
A Machine Learning Approach to Extract Temporal Information from
Texts in Swedish and Generate Animated 3D Scenes

Anders Berglund Richard Johansson Pierre Nugues

Department of Computer Science, LTH

Lund University

SE-221 00 Lund, Sweden

d98ab@efd.lth.se, {richard, pierre}@cs.lth.se

Abstract

Carsim is a program that automatically

converts narratives into 3D scenes. Carsim

considers authentic texts describing road

accidents, generally collected from web

sites of Swedish newspapers or transcribed

from hand-written accounts by victims of

accidents. One of the program’s key fea-

tures is that it animates the generated scene

to visualize events.

To create a consistent animation, Carsim

extracts the participants mentioned in a

text and identifies what they do. In this

paper, we focus on the extraction of tem-

poral relations between actions. We first

describe how we detect time expressions

and events. We then present a machine

learning technique to order the sequence

of events identified in the narratives. We

finally report the results we obtained.

1 Extraction of Temporal Information

and Scene Visualization

Carsim is a program that generates 3D scenes from

narratives describing road accidents (Johansson et

al., 2005; Dupuy et al., 2001). It considers au-

thentic texts, generally collected from web sites

of Swedish newspapers or transcribed from hand-

written accounts by victims of accidents.

One of Carsim’s key features is that it animates

the generated scene to visualize events described

in the narrative. The text below, a newspaper arti-

cle with its translation into English, illustrates the

goals and challenges of it. We bracketed the enti-

ties, time expressions, and events and we anno-

tated them with identifiers, denoted respectively

oi, tj , and ek:

En {bussolycka}e1 i södra Afghanistan

krävdee2 {på torsdagen}t1 {20

dödsoffer}o1 . Ytterligare {39

personer}o2 skadadese3 i olyckane4.

Busseno3 {var på väg}e5 från Kanda-

har mot huvudstaden Kabul när deno4

under en omkörninge6 kördee7

av vägbanano5 och voltadee8,

meddeladee9 general Salim Khan,

biträdande polischef i Kandahar.

TT-AFP & Dagens Nyheter, July 8,

2004

{20 persons}o1 diede2 in a {bus

accident}e1 in southern Afghanistan

{on Thursday}t1. In addition, {39

persons}o2 {were injured}e3 in the

accidente4.

The buso3 {was on its way}e5 from

Kandahar to the capital Kabul when

ito4 {drove off}e7 the roado5 while

overtakinge6 and {flipped over}e8,

saide9 General Salim Khan, assistant

head of police in Kandahar.

The text above, our translation.

To create a consistent animation, the program

needs to extract and understand who the partici-

pants are and what they do. In the case of the ac-

cident above, it has to:

1. Detect the involved physical entities o3, o4,

and o5.

2. Understand that the pronoun o4 refers to o3.

3. Detect the events e6, e7, and e8.

385

4. Link the participants to the events using se-

mantic roles or grammatical functions and in-

fer the unmentioned vehicle that is overtaken.

5. Understand that the order of the events is e6-

e7-e8.

6. Detect the time expression t1 to anchor tem-

porally the animation.

In this paper, we describe how we address tasks

3, 5, and 6 within the Carsim program, i.e., how

we detect, interpret, and order events and how we

process time expressions.

2 Previous Work

Research on the representation of time, events,

and temporal relations dates back the beginning

of logic. It resulted in an impressive number of

formulations and models. In a review of contem-

porary theories and an attempt to unify them, Ben-

nett and Galton (2004) classified the most influen-

tial formalisms along three lines. A first approach

is to consider events as transitions between states

as in STRIPS (Fikes and Nilsson, 1971). A sec-

ond one is to map events on temporal intervals

and to define relations between pairs of intervals.

Allen’s (1984) 13 temporal relations are a widely

accepted example of this. A third approach is to

reify events, to quantify them existentially, and

to connect them to other objects using predicates

based on action verbs and their modifiers (David-

son, 1967). The sentence John saw Mary in Lon-

don on Tuesday is then translated into the logical

form: ∃ε[Saw(ε, j,m)∧Place(ε, l)∧T ime(ε, t)].
Description of relations between time, events,

and verb tenses has also attracted a considerable

interest, especially in English. Modern work on

temporal event analysis probably started with Re-

ichenbach (1947), who proposed the distinction

between the point of speech, point of reference,

and point of event in utterances. This separation

allows for a systematic description of tenses and

proved to be very powerful.

Many authors proposed general principles to

extract automatically temporal relations between

events. A basic observation is that the tempo-

ral order of events is related to their narrative or-

der. Dowty (1986) investigated it and formulated a

Temporal Discourse Interpretation Principle to in-

terpret the advance of narrative time in a sequence

of sentences. Lascarides and Asher (1993) de-

scribed a complex logical framework to deal with

events in simple past and pluperfect sentences.

Hitzeman et al. (1995) proposed a constraint-

based approach taking into account tense, aspect,

temporal adverbials, and rhetorical structure to an-

alyze a discourse.

Recently, groups have used machine learn-

ing techniques to determine temporal relations.

They trained automatically classifiers on hand-

annotated corpora. Mani et al. (2003) achieved

the best results so far by using decision trees to

order partially events of successive clauses in En-

glish texts. Boguraev and Ando (2005) is another

example of it for English and Li et al. (2004) for

Chinese.

3 Annotating Texts with Temporal

Information

Several schemes have been proposed to anno-

tate temporal information in texts, see Setzer and

Gaizauskas (2002), inter alia. Many of them were

incompatible or incomplete and in an effort to rec-

oncile and unify the field, Ingria and Pustejovsky

(2002) introduced the XML-based Time markup

language (TimeML).

TimeML is a specification language whose

goal is to capture most aspects of temporal rela-

tions between events in discourses. It is based

on Allen’s (1984) relations and a variation of

Vendler’s (1967) classification of verbs. It de-

fines XML elements to annotate time expressions,

events, and “signals”. The SIGNAL tag marks sec-

tions of text indicating a temporal relation. It

includes function words such as later and not.

TimeML also features elements to connect entities

using different types of links, most notably tem-

poral links, TLINKs, that describe the temporal re-

lation holding between events or between an event

and a time.

4 A System to Convert Narratives of

Road Accidents into 3D Scenes

4.1 Carsim

Carsim is a text-to-scene converter. From a nar-

rative, it creates a complete and unambiguous 3D

geometric description, which it renders visually.

Carsim considers authentic texts describing road

accidents, generally collected from web sites of

Swedish newspapers or transcribed from hand-

written accounts by victims of accidents. One of

the program’s key features is that it animates the

generated scene to visualize events.

386

The Carsim architecture is divided into two

parts that communicate using a frame representa-

tion of the text. Carsim’s first part is a linguistic

module that extracts information from the report

and fills the frame slots. The second part is a vir-

tual scene generator that takes the structured rep-

resentation as input, creates the visual entities, and

animates them.

4.2 Knowledge Representation in Carsim

The Carsim language processing module reduces

the text content to a frame representation – a tem-

plate – that outlines what happened and enables a

conversion to a symbolic scene. It contains:

• Objects. They correspond to the physical en-

tities mentioned in the text. They also include

abstract symbols that show in the scene. Each

object has a type, that is selected from a pre-

defined, finite set. An object’s semantics is

a separate geometric entity, where its shape

(and possibly its movement) is determined by

its type.

• Events. They correspond intuitively to an ac-

tivity that goes on during a period in time

and here to the possible object behaviors. We

represent events as entities with a type taken

from a predefined set, where an event’s se-

mantics will be a proposition paired with a

point or interval in time during which the

proposition is true.

• Relations and Quantities. They describe spe-

cific features of objects and events and how

they are related to each other. The most obvi-

ous examples of such information are spatial

information about objects and temporal in-

formation about events. Other meaningful re-

lations and quantities include physical prop-

erties such as velocity, color, and shape.

5 Time and Event Processing

We designed and implemented a generic com-

ponent to extract temporal information from the

texts. It sits inside the natural language part of

Carsim and proceeds in two steps. The first step

uses a pipeline of finite-state machines and phrase-

structure rules that identifies time expressions, sig-

nals, and events. This step also generates a feature

vector for each element it identifies. Using the

vectors, the second step determines the temporal

relations between the extracted events and orders

them in time. The result is a text annotated using

the TimeML scheme.

We use a set of decision trees and a machine

learning approach to find the relations between

events. As input to the second step, the decision

trees take sequences of events extracted by the

first step and decide the temporal relation, possi-

bly none, between pairs of them. To run the learn-

ing algorithm, we manually annotated a small set

of texts on which we trained the trees.

5.1 Processing Structure

We use phrase-structure rules and finite state ma-

chines to mark up events and time expressions. In

addition to the identification of expressions, we of-

ten need to interpret them, for instance to com-

pute the absolute time an expression refers to. We

therefore augmented the rules with procedural at-

tachments.

We wrote a parser to control the processing flow

where the rules, possibly recursive, apply regular

expressions, call procedures, and create TimeML

entities.

5.2 Detection of Time Expressions

We detect and interpret time expressions with a

two-level structure. The first level processes in-

dividual tokens using a dictionary and regular ex-

pressions. The second level uses the results from

the token level to compute the meaning of multi-

word expressions.

Token-Level Rules. In Swedish, time expres-

sions such as en tisdagseftermiddag ‘a Tuesday

afternoon’ use nominal compounds. To decode

them, we automatically generate a comprehensive

dictionary with mappings from strings onto com-

pound time expressions. We decode other types

of expressions such as 2005-01-14 using regular

expressions

Multiword-Level Rules. We developed a

grammar to interpret the meaning of multiword

time expressions. It includes instructions on how

to combine the values of individual tokens for ex-

pressions such as {vid lunchtid}t1 {en tisdagefter-

middag}t2 ‘{at noon}t1 {a Tuesday afternoon}t2’.

The most common case consists in merging the to-

kens’ attributes to form a more specific expression.

However, relative time expressions such as i tors-

dags ‘last Tuesday’ are more complex. Our gram-

mar handles the most frequent ones, mainly those

387

that need the publishing date for their interpreta-

tion.

5.3 Detection of Signals

We detect signals using a lexicon and naïve string

matching. We annotate each signal with a sense

where the possible values are: negation, before, af-

ter, later, when, and continuing. TimeML only de-

fines one attribute for the SIGNAL tag, an identifier,

and encodes the sense as an attribute of the LINKs

that refer to it. We found it more appropriate to

store the sense directly in the SIGNAL element, and

so we extended it with a second attribute.

We use the sense information in decision trees

as a feature to determine the order of events. Our

strategy based on string matching results in a lim-

ited overdetection. However, it does not break the

rest of the process.

5.4 Detection of Events

We detect the TimeML events using a part-of-

speech tagger and phrase-structure rules. We con-

sider that all verbs and verb groups are events. We

also included some nouns or compounds, which

are directly relevant to Carsim’s application do-

main, such as bilolycka ‘car accident’ or krock

‘collision’. We detect these nouns through a set

of six morphemes.

TimeML annotates events with three features:

aspect, tense, and “class”, where the class corre-

sponds to the type of the event. The TimeML spec-

ifications define seven classes. We kept only the

two most frequent ones: states and occurrences.

We determine the features using procedures at-

tached to each grammatical construct we extract.

The grammatical features aspect and tense are

straightforward and a direct output of the phrase-

structure rules. To infer the TimeML class, we use

heuristics such as these ones: predicative clauses

(copulas) are generally states and verbs in preterit

are generally occurrences.

The domain, reports of car accidents, makes

this approach viable. The texts describe sequences

of real events. They are generally simple, to the

point, and void of speculations and hypothetical

scenarios. This makes the task of feature identifi-

cation simpler than it is in more general cases.

In addition to the TimeML features, we extract

the grammatical properties of events. Our hypoth-

esis is that specific sequences of grammatical con-

structs are related to the temporal order of the de-

scribed events. The grammatical properties con-

sist of the part of speech, noun (NOUN) or verb

(VB). Verbs can be finite (FIN) or infinitive (INF).

They can be reduced to a single word or part of a

group (GR). They can be a copula (COP), a modal

(MOD), or a lexical verb. We combine these prop-

erties into eight categories that we use in the fea-

ture vectors of the decision trees (see ...EventStruc-

ture in Sect. 6.2).

6 Event Ordering

TimeML defines three different types of links:

subordinate (SLINK), temporal (TLINK), and aspec-

tual (ALINK). Aspectual links connect two event in-

stances, one being aspectual and the other the ar-

gument. As its significance was minor in the visu-

alization of car accidents, we set aside this type of

link.

Subordinate links generally connect signals to

events, for instance to mark polarity by linking a

not to its main verb. We identify these links simul-

taneously with the event detection. We augmented

the phrase-structure rules to handle subordination

cases at the same time they annotate an event. We

restricted the cases to modality and polarity and

we set aside the other ones.

6.1 Generating Temporal Links

To order the events in time and create the tempo-

ral links, we use a set of decision trees. We apply

each tree to sequences of events where it decides

the order between two of the events in each se-

quence. If e1, ..., en are the events in the sequence

they appear in the text, the trees correspond to the

following functions:

fdt1(ei, ei+1) ⇒ trel(ei, ei+1)

fdt2(ei, ei+1, ei+2) ⇒ trel(ei, ei+1)

fdt3(ei, ei+1, ei+2) ⇒ trel(ei+1, ei+2)

fdt4(ei, ei+1, ei+2) ⇒ trel(ei, ei+2)

fdt5(ei, ei+1, ei+2, ei+3) ⇒ trel(ei, ei+3)

The possible output values of the trees are: si-

multaneous, after, before, is_included, includes,

and none. These values correspond to the relations

described by Setzer and Gaizauskas (2001).

The first decision tree should capture more gen-

eral relations between two adjacent events with-

out the need of a context. Decision trees dt2 and

dt3 extend the context by one event to the left re-

spectively one event to the right. They should cap-

ture more specific phenomena. However, they are

not always applicable as we never apply a decision

388

tree when there is a time expression between any

of the events involved. In effect, time expressions

“reanchor” the narrative temporally, and we no-

ticed that the decision trees performed very poorly

across time expressions.

We complemented the decision trees with a

small set of domain-independent heuristic rules

that encode common-sense knowledge. We as-

sume that events in the present tense occur after

events in the past tense and that all mentions of

events such as olycka ‘accident’ refer to the same

event. In addition, the Carsim event interpreter

recognizes some semantically motivated identity

relations.

6.2 Feature Vectors

The decision trees use a set of features correspond-

ing to certain attributes of the considered events,

temporal signals between them, and some other

parameters such as the number of tokens separat-

ing the pair of events to be linked. We list below

the features of fdt1 together with their values. The

first event in the pair is denoted by a mainEvent pre-

fix and the second one by relatedEvent:

• mainEventTense: none, past, present, future,

NOT_DETERMINED.

• mainEventAspect: progressive, perfective, per-

fective_progressive, none, NOT_DETERMINED.

• mainEventStructure: NOUN, VB_GR_COP_INF,

VB_GR_COP_FIN, VB_GR_MOD_INF,

VB_GR_MOD_FIN, VB_GR, VB_INF, VB_FIN,

UNKNOWN.

• relatedEventTense: (as mainEventTense)

• relatedEventAspect: (as mainEventAspect)

• relatedEventStructure: (as mainEventStructure)

• temporalSignalInbetween: none, before, after,

later, when, continuing, several.

• tokenDistance: 1, 2 to 3, 4 to 6, 7 to 10, greater

than 10.

• sentenceDistance: 0, 1, 2, 3, 4, greater than 4.

• punctuationSignDistance: 0, 1, 2, 3, 4, 5, greater

than 5.

The four other decision trees consider more

events but use similar features. The values for the

...Distance features are of course greater.

6.3 Temporal Loops

The process described above results in an overgen-

eration of temporal links. As some of them may be

conflicting, a post-processing module reorganizes

them and discards the temporal loops.

The initial step of the loop resolution assigns

each link with a score. This score is created by the

decision trees and is derived from the C4.5 metrics

(Quinlan, 1993). It reflects the accuracy of the leaf

as well as the overall accuracy of the decision tree

in question. The score for links generated from

heuristics is rule dependent.

The loop resolution algorithm begins with an

empty set of orderings. It adds the partial order-

ings to the set if their inclusion doesn’t introduce

a temporal conflict. It first adds the links with the

highest scores, and thus, in each temporal loop, the

ordering with the lowest score is discarded.

7 Experimental Setup and Evaluation

As far as we know, there is no available time-

annotated corpus in Swedish, which makes the

evaluation more difficult. As development and

test sets, we collected approximately 300 reports

of road accidents from various Swedish newspa-

pers. Each report is annotated with its publishing

date. Analyzing the reports is complex because

of their variability in style and length. Their size

ranges from a couple of sentences to more than a

page. The amount of details is overwhelming in

some reports, while in others most of the informa-

tion is implicit. The complexity of the accidents

described ranges from simple accidents with only

one vehicle to multiple collisions with several par-

ticipating vehicles and complex movements.

We manually annotated a subset of our corpus

consisting of 25 texts, 476 events and 1,162 tem-

poral links. We built the trees automatically from

this set using the C4.5 program (Quinlan, 1993).

Our training set is relatively small and the num-

ber of features we use relatively large for the set

size. This can produce a training overfit. However,

C4.5, to some extent, makes provision for this and

prunes the decision trees.

We evaluated three aspects of the temporal in-

formation extraction modules: the detection and

interpretation of time expressions, the detection

and interpretation of events, and the quality of the

final ordering. We report here the detection of

events and the final ordering.

389

Feature Ncorrect Nerroneous Correct

Tense 179 1 99.4%

Aspect 161 19 89.4%

Class 150 30 83.3%

Table 1: Feature detection for 180 events.

7.1 Event Detection

We evaluated the performance of the event detec-

tion on a test corpus of 40 previously unseen texts.

It should be noted that we used a simplified defi-

nition of what an event is, and that the manual an-

notation and evaluation were both done using the

same definition (i.e. all verbs, verb groups, and a

small number of nouns are events). The system

detected 584 events correctly, overdetected 3, and

missed 26. This gives a recall of 95.7%, a preci-

sion of 99.4%, and an F -measure of 97.5%.

The feature detection is more interesting and

Table 1 shows an evaluation of it. We carried out

this evaluation on the first 20 texts of the test cor-

pus.

7.2 Evaluation of Final Ordering

We evaluated the final ordering with the method

proposed by Setzer and Gaizauskas (2001). Their

scheme is comprehensive and enables to compare

the performance of different systems.

Description of the Evaluation Method. Set-

zer and Gaizauskas carried out an inter-annotator

agreement test for temporal relation markup.

When evaluating the final ordering of a text, they

defined the set E of all the events in the text and

the set T of all the time expressions. They com-

puted the set (E ∪ T)× (E ∪ T) and they defined

the sets S`, I`, and B` as the transitive closures

for the relations simultaneous, includes, and be-

fore, respectively.

If S`k and S`r represent the set S` for the an-

swer key (“Gold Standard”) and system response,

respectively, the measures of precision and recall

for the simultaneous relation are:

R =
|S`k ∩ S`r |

|S`k |
P =

|S`k ∩ S`r |

|S`r |

For an overall measure of recall and precision,

Setzer and Gaizauskas proposed the following for-

mulas:

R =
|S`k ∩ S`r | + |B`

k ∩ B`
r | + |I`k ∩ I`r |

|S`k | + |B`

k | + |I`k |

P =
|S`k ∩ S`r | + |B`

k ∩ B`
r | + |I`k ∩ I`r |

|S`r | + |B`
r | + |I`r |

They used the classical definition of the F -

measure: the harmonic means of precision and re-

call. Note that the precision and recall are com-

puted per text, not for all relations in the test set

simultaneously.

Results. We evaluated the output of the Car-

sim system on 10 previously unseen texts against

our Gold Standard. As a baseline, we used a sim-

ple algorithm that assumes that all events occur in

the order they are introduced in the narrative. For

comparison, we also did an inter-annotator evalu-

ation on the same texts, where we compared the

Gold Standard, annotated by one of us, with the

annotation produced by another member in our

group.

As our system doesn’t support comparisons of

time expressions, we evaluated the relations con-

tained in the set E × E. We only counted the

reflexive simultaneous relation once per tuples

(ex, ey) and (ey, ex) and we didn’t count relations

(ex, ex).

Table 2 shows our results averaged over the

10 texts. As a reference, we also included Set-

zer and Gaizauskas’ averaged results for inter-

annotator agreement on temporal relations in six

texts. Their results are not directly comparable

however as they did the evaluation over the set

(E ∪ T) × (E ∪ T) for English texts of another

type.

Comments. The computation of ratios on the

transitive closure makes Setzer and Gaizauskas’

evaluation method extremely sensitive. Missing a

single link often results in a loss of scores of gener-

ated transitive links and thus has a massive impact

on the final evaluation figures.

As an example, one of our texts contains six

events whose order is e4 < e5 < e6 < e1 < e2 <
e3. The event module automatically detects the

chains e4 < e5 < e6 and e1 < e2 < e3 correctly,

but misses the link e6 < e1. This gives a recall of

6/15 = 0.40. When considering evaluations per-

formed using the method above, it is meaningful

to have this in mind.

8 Carsim Integration

The visualization module considers a subset of the

detected events that it interprets graphically. We

390

Evaluation Average nwords Average nevents Pmean Rmean Fmean

Gold vs. Baseline 98.5 14.3 49.42 29.23 35.91

Gold vs. Automatic " " 54.85 37.72 43.97

Gold vs. Other Annotator " " 85.55 58.02 68.01

Setzer and Gaizauskas 312.2 26.7 67.72 40.07 49.13

Table 2: Evaluation results for final ordering averaged per text (with P , R, and F in %).

call this subset the Carsim events. Once the event

processing has been done, Carsim extracts these

specific events from the full set using a small do-

main ontology and inserts them into the template.

We use the event relations resulting from temporal

information extraction module to order them. For

all pairs of events in the template, Carsim queries

the temporal graph to determine their relation.

Figure 1 shows a part of the template represent-

ing the accident described in Section 1. It lists

the participants, with the unmentioned vehicle in-

ferred to be a car. It also shows the events and

their temporal order. Then, the visualization mod-

ule synthesizes a 3D scene and animates it. Fig-

ure 2 shows four screenshots picturing the events.

Figure 1: Representation of the accident in the ex-

ample text.

9 Conclusion and Perspectives

We have developed a method for detecting time

expressions, events, and for ordering these events

temporally. We have integrated it in a text-to-

scene converter enabling the animation of generic

actions.

The module to detect time expression and inter-

pret events performs significantly better than the

baseline technique used in previous versions of

Carsim. In addition, it should to be easy to sep-

arate it from the Carsim framework and reuse it in

other domains.

The central task, the ordering of all events,

leaves lots of room for improvement. The accu-

racy of the decision trees should improve with a

larger training set. It would result in a better over-

all performance. Switching from decision trees to

other training methods such as Support Vector Ma-

chines or using semantically motivated features, as

suggested by Mani (2003), could also be sources

of improvements.

More fundamentally, the decision tree method

we have presented is not able to take into account

long-distance links. Investigation into new strate-

gies to extract such links directly without the com-

putation of a transitive closure would improve re-

call and, given the evaluation procedure, increase

the performance.

References

James F. Allen. 1984. Towards a general theory of
action and time. Artificial Intelligence, 23(2):123–
154.

Brandon Bennett and Antony P. Galton. 2004. A uni-
fying semantics for time and events. Artificial Intel-
ligence, 153(1-2):13–48.

Branimir Boguraev and Rie Kubota Ando. 2005.
TimeML-compliant text analysis for temporal rea-
soning. In IJCAI-05, Proceedings of the Nineteenth
International Joint Conference on Artificial Intelli-
gence, pages 997–1003, Edinburgh, Scotland.

Donald Davidson. 1967. The logical form of action
sentences. In N. Rescher, editor, The Logic of Deci-
sion and Action. University of Pittsburgh Press.

David R. Dowty. 1986. The effects of aspectual class
on the temporal structure of discourse: Semantics or
pragmatics? Linguistics and Philosophy, 9:37–61.

391

Figure 2: Animation of the scene and event visualization.

Sylvain Dupuy, Arjan Egges, Vincent Legendre, and
Pierre Nugues. 2001. Generating a 3D simulation
of a car accident from a written description in nat-
ural language: The Carsim system. In ACL 2001,
Workshop on Temporal and Spatial Information Pro-
cessing, pages 1–8, Toulouse, France.

Richard Fikes and Nils J. Nilsson. 1971. Strips: A
new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189–
208.

Janet Hitzeman, Marc Noels Moens, and Clare Grover.
1995. Algorithms for analyzing the temporal struc-
ture of discourse. In Proceedings of the Annual
Meeting of the European Chapter of the Associa-
tion of Computational Linguistics, pages 253–260,
Dublin, Ireland.

Bob Ingria and James Pustejovsky. 2002. Specification
for TimeML 1.0.

Richard Johansson, Anders Berglund, Magnus
Danielsson, and Pierre Nugues. 2005. Automatic
text-to-scene conversion in the traffic accident
domain. In IJCAI-05, Proceedings of the Nineteenth
International Joint Conference on Artificial Intelli-
gence, pages 1073–1078, Edinburgh, Scotland.

Alex Lascarides and Nicholas Asher. 1993. Tem-
poral interpretation, discourse relations, and com-
mon sense entailment. Linguistics & Philosophy,
16(5):437–493.

Wenjie Li, Kam-Fai Wong, Guihong Cao, and Chunfa
Yuan. 2004. Applying machine learning to Chinese
temporal relation resolution. In Proceedings of the
42nd Meeting of the Association for Computational
Linguistics (ACL’04), pages 582–588, Barcelona.

Inderjeet Mani, Barry Schiffman, and Jianping Zhang.
2003. Inferring temporal ordering of events in
news. In Human Language Technology Conference
(HLT’03), Edmonton, Canada.

Inderjeet Mani. 2003. Recent developments in tempo-
ral information extraction. In Nicolas Nicolov and
Ruslan Mitkov, editors, Proceedings of RANLP’03.
John Benjamins.

John Ross Quinlan. 1993. C4.5: Programs for Ma-
chine Learning. Morgan Kauffman.

Hans Reichenbach. 1947. Elements of Symbolic Logic.
Academic Press, New York.

Andrea Setzer and Robert Gaizauskas. 2001. A pi-
lot study on annotating temporal relations in text. In
ACL 2001, Workshop on Temporal and Spatial Infor-
mation Processing, pages 73–80, Toulouse, France.

Andrea Setzer and Robert Gaizauskas. 2002. On the
importance of annotating temporal event-event rela-
tions in text. In LREC 2002, Workshop on Annota-
tion Standards for Temporal Information in Natural
Language.

Zeno Vendler. 1967. Linguistics in Philosophy. Cor-
nell University Press, Ithaca, New York.

392

