
Computational Complexity of Statistical Machine Translation

Raghavendra Udupa U.

IBM India Research Lab

New Delhi

India

uraghave@in.ibm.com

Hemanta K. Maji

Dept. of Computer Science

University of Illinois at Urbana-Champaigne

hemanta.maji@gmail.com

Abstract

In this paper we study a set of prob-

lems that are of considerable importance

to Statistical Machine Translation (SMT)

but which have not been addressed satis-

factorily by the SMT research community.

Over the last decade, a variety of SMT

algorithms have been built and empiri-

cally tested whereas little is known about

the computational complexity of some of

the fundamental problems of SMT. Our

work aims at providing useful insights into

the the computational complexity of those

problems. We prove that while IBM Mod-

els 1-2 are conceptually and computation-

ally simple, computations involving the

higher (and more useful) models are hard.

Since it is unlikely that there exists a poly-

nomial time solution for any of these hard

problems (unless P = NP and P
#P =

P), our results highlight and justify the

need for developing polynomial time ap-

proximations for these computations. We

also discuss some practical ways of deal-

ing with complexity.

1 Introduction

Statistical Machine Translation is a data driven

machine translation technique which uses proba-

bilistic models of natural language for automatic

translation (Brown et al., 1993), (Al-Onaizan et

al., 1999). The parameters of the models are

estimated by iterative maximum-likelihood train-

ing on a large parallel corpus of natural language

texts using the EM algorithm (Brown et al., 1993).

The models are then used to decode, i.e. trans-

late texts from the source language to the target

language 1 (Tillman, 2001), (Wang, 1997), (Ger-

mann et al., 2003), (Udupa et al., 2004). The

models are independent of the language pair and

therefore, can be used to build a translation sys-

tem for any language pair as long as a parallel

corpus of texts is available for training. Increas-

ingly, parallel corpora are becoming available

for many language pairs and SMT systems have

been built for French-English, German-English,

Arabic-English, Chinese-English, Hindi-English

and other language pairs (Brown et al., 1993), (Al-

Onaizan et al., 1999), (Udupa, 2004).

In SMT, every English sentence e is considered

as a translation of a given French sentence f with

probability Pr (f |e). Therefore, the problem of

translating f can be viewed as a problem of finding

the most probable translation of f :

e
∗ = argmax

e

Pr(e|f) = argmax
e

Pr(f |e)P (e).

(1)

The probability distributions Pr(f |e) and

Pr(e) are known as translation model and lan-

guage model respectively. In the classic work on

SMT, Brown and his colleagues at IBM introduced

the notion of alignment between a sentence f and

its translation e and used it in the development of

translation models (Brown et al., 1993). An align-

ment between f = f1 . . . fm and e = e1 . . . el

is a many-to-one mapping a : {1, . . . ,m} →
{0, . . . , l}. Thus, an alignment a between f and e

associates the french word fj to the English word

eaj
2. The number of words of f mapped to ei by

a is called the fertility of ei and is denoted by φi.

Since Pr(f |e) =
∑

a
Pr(f ,a|e), equation 1 can

1In this paper, we use French and English as the prototyp-
ical examples of source and target languages respectively.

2e0 is a special word called the null word and is used to
account for those words in f that are not connected by a to
any of the words of e.

25

be rewritten as follows:

e
∗ = argmax

e

∑

a

Pr(f ,a|e)Pr(e). (2)

Brown and his colleagues developed a series

of 5 translation models which have become to be

known in the field of machine translation as IBM

models. For a detailed introduction to IBM trans-

lation models, please see (Brown et al., 1993). In

practice, models 3-5 are known to give good re-

sults and models 1-2 are used to seed the EM it-

erations of the higher models. IBM model 3 is

the prototypical translation model and it models

Pr(f ,a|e) as follows:

P (f ,a|e) ≡ n

(

φ0|
∑l

i=1 φi

)
∏l

i=1 n (φi|ei) φi!

×
∏m

j=1 t
(
fj|eaj

)
×
∏

j: aj 6=0 d (j|i,m, l)

Table 1: IBM Model 3

Here, n(φ|e) is the fertility model, t(f |e) is

the lexicon model and d(j|i,m, l) is the distortion

model.

The computational tasks involving IBM Models

are the following:

• Viterbi Alignment

Given the model parameters and a sentence

pair (f , e), determine the most probable

alignment between f and e.

a
∗ = argmax

a

P (f ,a|e)

• Expectation Evaluation

This forms the core of model training via the

EM algorithm. Please see Section 2.3 for

a description of the computational task in-

volved in the EM iterations.

• Conditional Probability

Given the model parameters and a sentence

pair (f , e), compute P (f |e).

P (f |e) =
∑

a

P (f ,a|e)

• Exact Decoding

Given the model parameters and a sentence f ,

determine the most probable translation of f .

e
∗ = argmax

e

∑

a

P (f ,a|e) P (e)

• Relaxed Decoding

Given the model parameters and a sentence f ,

determine the most probable translation and

alignment pair for f .

(e∗,a∗) = argmax
(e,a)

P (f ,a|e) P (e)

Viterbi Alignment computation finds applica-

tions not only in SMT but also in other areas

of Natural Language Processing (Wang, 1998),

(Marcu, 2002). Expectation Evaluation is the

soul of parameter estimation (Brown et al., 1993),

(Al-Onaizan et al., 1999). Conditional Proba-

bility computation is important in experimentally

studying the concentration of the probability mass

around the Viterbi alignment, i.e. in determining

the goodness of the Viterbi alignment in compar-

ison to the rest of the alignments. Decoding is

an integral component of all SMT systems (Wang,

1997), (Tillman, 2000), (Och et al., 2001), (Ger-

mann et al., 2003), (Udupa et al., 2004). Exact

Decoding is the original decoding problem as de-

fined in (Brown et al., 1993) and Relaxed Decod-

ing is the relaxation of the decoding problem typ-

ically used in practice.

While several heuristics have been developed

by practitioners of SMT for the computational

tasks involving IBM models, not much is known

about the computational complexity of these tasks.

In their seminal paper on SMT, Brown and his col-

leagues highlighted the problems we face as we go

from IBM Models 1-2 to 3-5(Brown et al., 1993)
3:

“As we progress from Model 1 to Model 5, eval-

uating the expectations that gives us counts be-

comes increasingly difficult. In Models 3 and 4,

we must be content with approximate EM itera-

tions because it is not feasible to carry out sums

over all possible alignments for these models. In

practice, we are never sure that we have found the

Viterbi alignment”.

However, neither their work nor the subsequent

research in SMT studied the computational com-

plexity of these fundamental problems with the

exception of the Decoding problem. In (Knight,

1999) it was proved that the Exact Decoding prob-

lem is NP-Hard when the language model is a bi-

gram model.

Our results may be summarized as follows:

3The emphasis is ours.

26

1. Viterbi Alignment computation is NP-Hard

for IBM Models 3, 4, and 5.

2. Expectation Evaluation in EM Iterations is

#P-Complete for IBM Models 3, 4, and 5.

3. Conditional Probability computation is

#P-Complete for IBM Models 3, 4, and 5.

4. Exact Decoding is #P-Hard for IBM Mod-

els 3, 4, and 5.

5. Relaxed Decoding is NP-Hard for IBM

Models 3, 4, and 5.

Note that our results for decoding are sharper

than that of (Knight, 1999). Firstly, we show that

Exact Decoding is #P-Hard for IBM Models 3-5

and not just NP-Hard. Secondly, we show that

Relaxed Decoding is NP-Hard for Models 3-5

even when the language model is a uniform dis-

tribution.

The rest of the paper is organized as follows.

We formally define all the problems discussed in

the paper (Section 2). Next, we take up each of the

problems discussed in this section and derive the

stated result for them (Section 3). After this, we

discuss the implications of our results (Section 4)

and suggest future directions (Section 5).

2 Problem Definition

Consider the functions f, g : Σ∗ → {0, 1}. We

say that g ≤m
p f (g is polynomial-time many-one

reducible to f), if there exists a polynomial time

reduction r(.) such that g(x) = f(r(x)) for all

input instances x ∈ Σ∗. This means that given a

machine to evaluate f(.) in polynomial time, there

exists a machine that can evaluate g(.) in polyno-

mial time. We say a function f is NP-Hard, if all

functions in NP are polynomial-time many-one

reducible to f . In addition, if f ∈ NP, then we

say that f is NP-Complete.

Also relevant to our work are counting func-

tions that answer queries such as “how many com-

putation paths exist for accepting a particular in-

stance of input?” Let w be a witness for the ac-

ceptance of an input instance x and χ(x,w) be

a polynomial time witness checking function (i.e.

χ(x,w) ∈ P). The function f : Σ∗ → N such that

f(x) =
∑

w∈Σ∗

|w|≤p(|x|)

χ(x,w)

lies in the class #P, where p(.) is a polynomial.

Given functions f, g : Σ∗ → N, we say that g is

polynomial-time Turing reducible to f (i.e. g ≤T

f) if there is a Turing machine with an oracle for

f that computes g in time polynomial in the size

of the input. Similarly, we say that f is #P-Hard,

if every function in #P can be polynomial time

Turing reduced to f . If f is #P-Hard and is in

#P, then we say that f is #P-Complete.

2.1 Viterbi Alignment Computation

VITERBI-3 is defined as follows. Given the para-

meters of IBM Model 3 and a sentence pair (f , e),
compute the most probable alignment a∗ betwen f

and e:

a
∗ = argmax

a

P (f ,a|e).

2.2 Conditional Probability Computation

PROBABILITY-3 is defined as follows. Given

the parameters of IBM Model 3, and a sen-

tence pair (f , e), compute the probability

P (f |e) =
∑

a
P (f ,a|e).

2.3 Expectation Evaluation in EM Iterations

(f, e)-COUNT-3, (φ, e)-COUNT-3, (j, i,m, l)-

COUNT-3, 0-COUNT-3, and 1-COUNT-3 are de-

fined respectively as follows. Given the parame-

ters of IBM Model 3, and a sentence pair (f , e),
compute the following 4:

c(f |e; f , e) =
∑

a

P (a|f , e)
∑

j

δ(f, fj)δ(e, eaj
),

c(φ|e; f , e) =
∑

a

P (a|f , e)
∑

i

δ(φ, φi)δ(e, ei),

c(j|i,m, l; f , e) =
∑

a

P (a|f , e)δ(i, aj),

c(0; f , e) =
∑

a

P (a|f , e)(m − 2φ0), and

c(1; f , e) =
∑

a

P (a|f , e)φ0.

2.4 Decoding

E-DECODING-3 and R-DECODING-3 are defined

as follows. Given the parameters of IBM Model 3,

4As the counts are normalized in the EM iteration, we can
replace P (a|f , e) by P (f ,a|e) in the Expectation Evaluation
tasks.

27

and a sentence f , compute its most probable trans-

lation according to the following equations respec-

tively.

e
∗ = argmax

e

∑

a

P (f ,a|e) P (e)

(e∗,a∗) = argmax
(e,a)

P (f ,a|e) P (e).

2.5 SETCOVER

Given a collection of sets C = {S1, . . . ,Sl} and

a set X ⊆ ∪l
i=1Si, find the minimum cardinality

subset C′ of C such that every element in X be-

longs to at least one member of C′.

SETCOVER is a well-known NP-Complete

problem. If SETCOVER ≤m
p f , then f is NP-

Hard.

2.6 PERMANENT

Given a matrix M = [Mj,i]n×n whose entries are

either 0 or 1, compute the following:

perm(M) =
∑

π

∏n
j=1 Mj,πj

where π is a per-

mutation of 1, . . . , n.

This problem is the same as that of counting the

number of perfect matchings in a bipartite graph

and is known to be #P-Complete (?). If PERMA-

NENT ≤T f , then f is #P-Hard.

2.7 COMPAREPERMANENTS

Given two matrices A = [Aj,i]n×n
and B =

[Bj,i]n×n
whose entries are either 0 or 1, determine

which of them has a larger permanent. PERMA-

NENT is known to be Turing reducible to COM-

PAREPERMANENTS (Jerrum, 2005) and therefore,

if COMPAREPERMANENTS ≤T f , then f is #P-

Hard.

3 Main Results

In this section, we present the main reductions

for the problems with Model 3 as the translation

model. Our reductions can be easily carried over

to Models 4−5 with minor modifications. In order

to keep the presentation of the main ideas simple,

we let the lexicon, distortion, and fertility models

to be any non-negative functions and not just prob-

ability distributions in our reductions.

3.1 VITERBI-3

We show that VITERBI-3 is NP-Hard.

Lemma 1 SETCOVER ≤m
p VITERBI-3.

Proof: We give a polynomial time many-one

reduction from SETCOVER to VITERBI-3. Given

a collection of sets C = {S1, . . . ,Sl} and a set

X ⊆ ∪l
i=1Si, we create an instance of VITERBI-3

as follows:

For each set Si ∈ C, we create a word ei (1 ≤ i ≤
l). Similarly, for each element vj ∈ X we create

a word fj (1 ≤ j ≤ |X| = m). We set the model

parameters as follows:

t (fj|ei) =

{

1 if vj ∈ Si

0 otherwise

n (φ|e) =

{
1

2φ! if φ 6= 0

1 if φ = 0

d (j|i,m, l) = 1.

Now consider the sentences e =
e1 . . . el and f = f1 . . . fm.

P (f ,a|e) = n

(

φ0|
l∑

i=1

φi

)
l∏

i=1

n (φi|ei) φi!

×
m∏

j=1

t
(
fj|eaj

) ∏

j: aj 6=0

d (j|i,m, l)

=

l∏

i=1

1

21−δ(φi,0)

We can construct a cover for X from the output

of VITERBI-3 by defining C′ = {Si|φi > 0}. We

note that P (f ,a|e) =
∏n

i=1
1

21−δ(φi,0) = 2−|C′|.

Therefore, Viterbi alignment results in the mini-

mum cover for X.

3.2 PROBABILITY-3

We show that PROBABILITY-3 is #P-Complete.

We begin by proving the following:

Lemma 2 PERMANENT ≤T PROBABILITY-3.

Proof: Given a 0, 1-matrix M =
[Mj, i]n×n, we define f = f1 . . . fn and e =
e1 . . . en where each ei and fj is distinct and set

the Model 3 parameters as follows:

t (fj|ei) =

{

1 if Mj,i = 1

0 otherwise

n (φ|e) =

{

1 if φ = 1

0 otherwise

d (j|i, n, n) = 1.

28

Clearly, with the above parameter setting,

P (f ,a|e) =
∏n

j=1 Mj, aj
if a is a permutation

and 0 otherwise. Therefore,

P (f |e) =
∑

a

P (f ,a|e)

=
∑

a is a permutation

n∏

j=1

Mj, aj
= perm (M)

Thus, by construction, PROBABILITY-3 com-

putes perm (M). Besides, the construction con-

serves the number of witnesses. Hence, PERMA-

NENT ≤T PROBABILITY-3.

We now prove that

Lemma 3 PROBABILITY-3 is in #P.

Proof: Let (f , e) be the input to

PROBABILITY-3. Let m and l be the lengths

of f and e respectively. With each alignment

a = (a1, a2, . . . , am) we associate a unique num-

ber na = a1a2 . . . am in base l + 1. Clearly,

0 ≤ na ≤ (l + 1)m − 1. Let w be the binary

encoding of na. Conversely, with every binary

string w we can associate an alignment a if the

value of w is in the range 0, . . . , (l + 1)m − 1. It

requires O (m log (l + 1)) bits to encode an align-

ment. Thus, given an alignment we can compute

its encoding and given the encoding we can com-

pute the corresponding alignment in time polyno-

mial in l and m. Similarly, given an encoding we

can compute P (f ,a|e) in time polynomial in l and

m. Now, if p(.) is a polynomial, then function

f (f , e) =
∑

w∈{0,1}∗

|w|≤p(|〈f , e〉|)

P (f ,a|e)

is in #P. Choose p (x) = dx log2 (x + 1)e.

Clearly, all alignments can be encoded using at

most p (| (f , e) |) bits. Therefore, if (f , e) com-

putes P (f |e) and hence, PROBABILITY-3 is in

#P.

It follows immediately from Lemma 2 and

Lemma 3 that

Theorem 1 PROBABILITY-3 is #P-Complete.

3.3 (f, e)-COUNT-3

Lemma 4 PERMANENT ≤T (f, e)-COUNT-3.

Proof: The proof is similar to that of

Lemma 2. Let f = f1 f2 . . . fn f̂ and e =

e1 e2 . . . en ê. We set the translation model para-

meters as follows:

t (f |e) =







1 if f = fj, e = ei and Mj,i = 1

1 if f = f̂ and e = ê

0 otherwise.

The rest of the parameters are set as in Lemma 2.

Let A be the set of alignments a, such that an+1 =
n+1 and a

n
1 is a permutation of 1, 2, . . . , n. Now,

c
(

f̂ |ê; f , e
)

=
∑

a

P (f ,a|e)
n+1∑

j=1

δ(f̂ , fj)δ(ê, eaj
)

=
∑

a∈A

P (f ,a|e)

n+1∑

j=1

δ(f̂ , fj)δ(ê, eaj
)

=
∑

a∈A

P (f ,a|e)

=
∑

a∈A

n∏

j=1

Mj, aj
= perm (M) .

Therefore, PERMANENT ≤T COUNT-3.

Lemma 5 (f, e)-COUNT-3 is in #P.

Proof: The proof is essentially the same as

that of Lemma 3. Note that given an encoding w,

P (f ,a|e)
∑m

j=1 δ (fj, f) δ
(
eaj

, e
)

can be evalu-

ated in time polynomial in |(f , e)|.
Hence, from Lemma 4 and Lemma 5, it follows

that

Theorem 2 (f, e)-COUNT-3 is #P-Complete.

3.4 (j, i,m, l)-COUNT-3

Lemma 6 PERMANENT ≤T (j, i,m, l)-COUNT-

3.

Proof: We proceed as in the

proof of Lemma 4 with some modifica-

tions. Let e = e1 . . . ei−1êei . . . en and

f = f1 . . . fj−1f̂ fj . . . fn. The parameters

are set as in Lemma 4. Let A be the set of

alignments, a, such that a is a permutation of

1, 2, . . . , (n + 1) and aj = i. Observe that

P (f ,a|e) is non-zero only for the alignments in

A. It follows immediately that with these para-

meter settings, c(j|i, n, n; f , e) = perm (M) .

Lemma 7 (j, i,m, l)-COUNT-3 is in #P.

Proof: Similar to the proof of Lemma 5.

Theorem 3 (j, i,m, l)-COUNT-3 is #P-

Complete.

29

3.5 (φ, e)-COUNT-3

Lemma 8 PERMANENT ≤T (φ, e)-COUNT-3.

Proof: Let e = e1 . . . enê and f =

f1 . . . fn

k
︷ ︸︸ ︷

f̂ . . . f̂ . Let A be the set of alignments

for which a
n
1 is a permutation of 1, 2, . . . , n and

a
n+k
n+1 =

k
︷ ︸︸ ︷

(n + 1) . . . (n + 1). We set

n (φ|e) =







1 if φ = 1 and e 6= ê

1 if φ = k and e = ê

0 otherwise.

The rest of the parameters are set as in Lemma 4.

Note that P (f ,a|e) is non-zero only for the align-

ments in A. It follows immediately that with these

parameter settings, c(k|ê; f , e) = perm (M) .

Lemma 9 (φ, e)-COUNT-3 is in #P.

Proof: Similar to the proof of Lemma 5.

Theorem 4 (φ, e)-COUNT-3 is #P-Complete.

3.6 0-COUNT-3

Lemma 10 PERMANENT ≤T 0-COUNT-3.

Proof: Let e = e1 . . . en and f = f1 . . . fnf̂ .

Let A be the set of alignments, a, such that a
n
1 is

a permutation of 1, . . . , n and an+1 = 0. We set

t (f |e) =







1 if f = fj, e = ei and Mj, i = 1

1 if f = f̂ and e = NULL

0 otherwise.

The rest of the parameters are set as in Lemma 4.

It is easy to see that with these settings,
c(0;f ,e)
(n−2) =

perm (M) .

Lemma 11 0-COUNT-3 is in #P.

Proof: Similar to the proof of Lemma 5.

Theorem 5 0-COUNT-3 is #P-Complete.

3.7 1-COUNT-3

Lemma 12 PERMANENT ≤T 1-COUNT-3.

Proof: We set the parameters as in

Lemma 10. It follows immediately that

c(1; f , e) = perm (M) .

Lemma 13 1-COUNT-3 is in #P.

Proof: Similar to the proof of Lemma 5.

Theorem 6 1-COUNT-3 is #P-Complete.

3.8 E-DECODING-3

Lemma 14 COMPAREPERMANENTS ≤T E-

DECODING-3

Proof: Let M and N be the two 0-1 matri-

ces. Let f = f1f2 . . . fn, e
(1) = e

(1)
1 e

(1)
2 . . . e

(1)
n

and e
(2) = e

(2)
1 e

(2)
2 . . . e

(2)
n . Further, let e

(1) and

e
(2) have no words in common and each word

appears exactly once. By setting the bigram lan-

guage model probabilities of the bigrams that oc-

cur in e
(1) and e

(2) to 1 and all other bigram prob-

abilities to 0, we can ensure that the only trans-

lations considered by E-DECODING-3 are indeed

e
(1) and e

(2) and P
(
e

(1)
)

= P
(
e

(2)
)

= 1. We

then set

t (f |e) =







1 if f = fj, e = e
(1)
i and Mj,i = 1

1 if f = fj, e = e
(2)
i and Nj,i = 1

0 otherwise

n (φ|e) =

{

1 φ = 1

0 otherwise

d (j|i, n, n) = 1.

Now, P
(
f |e(1)

)
= perm (M), and P

(
f |e(2)

)
=

perm (N). Therefore, given the output of E-

DECODING-3 we can find out which of M and

N has a larger permanent.

Hence E-DECODING-3 is #P− Hard.

3.9 R-DECODING-3

Lemma 15 SETCOVER ≤m
p R-DECODING-3

Proof: Given an instance of SETCOVER, we

set the parameters as in the proof of Lemma 1 with

the following modification:

n (φ|e) =

{
1

2φ! if φ > 0

0 otherwise.

Let e be the optimal translation obtained by solv-

ing R-DECODING-3. As the language model is

uniform, the exact order of the words in e is not

important. Now, we observe that:

• e contains words only from the set

{e1, e2, . . . , el}. This is because, there can-

not be any zero fertility word as n (0|e) = 0
and the only words that can have a non-zero

fertility are from {e1, e2, . . . , el} due to the

way we have set the lexicon parameters.

• No word occurs more than once in e. Assume

on the contrary that the word ei occurs k > 1

30

times in e. Replace these k occurrences by

only one occurrence of ei and connect all the

words connected to them to this word. This

would increase the score of e by a factor of

2k−1 > 1 contradicting the assumption on

the optimality of e.

As a result, the only candidates for e are subsets of

{e1, e2, . . . , el} in any order. It is now straight for-

ward to verify that a minimum set cover can be re-

covered from e as shown in the proof of Lemma 1.

3.10 IBM Models 4 and 5

The reductions are for Model 3 can be easily ex-

tended to Models 4 and 5. Thus, we have the fol-

lowing:

Theorem 7 Viterbi Alignment computation is

NP-Hard for IBM Models 3 − 5.

Theorem 8 Expectation Evaluation in the EM

Steps is #P-Complete for IBM Models 3 − 5.

Theorem 9 Conditional Probability computation

is #P-Complete for IBM Models 3 − 5.

Theorem 10 Exact Decoding is #P-Hard for

IBM Models 3 − 5.

Theorem 11 Relaxed Decoding is NP-Hard for

IBM Models 3 − 5 even when the language model

is a uniform distribution.

4 Discussion

Our results answer several open questions on the

computation of Viterbi Alignment and Expectation

Evaluation. Unless P = NP and P
#P = P,

there can be no polynomial time algorithms for

either of these problems. The evaluation of ex-

pectations becomes increasingly difficult as we go

from IBM Models 1-2 to Models 3-5 exactly be-

cause the problem is #P-Complete for the latter

models. There cannot be any trick for IBM Mod-

els 3-5 that would help us carry out the sums over

all possible alignments exactly. There cannot exist

a closed form expression (whose representation is

polynomial in the size of the input) for P (f |e) and

the counts in the EM iterations for Models 3-5.

It should be noted that the computation of

Viterbi Alignment and Expectation Evaluation is

easy for Models 1-2. What makes these computa-

tions hard for Models 3-5? To answer this ques-

tion, we observe that Models 1-2 lack explicit fer-

tility model unlike Models 3-5. In the former mod-

els, fertility probabilities are determined by the

lexicon and alignment models. Whereas, in Mod-

els 3-5, the fertility model is independent of the

lexicon and alignment models. It is precisely this

freedom that makes computations on Models 3-5

harder than the computations on Models 1-2.

There are three different ways of dealing with

the computational barrier posed by our problems.

The first of these is to develop a restricted fertil-

ity model that permits polynomial time computa-

tions. It remains to be found what kind of parame-

terized distributions are suitable for this purpose.

The second approach is to develop provably good

approximation algorithms for these problems as is

done with many NP-Hard and #P-Hard prob-

lems. Provably good approximation algorithms

exist for several covering problems including Set

Cover and Vertex Cover. Viterbi Alignment is itself

a special type of covering problem and it remains

to be seen whether some of the techniques devel-

oped for covering algorithms are useful for finding

good approximations to Viterbi Alignment. Sim-

ilarly, there exist several techniques for approxi-

mating the permanent of a matrix. It needs to be

explored if some of these ideas can be adapted for

Expectation Evaluation.

As the third approach to deal with complex-

ity, we can approximate the space of all possi-

ble (l + 1)m alignments by an exponentially large

subspace. To be useful such large subspaces

should also admit optimal polynomial time al-

gorithms for the problems we have discussed in

this paper. This is exactly the approach taken

by (Udupa, 2005) for solving the decoding and

Viterbi alignment problems. They show that very

efficient polynomial time algorithms can be de-

veloped for both Decoding and Viterbi Alignment

problems. Not only the algorithms are prov-

ably superior in a computational complexity sense,

(Udupa, 2005) are also able to get substantial im-

provements in BLEU and NIST scores over the

Greedy decoder.

5 Conclusions

IBM models 3-5 are widely used in SMT. The

computational tasks discussed in this work form

the backbone of all SMT systems that use IBM

models. We believe that our results on the compu-

tational complexity of the tasks in SMT will result

in a better understanding of these tasks from a the-

oretical perspective. We also believe that our re-

sults may help in the design of effective heuristics

31

for some of these tasks. A theoretical analysis of

the commonly employed heuristics will also be of

interest.

An open question in SMT is whether there ex-

ists closed form expressions (whose representation

is polynomial in the size of the input) for P (f |e)
and the counts in the EM iterations for models 3-5

(Brown et al., 1993). For models 1-2, closed form

expressions exist for P (f |e) and the counts in the

EM iterations for models 3-5. Our results show

that there cannot exist a closed form expression

(whose representation is polynomial in the size of

the input) for P (f |e) and the counts in the EM

iterations for Models 3-5 unless P = NP.

References

K. Knight. 1999. Decoding Complexity in Word-
Replacement Translation Models. Computational
Linguistics.

Brown, P. et al: 1993. The Mathematics of Machine
Translation: Parameter Estimation. Computational
Linguistics, 2(19):263–311.

Al-Onaizan, Y. et al. 1999. Statistical Machine Trans-
lation: Final Report. JHU Workshop Final Report.

R. Udupa, and T. Faruquie. 2004. An English-Hindi
Statistical Machine Translation System. Proceed-
ings of the 1st IJCNLP.

Y. Wang, and A. Waibel. 1998. Modeling with Struc-
tures in Statistical Machine Translation. Proceed-
ings of the 36th ACL.

D. Marcu and W. Wong. 2002. A Phrase-Based, Joint
Probability Model for Statistical Machine Transla-
tion. Proceedings of the EMNLP.

L. Valiant. 1979. The complexity of computing the
permanent. Theoretical Computer Science, 8:189–
201.

M. Jerrum. 2005. Personal communication.

C. Tillman. 2001. Word Re-ordering and Dynamic
Programming based Search Algorithm for Statistical
Machine Translation. Ph.D. Thesis, University of
Technology Aachen 42–45.

Y. Wang and A. Waibel. 2001. Decoding algorithm in
statistical machine translation. Proceedings of the
35th ACL 366–372.

C. Tillman and H. Ney. 2000. Word reordering and
DP-based search in statistical machine translation.
Proceedings of the 18th COLING 850–856.

F. Och, N. Ueffing, and H. Ney. 2000. An efficient A*
search algorithm for statistical machine translation.
Proceedings of the ACL 2001 Workshop on Data-
Driven Methods in Machine Translation 55–62.

U. Germann et al. 2003. Fast Decoding and Optimal
Decoding for Machine Translation. Artificial Intel-
ligence.

R. Udupa, H. Maji, and T. Faruquie. 2004. An Al-
gorithmic Framework for the Decoding Problem in
Statistical Machine Translation. Proceedings of the
20th COLING.

R. Udupa and H. Maji. 2005. Theory of Alignment
Generators and Applications to Statistical Machine
Translation. Proceedings of the 19th IJCAI.

32

