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Abstract

In this paper, we propose an approach 

for identifying curatable articles from a 

large document set.  This system 

considers three parts of an article (title 

and abstract, MeSH terms, and captions) 

as its three individual representations 

and utilizes two domain-specific 

resources (UMLS and a tumor name list) 

to reveal the deep knowledge contained 

in the article.  An SVM classifier is 

trained and cross-validation is employed 

to find the best combination of 

representations.  The experimental 

results show overall high performance. 

1 Introduction 

Organism databases play a crucial role in 

genomic and proteomic research.  It stores the 

up-to-date profile of each gene of the species 

interested.  For example, the Mouse Genome 

Database (MGD) provides essential integration 

of experimental knowledge for the mouse 

system with information annotated from both 

literature and online sources (Bult et al., 2004).  

To provide biomedical scientists with easy 

access to complete and accurate information, 

curators have to constantly update databases 

with new information.  With the rapidly 

growing rate of publication, it is impossible for 

curators to read every published article.  Since 

fully automated curation systems have not met 

the strict requirement of high accuracy and recall, 

database curators still have to read some (if not 

all) of the articles sent to them.  Therefore, it 

will be very helpful if a classification system can 

correctly identify the curatable or relevant 

articles in a large number of biological articles. 

Recently, several attempts have been made to 

classify documents from biomedical domain 

(Hirschman et al., 2002).  Couto et al. (2004) 

used the information extracted from related web 

resources to classify biomedical literature.  Hou 

et al. (2005) used the reference corpus to help 

classifying gene annotation.  The Genomics 

Track (http://ir.ohsu.edu/genomics) of TREC 

2004 and 2005 organized categorization tasks.  

The former focused on simplified GO terms 

while the latter included the triage for "tumor 

biology", "embryologic gene expression", 

"alleles of mutant phenotypes" and "GO" articles.  

The increase of the numbers of participants at 

Genomics Track shows that biological 

classification problems attracted much attention. 

This paper employs the domain-specific 

knowledge and knowledge learned from full-text 

articles to classify biological text.  Given a 

collection of articles, various methods are 

explored to extract features to represent a 

document.  We use the experimental data 

provided by the TREC 2005 Genomics Track to 

evaluate different methods. 

The rest of this paper is organized as follows.  

Section 2 sketches the overview of the system 

architecture.  Section 3 specifies the test bed 

used to evaluate the proposed methods.  The 

details of the proposed system are explained in 

Section 4.  The experimental results are shown 

and discussed in Section 5.  Finally, we make 

conclusions and present some further work. 

2 System Overview 

Figure 1 shows the overall architecture of the 

proposed system.  At first, we preprocess each 

training article, and divide it into three parts, 

including (1) title and abstract, (2) MeSH terms 

assigned to this article, and (3) captions of 

figures and tables.  They are denoted as 

"Abstract", "MeSH", and "Caption" in this paper, 

respectively.  Each part is considered as a 

representation of an article.  With the help of 

domain-specific knowledge, we obtain more 

detail representations of an article.  In the 

model selection phase, we perform feature 

ranking on each representation of an article and 

employ cross-validation to determine the 

number of features to be kept.  Moreover, we 

use cross-validation to obtain the best 

combination of all the representations.  Finally, 

a support vector machine (SVM) (Vapnik, 1995; 

Hsu et al., 2003) classifier is obtained. 
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3 Experimental Data

We train classifiers for classifying biomedical 

articles on the Categorization Task of the TREC 

2005 Genomics Track. The task uses data from 

the Mouse Genome Informatics (MGI) system

(http://www.informatics.jax.org/) for four

categorization tasks, including tumor biology,

embryologic gene expression, alleles of mutant

phenotypes and GO annotation. Given a 

document and a category, we have to identify

whether it is relevant to the given category.

The document set consists of some full-text 

data obtained from three journals, i.e., Journal of

Biological Chemistry, Journal of Cell Biology

and Proceedings of the National Academy of 

Science in 2002 and 2003.  There are 5,837

training documents and 6,043 testing documents.

4 Methods 

4.1 Document Preprocessing

In the preprocessing phase, we perform acronym

expansion on the articles, remove the remaining

tags from the articles and extract three parts of 

interest from each article.  Abbreviations are 

often used to replace long terms in writing 

articles, but it is possible that several long terms

share the same short form, especially for

gene/protein names. To avoid ambiguity and

enhance clarity, the acronym expansion 

operation replaces every tagged abbreviation 

with its long form followed by itself in a pair of 

parentheses.

4.2 Employing Domain-Specific Knowledge 

With the help of domain-specific knowledge, we 

can extract the deeper knowledge in an article. 

For example, with a gene name dictionary, we

can identify the gene names contained in an 

article.  Moreover, by further consulting

organism databases, we can get the properties of

the genes. Two domain-specific resources are

exploited in this study.  One is the Unified 

Medical Language System (UMLS) (Humphreys

et al., 1998) and the other is a list of tumor

names obtained from Mouse Tumor Biology

Database (MTB)1.

UMLS contains a huge dictionary of

biomedical terms – the UMLS Metathesaurus

and defines a hierarchy of semantic types – the 

UMLS Semantic Network. Each concept in the

Metathesaurus contains a set of strings, which

are variants of each other and belong to one or

more semantic types in the Semantic Network.

Therefore, given a string, we can obtain a set of 

semantic types to which it belongs. Then we 

obtain another representation of the article by 

gathering the semantic types found in the part of 

the article. Consequently, we get another three 

much deeper representations of an article after

this step. They are denoted as "AbstractSEM",

"MeSHSEM" and "CaptionSEM". 

We use the list of tumor names on the Tumor

task. We first tokenize all the tumor names and 

stem each unique token. With the resulting list 

of unique stemmed tokens, we use it as a filter to 

remove the tokens not in the list from the 

"Abstract" and "Caption", which produce 

"AbstractTM" and "CaptionTM".

4.3 Model Selection

As mentioned above, we generate several 

representations for an article. In this section, 

we explain how feature selection is done and

how the best combination of the representations 

1 http://tumor.informatics.jax.org/mtbwi/tumorSearch.do
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of an article is obtained. 

For each representation, we first rank all the 

tokens in the training documents via the 

chi-square test of independence.  Postulating 

the ranking perfectly reflects the effectiveness of 

the tokens in classification, we then decide the 

number of tokens to be used in SVM 

classification by 4-fold cross-validation.  In 

cross-validation, we use the TF*IDF weighting 

scheme.  Each feature vector is then 

normalized to a unit vector.  We set C+ to ur* C-

because of the relatively small number of 

positive examples, where C+ and C- are the 

penalty constants on positive and negative 

examples in SVMs.  After that, we obtain the 

optimal number of tokens and the corresponding 

SVM parameters C- and gamma, a parameter in 

the radial basis kernel.  In the rest of this paper, 

"Abstract30" denotes the "Abstract" 

representation with top-30 tokens, 

"CaptionSEM10" denotes "CaptionSEM" with 

top-10 tokens, and so forth. 

After feature selection is done for each 

representation, we try to find the best 

combination by the following algorithm. 

Given the candidate representations with 

selected features, we start with an initial set 

containing some or zero representation.  For 

each iteration, we add one representation to the 

set by picking the one that enhances the 

cross-validation performance the most.  The 

iteration stops when we have exhausted all the 

representations or adding more representation to 

the set doesn’t improve the cross-validation 

performance. 

For classifying the documents with better 

features, we run the algorithm twice.  We first 

start with an empty set and obtain the best 

combination of the basic three representations, 

e.g., "Abstract10", "MeSH30" and "Caption10".  

Then, starting with this combination, we attempt 

to incorporate the three semantic representations, 

e.g., "Abstract30SEM", "MeSH30SEM" and 

"Caption10SEM", and obtain the final 

combination.  Instead of using this algorithm to 

incorporate the "AbstractTM" and "CaptionTM" 

representations, we use them to replace their 

unfiltered counterparts "Abstract" and "Caption" 

when the cross-validation performance is better. 

5 Results and Discussions 

Table 1 lists the cross-validation results of each 

representation for each category (in Normalized 

Utility (NU)2 measure).  For category Allele, 

"Caption" and "AbstractSEM" perform the best 

among the basic and semantic representations, 

respectively.  For category Expression, 

"Caption" plays an important role in identifying 

relevant documents, which agrees with the 

finding by the winner of KDD CUP 2002 task 1 

(Regev et al., 2002).  Similarly, MeSH terms 

are crucial to the GO category, which are used 

by top-performing teams (Dayanik et al., 2004; 

Fujita, 2004) in TREC Genomics 2004.  For 

category Tumor, MeSH terms are important, but 

after semantic type extraction, "AbstractSEM" 

exhibits relatively high cross-validation 

performance.  Since only 10 features are 

selected for the "AbstractSEM", using this 

representation alone may be susceptible to 

over-fitting.  Finally, by comparing the 

performance of the "AbstractTM" and 

"Abstract", we find the list of tumor names 

helpful for filtering abstracts. 

We list the results for the test data in Table 2.  

Column "Experiment" identifies our proposed 

methods.  We show six experiments in Table 2: 

one for Allele (AL), one for Expression (EX), 

one for GO (GO) and three for Tumor (TU, TN 

and TS).  Column "cv NU" shows the 

cross-validation NU measure, "NU" shows the 

performance on the test data and column 

"Combination" lists the combination of the 

representations used for each experiment.  In 

this table, "M30" is the abbreviation for 

"MeSH30", "CS10" is for "CaptionSEM10", and 

so on.  The combinations for the first 4 

experiments, i.e., AL, EX, GO and TU, are 

obtained by the algorithm described in Section 

4.3, while the combination for TN is obtained by 

substituting "AbstractTM30" for "Abstract30" in 

the combination for TU.  The experiment TS 

only uses the "AbstractSEM10" because its 

cross-validation performance beats all other 

combinations for the Tumor category. 

The combinations of the first 5 experiments 

illustrate that adding other inferior 

representations to the best one enhances the 

performance, which implies that the inferior 

ones may contain important exclusive 

information.  The cross-validation performance 

fairly predicts the performance on the test data, 

except for the last experiment TS, which relies 

on only 10 features and is therefore susceptible 

to over-fitting. 

                                                 
2 Please refer to the TREC 2005 Genomics Track Protocol 

(http://ir.ohsu.edu/genomics/2005protocol.html).
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Allele Expression GO Tumor 

# Tokens / NU # Tokens / NU # Tokens / NU # Tokens / NU 

Abstract 10 / 0.7707 10 / 0.5586 10 / 0.4411 10 / 0.8055 

MeSH 10 / 0.7965 10 / 0.6044 10 / 0.4968 30 / 0.8106 

Caption 10 / 0.8179 10 / 0.7192 10 / 0.4091 10 / 0.7644 

AbstractSEM 10 / 0.7209 10 / 0.4811 10 / 0.3493 10 / 0.8814 

MeSHSEM 10 / 0.6942 10 / 0.4563 10 / 0.4403 10 / 0.7047 

CaptionSEM 30 / 0.6789 10 / 0.5433 10 / 0.2551 30 / 0.7160 

AbstractTM 30 / 0.8325 

CaptionTM 10 / 0.7498 

Table 1. Partial Cross-validation Results. 

Experiment cv NU NU Recall Precision F-score Combination 

AL (for Allele) 0.8717 0.8423 0.9488 0.3439 0.5048 M30+C10+A10+CS10+AS10+MS10 

EX (for Expression) 0.7691 0.7515 0.8190 0.1593 0.2667 M10+C10+CS10+MS10 

GO (for GO) 0.5402 0.5332 0.8803 0.1873 0.3089 M10+C10+MS10 

TU (for Tumor) 0.8742 0.8299 0.9000 0.0526 0.0994 M30+C30+A30+AS10+CS30 

TN (for Tumor) 0.8764 0.8747 0.9500 0.0518 0.0982 M30+C30+AT30+AS10+CS30 

TS (for Tumor) 0.8814 0.5699 0.6500 0.0339 0.0645 AS10

Table 2. Evaluation Results. 

Subtask NU (Best/Median) Recall (Best/Median) Precision (Best/Median) F-score (Best/Median) 

Allele 0.8710/0.7773 0.9337/0.8720 0.4669/0.3153 0.6225/0.5010 

Expression 0.8711/0.6413 0.9333/0.7286 0.1899/0.1164 0.3156/0.2005 

GO Annotation 0.5870/0.4575 0.8861/0.5656 0.2122/0.3223 0.3424/0.4107 

Tumor 0.9433/0.7610 1.0000/0.9500 0.0709/0.0213 0.1325/0.0417 

Table 3. Best and Median Results for Each Subtask on TREC 2005 (Hersh et al., 2005). 

To compare with our performance, we list the 

best and median results for each subtask on the 

genomics classification task of TREC 2005 in 

Table 3.  Comparing to Tables 2 and 3, it shows 

our experimental results have overall high 

performance. 

6 Conclusions and Further Work 

In this paper, we demonstrate how our system is 

constructed.  Three parts of an article are 

extracted to represent its content.  We 

incorporate two domain-specific resources, i.e., 

UMLS and a list of tumor names.  For each 

categorization work, we propose an algorithm to 

get the best combination of the representations 

and train an SVM classifier out of this 

combination.  Evaluation results show overall 

high performance in this study. 

Except for MeSH terms, we can try other 

sections in the article, e.g., Results, Discussions 

and Conclusions as targets of feature extraction 

besides the abstract and captions in the future.  

Finally, we will try to make use of other 

available domain-specific resources in hope of 

enhancing the performance of this system. 
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