles separated from
a verb. In these cases, former modifiers are rep-
resented identically to their individual occurring
counterparts, which helps generalization.

8.2 Model for Compound Merging

After translation, compound parts have to be
resynthesized into compounds before inflection.
Two decisions have to be taken: i) where to
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merge and ii) how to merge. Following the work
of Stymne and Cancedda (2011), we implement
a linear-chain CRF merging system using the
following features: stemmed (separated) surface
form, part-of-speech14 and frequencies from the
training corpus for bigrams/merging of word and
word+1, word as true prefix, word+1 as true suf-
fix, plus frequency comparisons of these. The
CRF is trained on the split monolingual data. It
only proposes merging decisions, merging itself
uses a list extracted from the monolingual data
(Popovic et al., 2006).

8.3 Experiments

We evaluated the end-to-end inflection system
with the addition of compounds.15 As in the in-
flection experiments described in Section 5, we
use a 5-gram surface LM and a 7-gram POS
LM, but for this experiment, they are trained on
stemmed, split data. The POS LM helps com-
pound parts and heads appear in correct order.
The results are in Table 7. The BLEU score of the
CRF on test is 14.04, which is low. However the
system produces 19 compound types which are
in the reference but not in the parallel data, and
therefore not accessible to other systems. We also
observe many more compounds in general. The
100-best inflection rescoring technique previously
discussed reached 14.07 on the test set. Blind
test results with CRF prediction are much better,
14.08, which is a statistically significant improve-
ment over the baseline (13.68) and approaches the
result we obtained without compounds (14.18).
Correctly generated compounds are single words
which usually carry the same information as mul-
tiple words in English, and are hence likely un-
derweighted by BLEU. We again see many in-
teresting generalizations. For instance, take the
case of translating English miniature cameras to
the German compound Miniaturkameras. minia-
ture camera or miniature cameras does not occur
in the training data, and so there is no appropri-
ate phrase pair in any system (baseline, inflec-
tion, or inflection&compound-splitting). How-
ever, our system with compound splitting has
learned from split composita that English minia-

14Compound modifiers get assigned a special tag based on
the POS of their former heads, e.g., Inflation in the example
is marked as a non-head of a noun.

15We found it most effective to merge word parts during
MERT (so MERT uses the same stem references as before).

1 1 JSM morphological features 13.94
2 4 CRFs morphological features, lexical information 14.04

Table 7: Results with Compounds on the test set

ture can be translated as German Miniatur- and
gets the correct output.

9 Related Work

There has been a large amount of work on trans-
lating from a morphologically rich language to
English, we omit a literature review here due to
space considerations. Our work is in the opposite
direction, which primarily involves problems of
generation, rather than problems of analysis.

The idea of translating to stems and then in-
flecting is not novel. We adapted the work of
Toutanova et al. (2008), which is effective but lim-
ited by the conflation of two separate issues: word
formation and inflection.

Given a stem such as brother, Toutanova et. al’s
system might generate the “stem and inflection”
corresponding to and his brother. Viewing and
and his as inflection is problematic since a map-
ping from the English phrase and his brother to
the Arabic stem for brother is required. The situ-
ation is worse if there are English words (e.g., ad-
jectives) separating his and brother. This required
mapping is a significant problem for generaliza-
tion. We view this issue as a different sort of prob-
lem entirely, one of word-formation (rather than
inflection). We apply a “split in preprocessing and
resynthesize in postprocessing” approach to these
phenomena, combined with inflection prediction
that is similar to that of Toutanova et. al. The
only work that we are aware of which deals with
both issues is the work of de Gispert and Mariño
(2008), which deals with verbal morphology and
attached pronouns. There has been other work
on solving inflection. Koehn and Hoang (2007)
introduced factored SMT. We use more complex
context features. Fraser (2009) tried to solve the
inflection prediction problem by simply building
an SMT system for translating from stems to in-
flected forms. Bojar and Kos (2010) improved on
this by marking prepositions with the case they
mark (one of the most important markups in our
system). Both efforts were ineffective on large
data sets. Williams and Koehn (2011) used uni-
fication in an SMT system to model some of the
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agreement phenomena that we model. Our CRF
framework allows us to use more complex con-
text features.

We have directly addressed the question as to
whether inflection should be predicted using sur-
face forms as the target of the prediction, or
whether linguistic features should be predicted,
along with the use of a subsequent generation
step. The direct prediction of surface forms is
limited to those forms observed in the training
data, which is a significant limitation. How-
ever, it is reasonable to expect that the use of
features (and morphological generation) could
also be problematic as this requires the use of
morphologically-aware syntactic parsers to anno-
tate the training data with such features, and addi-
tionally depends on the coverage of morpholog-
ical analysis and generation. Despite this, our
research clearly shows that the feature-based ap-
proach is superior for English-to-German SMT.
This is a striking result considering state-of-the-
art performance of German parsing is poor com-
pared with the best performance on English pars-
ing. As parsing performance improves, the per-
formance of linguistic-feature-based approaches
will increase.

Virpioja et al. (2007), Badr et al. (2008), Luong
et al. (2010), Clifton and Sarkar (2011), and oth-
ers are primarily concerned with using morpheme
segmentation in SMT, which is a useful approach
for dealing with issues of word-formation. How-
ever, this does not deal directly with linguistic fea-
tures marked by inflection. In German these lin-
guistic features are marked very irregularly and
there is widespread syncretism, making it difficult
to split off morphemes specifying these features.
So it is questionable as to whether morpheme seg-
mentation techniques are sufficient to solve the in-
flectional problem we are addressing.

Much previous work looks at the impact of us-
ing source side information (i.e., feature func-
tions on the aligned English), such as those
of Avramidis and Koehn (2008), Yeniterzi and
Oflazer (2010) and others. Toutanova et. al.’s
work showed that it is most important to model
target side coherence and our stem markup also
allows us to access source side information. Us-
ing additional source side information beyond the
markup did not produce a gain in performance.

For compound splitting, we follow Fritzinger
and Fraser (2010), using linguistic knowledge en-

coded in a rule-based morphological analyser and
then selecting the best analysis based on the ge-
ometric mean of word part frequencies. Other
approaches use less deep linguistic resources
(e.g., POS-tags Stymne (2008)) or are (almost)
knowledge-free (e.g., Koehn and Knight (2003)).
Compound merging is less well studied. Popovic
et al. (2006) used a simple, list-based merging ap-
proach, merging all consecutive words included
in a merging list. This approach resulted in too
many compounds. We follow Stymne and Can-
cedda (2011), for compound merging. We trained
a CRF using (nearly all) of the features they used
and found their approach to be effective (when
combined with inflection and portmanteau merg-
ing) on one of our two test sets.

10 Conclusion

We have shown that both the prediction of sur-
face forms and the prediction of linguistic features
are of interest for improving SMT. We have ob-
tained the advantages of both in our CRF frame-
work, and also integrated handling of compounds,
and an inflection-dependent word formation phe-
nomenon, portmanteaus. We validated our work
on a well-studied large corpora translation task.
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