
Automatic Acronym Recognition

Dana Dannélls

Computational Linguistics, Department of Linguistics and

Department of Swedish Language

Göteborg University

Göteborg, Sweden

cl2ddoyt@cling.gu.se

Abstract

This paper deals with the problem

of recognizing and extracting acronym-

definition pairs in Swedish medical texts.

This project applies a rule-based method

to solve the acronym recognition task and

compares and evaluates the results of dif-

ferent machine learning algorithms on the

same task. The method proposed is based

on the approach that acronym-definition

pairs follow a set of patterns and other

regularities that can be usefully applied

for the acronym identification task. Su-

pervised machine learning was applied to

monitor the performance of the rule-based

method, using Memory Based Learning

(MBL). The rule-based algorithm was

evaluated on a hand tagged acronym cor-

pus and performance was measured using

standard measures recall, precision and f-

score. The results show that performance

could further improve by increasing the

training set and modifying the input set-

tings for the machine learning algorithms.

An analysis of the errors produced indi-

cates that further improvement of the rule-

based method requires the use of syntactic

information and textual pre-processing.

1 Introduction

There are many on-line documents which contain

important information that we want to understand,

thus the need to extract glossaries of domain-

specific names and terms increases, especially in

technical fields such as biomedicine where the vo-

cabulary is quickly expanding. One known phe-

nomenon in biomedical literature is the growth of

new acronyms.

Acronyms are a subset of abbreviations and

are generally formed with capital letters from the

original word or phrase, however many acronyms

are realized in different surface forms i.e. use

of Arabic-numbers, mixed alpha-numeric forms,

low-case acronyms etc.

Several approaches have been proposed for au-

tomatic acronym extraction, with the most com-

mon tools including pattern-matching techniques

and machine learning algorithms. Considering the

large variety in the Swedish acronym-definition

pairs it is practical to use pattern-matching tech-

niques. These will enable to extract relevant in-

formation of which a suitable set of schema will

give a representation valid to present the different

acronym pairs.

This project presents a rule-based algorithm to

process and automatically detect different forms of

acronym-definition pairs. Since machine learning

techniques are generally more robust, can easily

be retrained for a new data and successfully clas-

sify unknown examples, different algorithms were

tested. The acronym pair candidates recognized

by the rule-based algorithm were presented as fea-

ture vectors and were used as the training data for

the supervised machine learning system.

This approach has the advantage of using ma-

chine learning techniques without the need for

manual tagging of the training data. Several ma-

chine learning algorithms were tested and their re-

sults were compared on the task.

2 Related work

The task of automatically extracting acronym-

definition pairs from biomedical literature has

been studied, almost exclusively for English, over

the past few decades using technologies from Nat-

ural Language Processing (NLP). This section

167

presents a few approaches and techniques that

were applied to the acronym identification task.

Taghva and Gilbreth (1999) present the

Acronyms Finding Program (AFP), based on

pattern matching. Their program seeks for

acronym candidates which appear as upper case

words. They calculate a heuristic score for each

competing definition by classifying words into:

(1) stop words (”the”, ”of”, ”and”), (2) hyphen-

ated words (3) normal words (words that don’t

fall into any of the above categories) and (4) the

acronyms themselves (since an acronym can

sometimes be a part of the definition). The AFP

utilizes the Longest Common Subsequence (LCS)

algorithm (Hunt and Szymanski, 1977) to find all

possible alignments of the acronym to the text,

followed by simple scoring rules which are based

on matches. The performance reported from their

experiment are: recall of 86% at precision of 98%.

An alternative approach to the AFP was pre-

sented by Yeates (1999). In his program, Three

Letters Acronyms (TLA), he uses more complex

methods and general heuristics to match charac-

ters of the acronym candidate with letters in the

definition string, Yeates reported f-score of 77.8%.

Another approach recognizes that the align-

ment between an acronym and its definition of-

ten follows a set of patterns (Park and Byrd,

2001), (Larkey et al., 2000). Pattern-based meth-

ods use strong constraints to limit the number of

acronyms respectively definitions recognized and

ensure reasonable precision.

Nadeau and Turney (2005) present a machine

learning approach that uses weak constraints to re-

duce the search space of the acronym candidates

and the definition candidates, they reached recall

of 89% at precision of 88%.

Schwartz and Hearst (2003) present a simple al-

gorithm for extracting abbreviations from biomed-

ical text. The algorithm extracts acronym candi-

dates, assuming that either the acronym or the def-

inition occurs between parentheses and by giving

some restrictions for the definition candidate such

as length and capital letter initialization. When an

acronym candidate is found the algorithm scans

the words in the right and left side of the found

acronym and tries to match the shortest definition

that matches the letters in the acronym. Their ap-

proach is based on previous work (Pustejovsky et

al., 2001), they achieved recall of 82% at precision

of 96%.

It should be emphasized that the common char-

acteristic of previous approaches in the surveyed

literature is the use of parentheses as indication for

the acronym pairs, see Nadeau and Turney (2005)

table 1. This limitation has many drawbacks

since it excludes the acronym-definition candi-

dates which don’t occur within parentheses and

thereby don’t provide a complete coverage for all

the acronyms formation.

3 Methods and implementation

The method presented in this section is based on

a similar algorithm described by Schwartz and

Hearst (2003). However it has the advantage of

recognizing acronym-definition pairs which are

not indicated by parentheses.

3.1 Finding Acronym-Definition Candidates

A valid acronym candidate is a string of alpha-

betic, numeric and special characters such as ’-’

and ’/’. It is found if the string satisfies the condi-

tions (i) and (ii) and either (iii) or (iv):

(i) The string contains at least two charac-

ters. (ii) The string is not in the list of rejected

words1. (iii) The string contains at least one capi-

tal letter. (iv) The strings’ first or last character is

lower case letter or numeric.

When an acronym is found, the algorithm

searches the words surrounding the acronym for a

definition candidate string that satisfies the follow-

ing conditions (all are necessary in conjunction):

(i) At least one letter of the words in the string

matches the letter in the acronym. (ii) The string

doesn’t contain a colon, semi-colon, question

mark or exclamation mark. (iii) The maximum

length of the string is min(|A|+5,|A|*2), where

|A| is the acronym length (Park and Byrd, 2001).

(iv) The string doesn’t contain only upper case let-

ters.

3.2 Matching Acronyms with Definitions

The process of extracting acronym-definition pairs

from a raw text, according to the constraints de-

scribed in Section 3.1 is divided into two steps:

1. Parentheses matching. In practice, most of

the acronym-definition pairs come inside paren-

theses (Schwartz and Hearst, 2003) and can cor-

respond to two different patterns: (i) defini-

tion (acronym) (ii) acronym (definition). The

1The rejected word list contains frequent acronyms which
appear in the corpus without their definition, e.g. ’USA’,
’UK’, ’EU’.

168

algorithm extracts acronym-definition candidates

which correspond to one of these two patterns.

2. Non parentheses matching. The algorithm

seeks for acronym candidates that follow the con-

straints, described in Section 3.1 and are not en-

closed in parentheses. Once an acronym candidate

is found it scans the previous and following con-

text, where the acronym was found, for a definition

candidate. The search space for the definition can-

didate string is limited to four words multiplied by

the number of letters in the acronym candidate.

The next step is to choose the correct substring

of the definition candidate for the acronym can-

didate. This is done by reducing the definition

candidate string as follows: the algorithm searches

for identical characters between the acronym and

the definition starting from the end of both strings

and succeeds in finding a correct substring for

the acronym candidate if it satisfies the follow-

ing conditions: (i) at least one character in the

acronym string matches with a character in the

substring of the definition; (ii) the first character

in the acronym string matches the first character

of the leftmost word in the definition substring, ig-

noring upper/lower case letters.

3.3 Machine Learning Approach

To test and compare different supervised learn-

ing algorithms, Tilburg Memory-Based Learner

(TiMBL)2 was used. In memory-based learning

the training set is stored as examples for later eval-

uation. Features vectors were calculated to de-

scribe the acronym-definition pairs. The ten fol-

lowing (numeric) features were chosen: (1) the

acronym or the definition is between parenthe-

ses (0-false, 1-true), (2) the definition appears be-

fore the acronym (0-false, 1-true), (3) the dis-

tance in words between the acronym and the

definition, (4) the number of characters in the

acronym, (5) the number of characters in the def-

inition, (6) the number of lower case letters in the

acronym, (7) the number of lower case letters in

the definition, (8) the number of upper case let-

ters in the acronym, (9) the number of upper case

letters in the definition and (10) the number of

words in the definition. The 11th feature is the

class to predict: true candidate (+), false candi-

date (-). An example of the acronym-definition

pair 〈”vCJD”, ”variant CJD”〉 represented as

a feature vector is: 0,1,1,4,11,1,7,3,3,2,+.

2http://ilk.uvt.nl

4 Evaluation and Results

4.1 Evaluation Corpus

The data set used in this experiment consists of

861 acronym-definition pairs. The set was ex-

tracted from Swedish medical texts, the MEDLEX

corpus (Kokkinakis, 2006) and was manually an-

notated using XML tags. For the majority of the

cases there exist one acronym-definition pair per

sentence, but there are cases where two or more

pairs can be found.

4.2 Experiment and Results

The rule-based algorithm was evaluated on the un-

tagged MEDLEX corpus samples. Recall, pre-

cision and F-score were used to calculate the

acronym-expansion matching. The algorithm rec-

ognized 671 acronym-definition pairs of which 47

were incorrectly identified. The results obtained

were 93% precision and 72.5% recall, yielding F-

score of 81.5%.

A closer look at the 47 incorrect acronym pairs

that were found showed that the algorithm failed

to make a correct match when: (1) words that

appear in the definition string don’t have a corre-

sponding letter in the acronym string, (2) letters

in the acronym string don’t have a corresponding

word in the definition string, such as ”PGA” from

”glycol alginate lösning”, (3) letters in the defini-

tion string don’t match the letters in the acronym

string.

The error analysis showed that the reasons for

missing 190 acronym-definition pairs are: (1) let-

ters in the definition string don’t appear in the

acronym string, due to a mixture of a Swedish

definition with an acronym written in English,

(2) mixture of Arabic and Roman numerals, such

as ”USH3” from ”Usher typ III”, (3) position of

numbers/letters, (4) acronyms of three characters

which appear in lower case letters.

4.3 Machine Learning Experiment

The acronym-definition pairs recognized by the

rule-based algorithm were used as the training ma-

terial in this experiment. The 671 pairs were pre-

sented as feature vectors according to the features

described in Section 3.3. The material was di-

vided into two data files: (1) 80% training data;

(2) 20% test data. Four different algorithms were

used to create models. These algorithms are: IB1,

IGTREE, TRIBL and TRIBL2. The results ob-

tained are given in Table 1.

169

Algorithm Precision Recall F-score

IB1 90.6 % 97.1 % 93.7 %

IGTREE 95.4 % 97.2 % 96.3 %

TRIBL 92.0 % 96.3 % 94.1 %

TRIBL2 92.8 % 96.3 % 94.5 %

Table 1: Memory-Based algorithm results.

5 Conclusions

The approach presented in this paper relies on

already existing acronym pairs which are seen

in different Swedish texts. The rule-based algo-

rithm utilizes predefined strong constraints to find

and extract acronym-definition pairs with differ-

ent patterns, it has the advantage of recognizing

acronyms and definitions which are not indicated

by parentheses. The recognized pairs were used

to test and compare several machine learning al-

gorithms. This approach does not requires manual

tagging of the training data.

The results given by the rule-based algorithm

are as good as reported from earlier experiments

that have dealt with the same task for the English

language. The algorithm uses backward search al-

gorithm and to increase recall it is necessary to

combine it with forward search algorithm.

The variety of the Swedish acronym pairs is

large and includes structures which are hard to de-

tect, for example: 〈”V F”, ”kammarflimmer”〉
and 〈”CT”, ”datortomografi”〉, the acronym

is in English while the extension is written in

Swedish. These structures require a dictio-

nary/database lookup3, especially because there

are also counter examples in the Swedish text

where both the acronym and the definition are in

English. Another problematic structure is three

letter acronyms which consist of only lowercase

letters since there are many prepositions, verbs and

determinates that correspond to this structure. To

solve this problem it may be suitable to combine

textual pre-processing such as part-of-speech an-

notation or/and parsing with the exiting code.

The machine learning experiment shows that

the best results were given by the IGTREE algo-

rithm4. Performance can further improve by mod-

ifying the input settings e.g test different feature

weighting schemes, such as Shared Variance and

3Due to short time available and the lack of resources this
feature was not used in the experiment.

4The IGTREE algorithm uses information gain in a com-
pressed decision tree structure.

Gain Ratio and combine different values of k for

the k-nearest neighbour classifier5.

On-going work aim to improve the rule-based

method and combine it with a supervised machine

learning algorithm. The model produced will later

be used for making prediction on a new data.

Acknowledgements

Project funded in part by the SematicMining EU

FP6 NoE 507505. This research has been car-

ried out thanks to Lars Borin and Dimitrios Kokki-

nakis. I thank Torbjörn Lager for his guidance

and encouragement. I would like to thank Walter

Daelemans, Ko van der Sloot Antal van den Bosch

and Robert Andersson for their help and support.

References

Ariel S. Schwartz and Marti A. Hearst. 2003. A simple
algorithm for identifying abbreviation definitions in
biomedical texts. Proc. of the Pacific Symposium on
Biocomputing. University of California, Berkeley.

David Nadeau and Peter Turney. 2005. A Supervised
Learning Approach to Acronym Identification. In-
formation Technology National Research Council,
Ottawa, Ontario, Canada.

Dimitrios Kokkinakis. 2006. Collection, Encoding
and Linguistic Processing of a Swedish Medical
Corpus: The MEDLEX Experience. Proc. of the 5th
LREC. Genoa, Italy.

James W. Hunt and Thomas G. Szymanski. 1977. A
fast algorithm for computing longest common sub-
sequences. Commun. of the ACM, 20(5):350-353.

James Pustejovsky, José Castan̈o, Brent Cochran, Ma-
ciej Kotecki and Michael Morrella. 2001. Au-
tomation Extraction of Acronym-MeaningPairs from
Medline Databases. In Proceedings of Medinfo.

Kazen Taghva and Jeff Gilbreth. 1999. Technical Re-
port. Recognizing Acronyms and their Definitions.
University of Nevada, Las Vegas.

Leah S. Larkey, Paul Ogilvie, Andrew M. Price and
Brenden Tamilio. 2000. Acrophile: An Automated
Acronym Extractor and Server. University of Mas-
sachusetts, Dallas TX.

Stuart Yeates. 1999. Automatic extraction of acronyms
from text. Proc. of the Third New Zealand Computer
Science Research Students’ Conference. University
of Waikato, New Zealand.

Youngja Park and Roy J. Byrd. 2001. Hybrid Text Min-
ing for Finding Abbreviations and Their Definitions.
IMB Thomas J. Watson Research Center, NY, USA.

5In the machine learning experiment default value is used,
k=1.

170

