
A Probabilistic Answer Type Model

Christopher Pinchak

Department of Computing Science

University of Alberta

Edmonton, Alberta, Canada

pinchak@cs.ualberta.ca

Dekang Lin

Google, Inc.

1600 Amphitheatre Parkway

Mountain View, CA

lindek@google.com

Abstract

All questions are implicitly associated

with an expected answer type. Unlike

previous approaches that require a prede-

fined set of question types, we present

a method for dynamically constructing

a probability-based answer type model

for each different question. Our model

evaluates the appropriateness of a poten-

tial answer by the probability that it fits

into the question contexts. Evaluation

is performed against manual and semi-

automatic methods using a fixed set of an-

swer labels. Results show our approach to

be superior for those questions classified

as having a miscellaneous answer type.

1 Introduction

Given a question, people are usually able to form

an expectation about the type of the answer, even

if they do not know the actual answer. An accu-

rate expectation of the answer type makes it much

easier to select the answer from a sentence that

contains the query words. Consider the question

“What is the capital of Norway?” We would ex-

pect the answer to be a city and could filter out

most of the words in the following sentence:

The landed aristocracy was virtually crushed

by Hakon V, who reigned from 1299 to 1319,

and Oslo became the capital of Norway, re-

placing Bergen as the principal city of the

kingdom.

The goal of answer typing is to determine

whether a word’s semantic type is appropriate as

an answer for a question. Many previous ap-

proaches to answer typing, e.g., (Ittycheriah et al.,

2001; Li and Roth, 2002; Krishnan et al., 2005),

employ a predefined set of answer types and use

supervised learning or manually constructed rules

to classify a question according to expected an-

swer type. A disadvantage of this approach is that

there will always be questions whose answers do

not belong to any of the predefined types.

Consider the question: “What are tourist attrac-

tions in Reims?” The answer may be many things:

a church, a historic residence, a park, a famous

intersection, a statue, etc. A common method to

deal with this problem is to define a catch-all class.

This class, however, tends not to be as effective as

other answer types.

Another disadvantage of predefined answer

types is with regard to granularity. If the types

are too specific, they are more difficult to tag. If

they are too general, too many candidates may be

identified as having the appropriate type.

In contrast to previous approaches that use a su-

pervised classifier to categorize questions into a

predefined set of types, we propose an unsuper-

vised method to dynamically construct a proba-

bilistic answer type model for each question. Such

a model can be used to evaluate whether or not

a word fits into the question context. For exam-

ple, given the question “What are tourist attrac-

tions in Reims?”, we would expect the appropriate

answers to fit into the context “X is a tourist attrac-

tion.” From a corpus, we can find the words that

appeared in this context, such as:

A-Ama Temple, Aborigine, addition, Anak

Krakatau, archipelago, area, baseball,

Bletchley Park, brewery, cabaret, Cairo,

Cape Town, capital, center, ...

Using the frequency counts of these words in

the context, we construct a probabilistic model

to compute P (in(w,Γ)|w), the probability for a

word w to occur in a set of contexts Γ, given an

occurrence of w. The parameters in this model are

obtained from a large, automatically parsed, un-

labeled corpus. By asking whether a word would

occur in a particular context extracted from a ques-

393

tion, we avoid explicitly specifying a list of pos-

sible answer types. This has the added benefit

of being easily adapted to different domains and

corpora in which a list of explicit possible answer

types may be difficult to enumerate and/or identify

within the text.

The remainder of this paper is organized as fol-

lows. Section 2 discusses the work related to an-

swer typing. Section 3 discusses some of the key

concepts employed by our probabilistic model, in-

cluding word clusters and the contexts of a ques-

tion and a word. Section 4 presents our probabilis-

tic model for answer typing. Section 5 compares

the performance of our model with that of an or-

acle and a semi-automatic system performing the

same task. Finally, the concluding remarks in are

made in Section 6.

2 Related Work

Light et al. (2001) performed an analysis of the

effect of multiple answer type occurrences in a

sentence. When multiple words of the same type

appear in a sentence, answer typing with fixed

types must assign each the same score. Light et

al. found that even with perfect answer sentence

identification, question typing, and semantic tag-

ging, a system could only achieve 59% accuracy

over the TREC-9 questions when using their set of

24 non-overlapping answer types. By computing

the probability of an answer candidate occurring

in the question contexts directly, we avoid having

multiple candidates with the same level of appro-

priateness as answers.

There have been a variety of approaches to de-

termine the answer types, which are also known

as Qtargets (Echihabi et al., 2003). Most previous

approaches classify the answer type of a question

as one of a set of predefined types.

Many systems construct the classification rules

manually (Cui et al., 2004; Greenwood, 2004;

Hermjakob, 2001). The rules are usually triggered

by the presence of certain words in the question.

For example, if a question contains “author” then

the expected answer type is Person.

The number of answer types as well as the num-

ber of rules can vary a great deal. For example,

(Hermjakob, 2001) used 276 rules for 122 answer

types. Greenwood (2004), on the other hand, used

46 answer types with unspecified number of rules.

The classification rules can also be acquired

with supervised learning. Ittycheriah, et al. (2001)

describe a maximum entropy based question clas-

sification scheme to classify each question as hav-

ing one of the MUC answer types. In a similar ex-

periment, Li & Roth (2002) train a question clas-

sifier based on a modified version of SNoW using

a richer set of answer types than Ittycheriah et al.

The LCC system (Harabagiu et al., 2003) com-

bines fixed types with a novel loop-back strategy.

In the event that a question cannot be classified as

one of the fixed entity types or semantic concepts

derived from WordNet (Fellbaum, 1998), the an-

swer type model backs off to a logic prover that

uses axioms derived form WordNet, along with

logic rules, to justify phrases as answers. Thus, the

LCC system is able to avoid the use of a miscel-

laneous type that often exhibits poor performance.

However, the logic prover must have sufficient ev-

idence to link the question to the answer, and gen-

eral knowledge must be encoded as axioms into

the system. In contrast, our answer type model

derives all of its information automatically from

unannotated text.

Answer types are often used as filters. It was

noted in (Radev et al., 2002) that a wrong guess

about the answer type reduces the chance for the

system to answer the question correctly by as

much as 17 times. The approach presented here

is less brittle. Even if the correct candidate does

not have the highest likelihood according to the

model, it may still be selected when the answer

extraction module takes into account other factors

such as the proximity to the matched keywords.

Furthermore, a probabilistic model makes it eas-

ier to integrate the answer type scores with scores

computed by other components in a question an-

swering system in a principled fashion.

3 Resources

Before introducing our model, we first describe

the resources used in the model.

3.1 Word Clusters

Natural language data is extremely sparse. Word

clusters are a way of coping with data sparseness

by abstracting a given word to a class of related

words. Clusters, as used by our probabilistic an-

swer typing system, play a role similar to that of

named entity types. Many methods exist for clus-

tering, e.g., (Brown et al., 1990; Cutting et al.,

1992; Pereira et al., 1993; Karypis et al., 1999).

We used the Clustering By Committee (CBC)

394

Table 1: Words and their clusters

Word Clusters

suite software, network, wireless, ...

rooms, bathrooms, restrooms, ...

meeting room, conference room, ...

ghost rabbit, squirrel, duck, elephant, frog, ...

goblins, ghosts, vampires, ghouls, ...

punk, reggae, folk, pop, hip-pop, ...

huge, larger, vast, significant, ...

coming-of-age, true-life, ...

clouds, cloud, fog, haze, mist, ...

algorithm (Pantel and Lin, 2002) on a 10 GB En-

glish text corpus to obtain 3607 clusters. The fol-

lowing is an example cluster generated by CBC:

tension, anger, anxiety, tensions, frustration,

resentment, uncertainty, confusion, conflict,

discontent, insecurity, controversy, unease,

bitterness, dispute, disagreement, nervous-

ness, sadness, despair, animosity, hostility,

outrage, discord, pessimism, anguish, ...

In the clustering generated by CBC, a word may

belong to multiple clusters. The clusters to which

a word belongs often represent the senses of the

word. Table 1 shows two example words and their

clusters.

3.2 Contexts

The context in which a word appears often im-

poses constraints on the semantic type of the word.

This basic idea has been exploited by many pro-

posals for distributional similarity and clustering,

e.g., (Church and Hanks, 1989; Lin, 1998; Pereira

et al., 1993).

Similar to Lin and Pantel (2001), we define

the contexts of a word to be the undirected paths

in dependency trees involving that word at either

the beginning or the end. The following diagram

shows an example dependency tree:

Which city hosted the 1988 Winter Olympics?

det subj

obj

NN

NN

det

The links in the tree represent dependency rela-

tionships. The direction of a link is from the head

to the modifier in the relationship. Labels associ-

ated with the links represent types of relations.

In a context, the word itself is replaced with a

variable X. We say a word is the filler of a context

if it replaces X. For example, the contexts for the

word “Olympics” in the above sentence include

the following paths:

Context of “Olympics” Explanation

X Winter

NN

Winter X

X 1988

NN

1988 X

X host

obj

host X

X host
obj

city
subj

city hosted X

In these paths, words are reduced to their root

forms and proper names are reduced to their entity

tags (we used MUC7 named entity tags).

Paths allow us to balance the specificity of con-

texts and the sparseness of data. Longer paths typ-

ically impose stricter constraints on the slot fillers.

However, they tend to have fewer occurrences,

making them more prone to errors arising from

data sparseness. We have restricted the path length

to two (involving at most three words) and require

the two ends of the path to be nouns.

We parsed the AQUAINT corpus (3GB) with

Minipar (Lin, 2001) and collected the frequency

counts of words appearing in various contexts.

Parsing and database construction is performed

off-line as the database is identical for all ques-

tions. We extracted 527,768 contexts that ap-

peared at least 25 times in the corpus. An example

context and its fillers are shown in Figure 1.

X host Olympics
subj obj

Africa 2 grant 1 readiness 2
AP 1 he 2 Rio de Janeiro 1
Argentina 1 homeland 3 Rome 1
Athens 16 IOC 1 Salt Lake City 2
Atlanta 3 Iran 2 school 1
Bangkok 1 Jakarta 1 S. Africa 1
.
decades 1 president 2 Zakopane 4
facility 1 Pusan 1
government 1 race 1

Figure 1: An example context and its fillers

3.2.1 Question Contexts

To build a probabilistic model for answer typ-

ing, we extract a set of contexts, called question

contexts, from a question. An answer is expected

to be a plausible filler of the question contexts.

Question contexts are extracted from a question

with two rules. First, if the wh-word in a ques-

tion has a trace in the parse tree, the question con-

texts are the contexts of the trace. For example, the

395

question “What do most tourists visit in Reims?”

is parsed as:

What
i

do most tourists visit e
i

in Reims?

det

i

subj
det

obj

in

The symbol ei is the trace of whati. Minipar

generates the trace to indicate that the word what

is the object of visit in the deep structure of the

sentence. The following question contexts are ex-

tracted from the above question:

Context Explanation

X visit tourist

obj subj

tourist visits X

X visit Reims

obj in

visit X in Reims

The second rule deals with situations where

the wh-word is a determiner, as in the question

“Which city hosted the 1988 Winter Olympics?”

(the parse tree for which is shown in section 3.2).

In such cases, the question contexts consist of a

single context involving the noun that is modified

by the determiner. The context for the above sen-

tence is X city
subj

, corresponding to the sentence

“X is a city.” This context is used because the

question explicitly states that the desired answer is

a city. The context overrides the other contexts be-

cause the question explicitly states the desired an-

swer type. Experimental results have shown that

using this context in conjunction with other con-

texts extracted from the question produces lower

performance than using this context alone.

In the event that a context extracted from a ques-

tion is not found in the database, we shorten the

context in one of two ways. We start by replac-

ing the word at the end of the path with a wildcard

that matches any word. If this fails to yield en-

tries in the context database, we shorten the con-

text to length one and replace the end word with

automatically determined similar words instead of

a wildcard.

3.2.2 Candidate Contexts

Candidate contexts are very similar in form to

question contexts, save for one important differ-

ence. Candidate contexts are extracted from the

parse trees of the answer candidates rather than the

question. In natural language, some words may

be polysemous. For example, Washington may re-

fer to a person, a city, or a state. The occurrences

of Washington in “Washington’s descendants” and

“suburban Washington” should not be given the

same score when the question is seeking a loca-

tion. Given that the sense of a word is largely de-

termined by its local context (Choueka and Lusig-

nan, 1985), candidate contexts allow the model to

take into account the candidate answers’ senses

implicitly.

4 Probabilistic Model

The goal of an answer typing model is to evalu-

ate the appropriateness of a candidate word as an

answer to the question. If we assume that a set

of answer candidates is provided to our model by

some means (e.g., words comprising documents

extracted by an information retrieval engine), we

wish to compute the value P (in(w,ΓQ)|w). That

is, the appropriateness of a candidate answer w is

proportional to the probability that it will occur in

the question contexts ΓQ extracted from the ques-

tion.

To mitigate data sparseness, we can introduce

a hidden variable C that represents the clusters to

which the candidate answer may belong. As a can-

didate may belong to multiple clusters, we obtain:

P (in(w, ΓQ)|w) =
X

C

P (in(w, ΓQ), C|w) (1)

=
X

C

P (C|w)P (in(w, ΓQ)|C, w) (2)

Given that a word appears, we assume that it has

the same probability to appear in a context as all

other words in the same cluster. Therefore:

P (in(w, ΓQ)|C, w) ≈ P (in(C, ΓQ)|C) (3)

We can now rewrite the equation in (2) as:

P (in(w, ΓQ)|w) ≈
X

C

P (C|w)P (in(C, ΓQ)|C) (4)

This equation splits our model into two parts:

one models which clusters a word belongs to and

the other models how appropriate a cluster is to

the question contexts. When ΓQ consists of multi-

ple contexts, we make the naı̈ve Bayes assumption

that each individual context γQ ∈ ΓQ is indepen-

dent of all other contexts given the cluster C.

P (in(w, ΓQ)|w) ≈
X

C

P (C|w)
Y

γQ∈ΓQ

P (in(C, γQ)|C) (5)

Equation (5) needs the parameters P (C|w) and

P (in(C, γQ)|C), neither of which are directly

available from the context-filler database. We will

discuss the estimation of these parameters in Sec-

tion 4.2.

396

4.1 Using Candidate Contexts

The previous model assigns the same likelihood to

every instance of a given word. As we noted in

section 3.2.2, a word may be polysemous. To take

into account a word’s context, we can instead com-

pute P (in(w,ΓQ)|w, in(w,Γw)), where Γw is the

set of contexts for the candidate word w in a re-

trieved passage.

By introducing word clusters as intermediate

variables as before and making a similar assump-

tion as in equation (3), we obtain:

P (in(w, ΓQ)|w, in(w, Γw))

=
X

C

P (in(w, ΓQ), C|w, in(w, Γw)) (6)

≈
X

C

P (C|w, in(w, Γw))P (in(C, ΓQ)|C) (7)

Like equation (4), equation (7) partitions the

model into two parts. Unlike P (C|w) in equation

(4), the probability of the cluster is now based on

the particular occurrence of the word in the candi-

date contexts. It can be estimated by:

P (C|w, in(w, Γw))

=
P (in(w, Γw)|w, C)P (w, C)

P (in(w, Γw)|w)P (w)
(8)

≈

Y

γw∈Γw

P (in(w, γw)|w, C)

Y

γw∈Γw

P (in(w, γw)|w)
× P (C|w) (9)

=
Y

γw∈Γw

„

P (C|w, in(w, γw))

P (C|w)

«

× P (C|w) (10)

4.2 Estimating Parameters

Our probabilistic model requires the parameters

P (C|w), P (C|w, in(w, γ)), and P (in(C, γ)|C),
where w is a word, C is a cluster that w belongs to,

and γ is a question or candidate context. This sec-

tion explains how these parameters are estimated

without using labeled data.

The context-filler database described in Sec-

tion 3.2 provides the joint and marginal fre-

quency counts of contexts and words (|in(γ, w)|,
|in(∗, γ)| and |in(w, ∗)|). These counts al-

low us to compute the probabilities P (in(w, γ)),
P (in(w, ∗)), and P (in(∗, γ)). We can also com-

pute P (in(w, γ)|w), which is smoothed with add-

one smoothing (see equation (11) in Figure 2).

The estimation of P (C|w) presents a challenge.

We have no corpus from which we can directly

measure P (C|w) because word instances are not

labeled with their clusters.

P (in(w, γ)|w) =
|in(w, γ)| + P (in(∗, γ))

|in(w, ∗)| + 1
(11)

Pu(C|w) =

(

1
|{C′|w∈C′}|

if w ∈ C,

0 otherwise
(12)

P (C|w) =

X

w′∈S(w)

sim(w, w
′) × Pu(C|w′)

X

{C′|w∈C′},

w′∈S(w)

sim(w, w
′) × Pu(C′|w′)

(13)

P (in(C, γ)|C) =
X

w′∈C

P (C|w′) × |in(w′
, γ)| + P (in(∗, γ))

X

w′∈C

P (C|w′) × |in(w′
, ∗)| + 1

(14)

Figure 2: Probability estimation

We use the average weighted “guesses” of the

top similar words of w to compute P (C|w) (see

equation 13). The intuition is that if w′ and w

are similar words, P (C|w′) and P (C|w) tend

to have similar values. Since we do not know

P (C|w′) either, we substitute it with uniform dis-

tribution Pu(C|w′) as in equation (12) of Fig-

ure 2. Although Pu(C|w′) is a very crude guess,

the weighted average of a set of such guesses can

often be quite accurate.

The similarities between words are obtained as

a byproduct of the CBC algorithm. For each word,

we use S(w) to denote the top-n most similar

words (n=50 in our experiments) and sim(w,w′)
to denote the similarity between words w and w′.

The following is a sample similar word list for the

word suit:

S(suit) = {lawsuit 0.49, suits 0.47, com-

plaint 0.29, lawsuits 0.27, jacket 0.25, coun-

tersuit 0.24, counterclaim 0.24, pants 0.24,

trousers 0.22, shirt 0.21, slacks 0.21, case

0.21, pantsuit 0.21, shirts 0.20, sweater 0.20,

coat 0.20, ...}

The estimation for P (C|w, in(w, γw)) is sim-

ilar to that of P (C|w) except that instead of all

w′ ∈ S(w), we instead use {w′|w′ ∈ S(w) ∧
in(w′, γw)}. By only looking at a particular con-

text γw, we may obtain a different distribution over

C than P (C|w) specifies. In the event that the data

are too sparse to estimate P (C|w, in(w, γw)), we

fall back to using P (C|w).

P (in(C, γ)|C) is computed in (14) by assum-

ing each instance of w contains a fractional in-

stance of C and the fractional count is P (C|w).
Again, add-one smoothing is used.

397

System Median % Top 1% Top 5% Top 10% Top 50%

Oracle 0.7% 89 (57%) 123 (79%) 131 (85%) 154 (99%)

Frequency 7.7% 31 (20%) 67 (44%) 86 (56%) 112 (73%)

Our model 1.2% 71 (46%) 106 (69%) 119 (77%) 146 (95%)

no cand. contexts 2.2% 58 (38%) 102 (66%) 113 (73%) 145 (94%)

ANNIE 4.0% 54 (35%) 79 (51%) 93 (60%) 123 (80%)

Table 2: Summary of Results

5 Experimental Setup & Results

We evaluate our answer typing system by using

it to filter the contents of documents retrieved by

the information retrieval portion of a question an-

swering system. Each answer candidate in the set

of documents is scored by the answer typing sys-

tem and the list is sorted in descending order of

score. We treat the system as a filter and observe

the proportion of candidates that must be accepted

by the filter so that at least one correct answer is

accepted. A model that allows a low percentage

of candidates to pass while still allowing at least

one correct answer through is favorable to a model

in which a high number of candidates must pass.

This represents an intrinsic rather than extrinsic

evaluation (Mollá and Hutchinson, 2003) that we

believe illustrates the usefulness of our model.

The evaluation data consist of 154 questions

from the TREC-2003 QA Track (Voorhees, 2003)

satisfying the following criteria, along with the top

10 documents returned for each question as iden-

tified by NIST using the PRISE1 search engine.

• the question begins with What, Which, or

Who. We restricted the evaluation such ques-

tions because our system is designed to deal

with questions whose answer types are often

semantically open-ended noun phrases.

• There exists entry for the question in the an-

swer patterns provided by Ken Litkowski2.

• One of the top-10 documents returned by

PRISE contains a correct answer.

We compare the performance of our prob-

abilistic model with that of two other sys-

tems. Both comparison systems make use of a

small, predefined set of manually-assigned MUC-

7 named-entity types (location, person, organiza-

tion, cardinal, percent, date, time, duration, mea-

sure, money) augmented with thing-name (proper

1www.itl.nist.gov/iad/894.02/works/papers/zp2/zp2.html
2trec.nist.gov/data/qa/2003 qadata/03QA.tasks/t12.pats.txt

names of inanimate objects) and miscellaneous

(a catch-all answer type of all other candidates).

Some examples of thing-name are Guinness Book

of World Records, Thriller, Mars Pathfinder, and

Grey Cup. Examples of miscellaneous answers are

copper, oil, red, and iris.

The differences in the comparison systems is

with respect to how entity types are assigned to the

words in the candidate documents. We make use

of the ANNIE (Maynard et al., 2002) named entity

recognition system, along with a manual assigned

“oracle” strategy, to assign types to candidate an-

swers. In each case, the score for a candidate is

either 1 if it is tagged as the same type as the ques-

tion or 0 otherwise. With this scoring scheme pro-

ducing a sorted list we can compute the probability

of the first correct answer appearing at rank R = k

as follows:

P (R = k) =

k−2
Y

i=0

„

t − c − i

t − i

«

c

t − k + 1
(15)

where t is the number of unique candidate answers

that are of the appropriate type and c is the number

of unique candidate answers that are correct.

Using the probabilities in equation (15), we

compute the expected rank, E(R), of the first cor-

rect answer of a given question in the system as:

E(R) =

t−c+1
X

k=1

kP (R = k) (16)

Answer candidates are the set of ANNIE-

identified tokens with stop words and punctuation

removed. This yields between 900 and 8000 can-

didates for each question, depending on the top 10

documents returned by PRISE. The oracle system

represents an upper bound on using the predefined

set of answer types. The ANNIE system repre-

sents a more realistic expectation of performance.

The median percentage of candidates that are

accepted by a filter over the questions of our eval-

uation data provides one measure of performance

and is preferred to the average because of the ef-

fect of large values on the average. In QA, a sys-

tem accepting 60% of the candidates is not signif-

icantly better or worse than one accepting 100%,

398

System Measure
Question Type

All Location Person Organization Thing-Name Misc Other
(154) (57) (17) (19) (17) (37) (7)

Our model

Median 1.2% 0.8% 2.0% 1.3% 3.7% 3.5% 12.2%
Top 1% 71 34 6 9 7 13 2
Top 5% 106 53 11 11 10 19 2
Top 10% 119 55 12 17 10 22 3
Top 50% 146 56 16 18 17 34 5

Oracle

Median 0.7% 0.4% 1.0% 0.3% 0.4% 16.0% 0.3%
Top 1% 89 44 8 16 14 1 6
Top 5% 123 57 17 19 17 6 7
Top 10% 131 57 17 19 17 14 7
Top 50% 154 57 17 19 17 37 7

ANNIE

Median 4.0% 0.6% 1.4% 6.1% 100% 16.7% 50.0%
Top 1% 54 39 5 7 0 0 3
Top 5% 79 53 12 9 0 2 3
Top 10% 93 54 13 11 0 12 3
Top 50% 123 56 16 15 5 28 3

Table 3: Detailed breakdown of performance

but the effect on average is quite high. Another

measure is to observe the number of questions

with at least one correct answer in the top N% for

various values of N . By examining the number of

correct answers found in the top N% we can better

understand what an effective cutoff would be.

The overall results of our comparison can be

found in Table 2. We have added the results of

a system that scores candidates based on their fre-

quency within the document as a comparison with

a simple, yet effective, strategy. The second col-

umn is the median percentage of where the highest

scored correct answer appears in the sorted candi-

date list. Low percentage values mean the answer

is usually found high in the sorted list. The re-

maining columns list the number of questions that

have a correct answer somewhere in the top N%
of their sorted lists. This is meant to show the ef-

fects of imposing a strict cutoff prior to running

the answer type model.

The oracle system performs best, as it bene-

fits from both manual question classification and

manual entity tagging. If entity assignment is

performed by an automatic system (as it is for

ANNIE), the performance drops noticeably. Our

probabilistic model performs better than ANNIE

and achieves approximately 2/3 of the perfor-

mance of the oracle system. Table 2 also shows

that the use of candidate contexts increases the

performance of our answer type model.

Table 3 shows the performance of the oracle

system, our model, and the ANNIE system broken

down by manually-assigned answer types. Due

to insufficient numbers of questions, the cardinal,

percent, time, duration, measure, and money types

are combined into an “Other” category. When

compared with the oracle system, our model per-

forms worse overall for questions of all types ex-

cept for those seeking miscellaneous answers. For

miscellaneous questions, the oracle identifies all

tokens that do not belong to one of the other

known categories as possible answers. For all

questions of non-miscellaneous type, only a small

subset of the candidates are marked appropriate.

In particular, our model performs worse than the

oracle for questions seeking persons and thing-

names. Person questions often seek rare person

names, which occur in few contexts and are diffi-

cult to reliably cluster. Thing-name questions are

easy for a human to identify but difficult for au-

tomatic system to identify. Thing-names are a di-

verse category and are not strongly associated with

any identifying contexts.

Our model outperforms the ANNIE system in

general, and for questions seeking organizations,

thing-names, and miscellaneous targets in partic-

ular. ANNIE may have low coverage on organi-

zation names, resulting in reduced performance.

Like the oracle, ANNIE treats all candidates not

assigned one of the categories as appropriate for

miscellaneous questions. Because ANNIE cannot

identify thing-names, they are treated as miscella-

neous. ANNIE shows low performance on thing-

names because words incorrectly assigned types

are sorted to the bottom of the list for miscella-

neous and thing-name questions. If a correct an-

swer is incorrectly assigned a type it will be sorted

near the bottom, resulting in a poor score.

399

6 Conclusions

We have presented an unsupervised probabilistic

answer type model. Our model uses contexts de-

rived from the question and the candidate answer

to calculate the appropriateness of a candidate an-

swer. Statistics gathered from a large corpus of

text are used in the calculation, and the model is

constructed to exploit these statistics without be-

ing overly specific or overly general.

The method presented here avoids the use of an

explicit list of answer types. Explicit answer types

can exhibit poor performance, especially for those

questions not fitting one of the types. They must

also be redefined when either the domain or corpus

substantially changes. By avoiding their use, our

answer typing method may be easier to adapt to

different corpora and question answering domains

(such as bioinformatics).

In addition to operating as a stand-alone answer

typing component, our system can be combined

with other existing answer typing strategies, es-

pecially in situations in which a catch-all answer

type is used. Our experimental results show that

our probabilistic model outperforms the oracle and

a system using automatic named entity recognition

under such circumstances. The performance of

our model is better than that of the semi-automatic

system, which is a better indication of the expected

performance of a comparable real-world answer

typing system.

Acknowledgments

The authors would like to thank the anonymous re-

viewers for their helpful comments on improving

the paper. The first author is supported by the Nat-

ural Sciences and Engineering Research Council

of Canada, the Alberta Ingenuity Fund, and the Al-

berta Informatics Circle of Research Excellence.

References

P.F. Brown, V.J. Della Pietra, P.V. deSouza, J.C. Lai, and R.L.
Mercer. 1990. Class-based n-gram Models of Natural
Language. Computational Linguistics, 16(2):79–85.

Y. Choueka and S. Lusignan. 1985. Disambiguation by Short
Contexts. Computer and the Humanities, 19:147–157.

K. Church and P. Hanks. 1989. Word Association Norms,
Mutual Information, and Lexicography. In Proceedings
of ACL-89, pages 76–83, Vancouver, British Columbia,
Canada.

H. Cui, K. Li, R. Sun, T-S. Chua, and M-K. Kan. 2004. Na-
tional University of Singapore at the TREC-13 Question
Answering Main Task. In Notebook of TREC 2004, pages
34–42, Gaithersburg, Maryland.

D.R. Cutting, D. Karger, J. Pedersen, and J.W. Tukey. 1992.
Scatter/Gather: A Cluster-based Approach to Browsing
Large Document Collections. In Proceedings of SIGIR-
92, pages 318–329, Copenhagen, Denmark.

A. Echihabi, U. Hermjakob, E. Hovy, D. Marcu, E. Melz,
and D. Ravichandran. 2003. Multiple-Engine Question
Answering in TextMap. In Proceedings of TREC 2003,
pages 772–781, Gaithersburg, Maryland.

C. Fellbaum. 1998. WordNet: An Electronic Lexical
Database. MIT Press, Cambridge, Massachusetts.

M.A. Greenwood. 2004. AnswerFinder: Question Answer-
ing from your Desktop. In Proceedings of the Seventh
Annual Colloquium for the UK Special Interest Group
for Computational Linguistics (CLUK ’04), University of
Birmingham, UK.

S. Harabagiu, D. Moldovan, C. Clark, M. Bowden,
J. Williams, and J. Bensley. 2003. Answer Mining by
Combining Extraction Techniques with Abductive Rea-
soning. In Proceedings of TREC 2003, pages 375–382,
Gaithersburg, Maryland.

U. Hermjakob. 2001. Parsing and Question Classification for
Question Answering. In Proceedings of the ACL Work-
shop on Open-Domain Question Answering, Toulouse,
France.

A. Ittycheriah, M. Franz, W-J. Zhu, and A. Ratnaparkhi.
2001. Question Answering Using Maximum Entropy
Components. In Proceedings of NAACL 2001, Pittsburgh,
Pennsylvania.

G. Karypis, E.-H. Han, and V. Kumar. 1999. Chameleon: A
Hierarchical Clustering Algorithm using Dynamic Model-
ing. IEEE Computer: Special Issue on Data Analysis and
Mining, 32(8):68–75.

V. Krishnan, S. Das, and S. Chakrabarti. 2005. Enhanced
Answer Type Inference from Questions using Sequential
Models. In Proceedings of HLT/EMNLP 2005, pages
315–322, Vancouver, British Columbia, Canada.

X. Li and D. Roth. 2002. Learning Question Classifiers.
In Proceedings of COLING 2002, pages 556–562, Taipei,
Taiwan.

M. Light, G. Mann, E. Riloff, and E. Breck. 2001. Analyses
for Elucidating Current Question Answering Technology.
Natural Language Engineering, 7(4):325–342.

D. Lin and P. Pantel. 2001. Discovery of Inference Rules
for Question Answering. Natural Language Engineering,
7(4):343–360.

D. Lin. 1998. Automatic Retrieval and Clustering of Similar
Words. In Proceedings of COLING-ACL 1998, Montreal,
Québec, Canada.

D. Lin. 2001. Language and Text Analysis Tools. In Pro-
ceedings of HLT 2001, pages 222–227, San Diego, Cali-
fornia.

D. Maynard, V. Tablan, H. Cunningham, C. Ursu, H. Sag-
gion, K. Bontcheva, and Y. Wilks. 2002. Architectural
Elements of Language Engineering Robustness. Natural
Language Engineering, 8(2/3):257–274.

D. Mollá and B. Hutchinson. 2003. Intrinsic versus Extrinsic
Evaluations of Parsing Systems. In Proceedings of EACL
Workshop on Evaluation Initiatives in Natural Language
Processing, pages 43–50, Budapest, Hungary.

P. Pantel and D. Lin. 2002. Document Clustering with Com-
mittees. In Proceedings of SIGIR 2002, pages 199–206,
Tampere, Finland.

F. Pereira, N. Tishby, and L. Lee. 1993. Distributional Clus-
tering of English Words. In Proceedings of ACL 1992,
pages 183–190.

D. Radev, W. Fan, H. Qi, H. Wu, and A. Grewal. 2002. Prob-
ablistic Question Answering on the Web. In Proceedings
of the Eleventh International World Wide Web Conference.

E.M. Voorhees. 2003. Overview of the TREC 2003 Ques-
tion Answering Track. In Proceedings of TREC 2003,
Gaithersburg, Maryland.

400

