
Learning to Identify Fragmented Words in Spoken Discourse

Piroska Lendvai
ILK Research Group

Tilburg University
The Netherlands

p.lendvai@uvt.n1

Abstract

Disfluent speech adds to the difficulty
of processing spoken language utter-
ances. In this paper we concentrate on
identifying one disfluency phenomenon:
fragmented words. Our data, from the
Spoken Dutch Corpus, samples nearly
45,000 sentences of human discourse,
ranging from spontaneous chat to me-
dia broadcasts. We classify each lexi-
cal item in a sentence either as a com-
pletely or an incompletely uttered, i.e.
fragmented, word. The task is carried
out both by the IB 1 and RIPPER ma-
chine learning algorithms, trained on a
variety of features with an extensive op-
timization strategy. Our best classifier
has a 74.9% F-score, which is a signifi-
cant improvement over the baseline. We
discuss why memory-based learning has
more success than rule induction in cor-
rectly classifying fragmented words.

1 Introduction

Although human listeners are good at handling
disfluent items (self-corrections, repetitions, hes-
itations, incompletely uttered words and the like,
cf. Shriberg (1994)) in spoken language utter-
ances, these are likely to cause confusion when
used as input to automatic natural language pro-
cessing (NLP) systems, resulting in poor human-
computer interaction (Nakatani and Hirschberg,

1994; Eklund and Shriberg, 1998). Detecting dis-
fluent passages can help clean the spoken input
and improve further processing such as parsing.

By treating fragments we cover a considerable
portion of the occurring disfluencies as incom-
pletely uttered words often occur as part of a
speaker's self-repair (Bear et al., 1992; Nakatani
and Hirschberg, 1994). Moreover, if an incom-
pletely pronounced item is identified, we thereby
determine the interruption point, a central phe-
nomenon in disfluencies (Bear et al., 1992; Hee-
man, 1999; Shriberg et al., 2001). The surround-
ings of this disfluency element are to be treated
with greater care, as before an interruption point
there might be word(s) meant to be erased (called
the reparandum), whereas the word(s) that follow
it (the repair) might be intended to replace the
erased part, cf. the following example:

het veilig gebruik van interne_*' 12
sorry van electronic commerce 3

(the safe usage of interne—* sorry of
electronic commerce).

Previous studies in the field of applying ma-
chine learning (ML) methods to disfluencies ei-
ther employ classification and regression trees for
identifying repair cues (Nakatani and Hirschberg,
1994) and for detecting disfluencies (Shriberg et
al., 2001), or they use a combination of decision
trees and language models to detect disfluency
events (Stolcke et al., 1998) or to model repairs

reparandum
2interruption point
repair

25

(Heeman, 1999). Although Spilker et al. (2001)
and Heeman (1999) observe that word fragments
pose an unsolved problem in processing disflu-
encies, often the presence of a disfluent word is
regarded as an integral property of a speech re-
pair and is employed as a readily available feature
in the ML tool (Nakatani and Hirschberg, 1994).
However, automatic identification of a fragment is
not straightforward, unlike the recognition of other
disfluency types, such as filled pauses ("uhm").

Our study investigates the feasibility of auto-
matically detecting fragments, for which we pro-
pose using learning algorithms, since they suit this
problem formalised as a binary classification task
of deciding whether a word is completely or in-
completely uttered. The current paper first de-
scribes our large-scale experimental material, af-
ter which the learning process is explained, with
particular emphasis on the features employed by
the two different learning algorithms and the ex-
perimental setup. We also introduce the method
of iterative deepening used for optimizing the pa-
rameters of both the memory-based and the rule
induction classifier. In Section 4 the results of the
fragment identification task are reported and the
behaviour of the learners is analysed. The last sec-
tion evaluates our approach and outlines the direc-
tions for further investigation.

2 The data

For our research the morphologically and syn-
tactically annotated portion of the Spoken Dutch
Corpus (Oostdijk, 2002) of Development Release
5 was used, which incorporates 203 orthograph-
ically transcribed discourses of various genres,
sampled from diverse regions of The Nether-
lands and Flanders (Belgium). The transcribed
sentences are tagged morpho-syntactically, and a
complete and corrected syntactic dependency tree
is built manually for each utterance.

The discourses are grouped into 10 levels of
spontaneity, extending from television and ra-
dio broadcasts, interviews, lectures, meetings, to
spontaneous telephone conversations. The num-
ber of speakers involved ranges from 1 (newsread-
ing) to 7 (parliamentary session). As disfluencies
are reported to occur both in dialogue and mono-
logue (Shriberg et al., 2001), we did not weed out

discourses from the corpus that feature only one
speaker.

Altogether, our material counts 340,840 lexi-
cal tokens in 44,939 sentences. The tokens are
marked for filled pauses, coordinating conjunc-
tions ("and then"), grammatically or phonetically
ill-formed but complete words ("hij blelde [beide]
niet", i.e., "he did not clal [calif') and fragmented
words ("hij be—* belde niet", i.e., "he did not c—*
call"). There are 3,137 fragmented words in our
material, constituting 0.9% of the lexical tokens.
The average sentence length in the corpus in 7.6
words. Interestingly, the average length of sen-
tences containing one or more fragments is much
higher, namely 18.2 words. Oviatt (1995) finds
indeed that longer utterances lead to more disflu-
encies than short ones.

The work of (Bear et al., 1992) reports that
in 60% of self-repairs a fragment is involved,
whereas this rate is 73% in the study of (Nakatani
and Hirschberg, 1994) and 26% in (Heeman,
1999). In our material such a rate cannot be di-
rectly computed, since not all kinds of repairs are
separately annotated in the CGN corpus. How-
ever, if those passages that are excluded from the
syntactic trees are counted as self-repair events,
we find that in 20% of those events a fragmented
word is present.

3 Learning experiments

3.1 Selecting cues

Identification of cues for detecting incompletely
uttered words was based on close inspection of our
corpus and on the literature. In the current paper
we focus on using word-based information only,
in order to investigate the feasibility of fragment
detection with readily available features. This is
in line with Heeman and Allen (1994) who as-
sume local context to be sufficient in detecting
most speech repairs, without taking syntactic well-
formedness or speech prosody into consideration.

Table 1 lists the 22 features that we extracted au-
tomatically from the corpus material, subdivided
into four groups according to the aspect they de-
scribe. Five lexical string features represent the
focus word itself and its neighboring two left and
two right unigram contexts (if any). Four binary

26

features mark if overlap in wording or in initial let-
ter occurs between the focus item and/or its con-
text. Matching words or word-initial letters are of-
ten to be found both at the reparandum onset and
the repair onset, as in a correction of Arnhem:

"de werkloosheid in Arnhe—* in Nij-
megen" (the unemployment in Arnhe—"
in Nijmegen).

The last member of this group is a ternary feature,
showing the extent to which left and right context
words overlap (0-1-2 letters).

Four attributes in the feature vector describe
general properties of the given utterance, indi-
cating sentence length and the focus item's rela-
tive position in the sentence, as well as the total
amount of filled pauses and of identical lexical se-
quences in the sentence. By employing these fea-
tures we allow the learners to make use of pos-
sible correlations between certain values of these
attributes and the potential presence of an incom-
plete word. Finally, eight binary features con-
vey information about those phenomena in the two
left and two right context items of the focus that,
according to empirical studies, might be repair-
signalling: filled pauses, coordinating conjunc-
tions, as well as the presence of items that either
elicit or often co-occur with disfluencies: named
entities4 , unintelligible mumbling, and laughter.
Except for named entities, these features were
identified using the corpus markups.

Some seemingly redundant features of the
Overlap and Context-type groups deliberately re-
introduce properties that are implicitly present in
the lexical features. By making these explicit we
ensure that the learners, unable to capture sub-
wordform similarities between the features, will
not ignore possibly important information.

3.2 Data preparation

In order to conduct 10-fold cross-validation exper-
iments, the discourses were randomized and sub-
sequently partitioned into 90% training sets and
10% test sets. The sizes of the ten resulting train-
ing sets are roughly similar and so are the sizes
of the ten resulting test sets. Partitioning was

4 i.e., capitalized words. Sentence-initial words are not
capitalized in the corpus.

Aspect Features
Lexical (1) Left2 context item (2) Leftl (3) Focus item

(4) Right] (5) Right2
Overlap (1)	 Left 1 /Right 1	 items	 identical	 (2)

Left 1 /Right2 items identical (3) First letter of
Left 1/First letter of Focus overlap (4) First
letter of Focus/First letter of Right] overlap
(5) First and/or second letter of Left I /Right2
overlap

General (I) Number of tokens in utterance (2) Propor-
tional position of focus item (3) Amount of
filled pauses in sentence (4) Amount of lexi-
cal repetitions

Context-
type

(1) Left2 is filled pause (2) Leftl is FP
(3) Rightl is FP (4) Right2 is FP (5) Named
entity in context of focus item (6) Laughter
(7) Unintelligible material (8) Coordinating
conjunction

Table 1: Overview of the employed features,
grouped according to their aspect.

discourse-based to ensure that no material from
one and the same dialogue could be present both
in the training and the test set of a partition.

We automatically generated learning instances
from each word form token, extracting the
values corresponding to the features described
above. The class symbol of the learning instance
(Fragment or Non-Fragment) indicates whether
the focus item is an incompletely uttered word or
not. Subsequently, the extracted feature values and
the class symbol were arranged into a flat, fixed-
length format of 23 elements, illustrated in Table
2. For example, the binary representation of a
letter-overlap phenomenon can be observed in line
7: the first letter of the fragmented focus item "ru"
overlaps with the first letter of its immediate right
context (R1) "rugbyteam", so the 04 feature, rep-
resenting the fourth feature of the Overlap group,
is set to 1.

3.3 The learners

We used two learning algorithms to carry out frag-
ment detection. The TiMBL 4.3 software pack-
age (Daelemans et al., 2002) incorporates a va-
riety of memory-based pattern classification al-
gorithms, each with fine-tunable metrics. We
chose for working with the TB 1 algorithm only
(the default in TiMBL), taking the classical k-
nearest neighbor approach to classification: look-
ing for those instances among the training data

27

L2 L 1 Focus R1 R2 01 02 03 04 05 G1 G2 G3 G4 Cl C2 C3 C4 C5 C6 C7 C8 Class

ggg ja hij 0 0 0 0 0 9 0.00 3 0 0 0 1 0 0 0 0 0 N
ggg ja hij is 0 0 0 0 0 9 0.11 3 0 0 0 0 0 0 1 0 0 N

ggg ja hij is uh 0 0 0 0 0 9 0.22 3 0 0 1 0 1 0 1 0 0 N
ja hij is oh met 0 0 0 0 0 9 0.33 3 0 1 0 1 0 0 0 0 0 N
hij is uh met ru 0 0 0 0 0 9 0.44 3 0 0 0 0 0 0 0 0 0 N
is uh met ru rugbyteam 0 0 0 0 0 9 0.56 3 0 0 1 0 0 0 0 0 0 N
oh met ru rugbyteam oh 0 0 0 1 0 9 0.67 3 0 1 0 0 1 0 0 0 0 Fr

met ru rugbyteam oh ... 0 0 1 0 0 9 0.78 3 0 0 0 1 0 0 0 0 0 N
ru rugbyteam oh ... 0 0 0 0 0 9 0.89 3 0 0 0 0 0 0 0 0 0 N

rugbyteam uh ... 0 0 0 0 0 9 1.00 3 0 0 1 0 0 0 0 0 0 N

Table 2: Ten instances built from the ten elements of the utterance "<laughter> yes he is with ru—*
rugby team uh ..." : the focus item in windowed context, the numeric features and the class symbol.

that are most similar to the test instance, and ex-
trapolating their majority outcome to the test in-
stance's class. Memory-based learning is often
called "lazy" learning, because the classifier sim-
ply stores all training examples in memory, with-
out abstracting away from individual instances in
the learning process.

In contrast, our other classifier is a "greedy"
learning algorithm, RIPPER (Cohen, 1995), ver-
sion 1, release 2.4. This learner induces rule sets
for each of the classes in the data, with built-in
heuristics to maximize accuracy and coverage for
each rule induced. This approach aims at discover-
ing the regularities in the data, and represent it by
the simplest possible rule set. Rules are by default
induced first for low-frequency classes, leaving the
most frequent class the default rule. This suits our
purpose well as we are interested in making rules
for the minority Fragment class.

3.4 Optimization with iterative deepening

For both classifiers the learning process consisted
of two parts per data partition. First, an itera-
tive deepening search algorithm (Kohavi and John,
1997; Provost et al., 1999) was used to automati-
cally construct a large number of different learn-
ers by varying the parameters of IB 1 and of RIP-

PER. These learners were systematically trained
on portions of the 90% training set, starting with a
small sample and doubling it over the iterative op-
timization rounds. This test data was variedly rep-
resented by all possible combinations of our four
feature groups in the case of IB 1 experiments, in
order to exploit the benefits of interleaved parame-
ter optimization and feature selection (Daelemans

and Hoste, 2002). In experiments with RIPPER the
data was represented by all the features, assuming
that this algorithm's architecture will abandon use-
less features anyway . At the same time, RIPPER

was allowed to arbitrarily add redundant features
to the learning instances.

The test set for the iterative deepening experi-
ments consisted of about 11,000 instances taken
from elsewhere in the 90% training set. Due to
the sparse distribution of the Fragment class in the
data (recall that less than 1% of the words are frag-
ments), it was important to allow the learners ac-
cess to enough test material on the Fragment class
during the optimization. Therefore we boosted
this test set with Fragment-class instances from
the remaining (i.e., selected neither for the train-
ing nor for the test set) portion of the original 90%
training set.

Throughout the learning experiments we
worked with the evaluation metrics of predictive
accuracy, as well as the Fragment class's pre-
cision, recall, and F-score 5 . In the embedded
rounds of the iterative deepening process the
classifiers recursively searched for the optimal
combination of parameter setting and feature
selection by maximizing the F-score performance
on the Fragment class. In each round the learners
were ranked according to their performance. The
lower half of these were discarded, whereas the
well-performing combinations were re-trained.

Both the size of our material and the search
space of the task were large, thus conducting

5 The harmonic mean of precision and recall. We employ
the unweighted variant of F, defined as 2P RI (P R) (P =
precision, R = recall) (van Rijsbergen, 1979).

28

an exhaustive search for our study was compu-
tationally not feasible. The iterative deepening
algorithm conducted 4,301 learning experiments
with IB 1 and 3,187 with RIPPER during the opti-
mization rounds for each partition even with this
heuristic search that constrained the amount of
learners that got optimized by the iterative rounds,
the size of data the learners were trained and tested
on, the choice of classifier parameters to be opti-
mized, as well as the values of these parameters.

In IB 1 the following settings were tested (for de-
tails, cf. (Daelemans et al., 2002)):

• the number of nearest neighbors used for ex-
trapolation were odd numbers varied between
1 and 25

• the distance weighting metric of the k nearest
neighbors was either majority class voting or
inverse distance weighting

• for computing the similarity between features
either the overlap function or the modified
value difference metric (MVDM) function
was used

• the frequency threshold that allows calcula-
tion of MVDM instead of overlap was varied
between 1-10

• for estimating the importance of the attributes
in the classification task either no weighting,
or Gain Ratio, or Chi-squared weighting was
used.

For the RIPPER algorithm the learners to be op-
timized were created by systematically varying the
following parameters and their values:

• negative tests on the feature attributes were
either allowed or disallowed

• the number of optimization rounds on the in-
duced ruleset was within a range of 0-3

• the amount of learning instances to be mini-
mally covered by each rule was set to values
in the range of 1-5

• the coding cost of theory was allowed to be
multiplied by various values, leading to sim-
plification or complication of hypotheses

• the loss ratio of costs was varied between 0.5-
100.

In the second part of the fragment detection ex-
periments the highest-scoring learner of the given

partition was trained on the total 90% training set
and tested on the held-out 10% test set, finalizing
the 10-fold cross-validation experiment. The per-
formance of these ten classifiers were finally com-
bined in a single figure to represent the average
performance of the learning algorithm in the frag-
ment classification task.

3.5 Baselines

In order to evaluate our classifiers, a baseline of
the fragment identification task needs to be estab-
lished. Predicting if a certain word is a completely
or an incompletely uttered one can hardly be mod-
elled along simple lines. By constructing a lexicon
of all the words in the training portion of the cor-
pus a simple check could determine if a given test
item is a suspectedly incomplete word (not being
present in the lexicon), or is a complete word (if
present in the lexicon).

However, an "in-lexicon" property of an item
does not automatically guarantee that the word is
a completely uttered element in the given context:
there are numerous words in Dutch that are present
in even a small lexicon, for example "in" (in), "zo"
(so), "nee" (no), "no" (after), `moe" (tired), and
which occur very frequently as fragmented begin-
nings of some other, longer words. Furthermore,
applying this baseline approach to our data, we
find that the accuracy (91.4%) and recall (53.6%)
figures are reasonable, but precision is very low
(2.4%) as all new words in the test set are regarded
as fragments. This baseline has a 4.6% F-score.

A second baseline model, that obtains higher
precision, is to consider all 1-letter items a frag-
ment. This baseline has an accuracy of 97.4% in
detecting fragmented items, with 54.3% precision,
43.9% recall, thus 48.5% F-score. It ignores that
there are frequent, legal 1-letter words in Dutch.

4 Results

4.1 Learner Performance

The average performance of IB 1 in the 10-fold
cross-validation experiments is shown in Table 3.
The diversity among the learners per partition is
characterized by the mean and standard deviation
figures for the four evaluative measures. The opti-
mized IB 1 algorithm classifies fragmented words

29

Learner Accuracy Precision Recall F-s core

In-lexicon baseline 91.4 2.4 53.6 4.6
1-letter baseline 97.4 54.3 43.9 48.5
Default TB 1 99.6±0.1 8 l .3±4.5 65.3±4.4 72.4±4.2
Optimized IB 1 99.6±0.1 83 .9± 3 .5 67.7±4.6 74.9±3.9
Default RIPPER 99.3±0.1 98.6± 3 .5 17.4±2.3 29.5±3.3
Optimized RIPPER 99.4±0.1 81.8±4.6 32.7±4.4 46.5±4.7

Table 3: Results of default and optimized IB 1 and RIPPER in 10-fold cross-validation.

with 83.9% precision and 67.7% recall, obtaining
a 74.9% F-score, which is a significant improve-
ment over both baseline models. Furthermore, the
optimized TB 1 classifier (shown in the same table)
outperforms the non-optimized IB 1's F-score by
2.5 points (significant in a paired t-test, p < 0.01).

In order to point out problematic cases for
the learner, we examined the classified mate-
rial and found that it often produced false neg-
atives in cases when a fragmented item resem-
bled a true word (this corresponds to the problems
with the In-lexicon baseline), or when fragmented
acronyms, named entities or foreign words (e.g.
the English word "I") had to be classified. Annota-
tion errors in the corpus lead to similar problems.
On the other hand, the same word types caused
many false positives as well when it came to clas-
sifying non-fragmented but short lexical items,
foreign words and named entities.

The outcome of the 10-fold cross-validation ex-
periment with the optimized RIPPER is shown in
the bottom line of Table 3. It scores below TB 1 and
the 1-letter baseline model, producing 99.4% ac-
curacy but only 46.5% F-score in classifying frag-
mented words. However, the optimized RIPPER

produces much better classification results than
the default algorithm.

When trained on the total training set with the
optimized settings, the number of induced rules is
well above one hundred. Our largest ruleset con-
sists of 193 rules. The hypotheses incorporate be-
tween one and seven conditions each, mainly con-
ditioning on the immediate right context, particu-
larly when it has the value of "...", indicating an
abandoned sentence. The letter overlap between
focus word and immediate right context (04) has
indeed proven to be a very frequently employed,

useful feature, as well as the identity of the fo-
cus word. Other attributes often used in the rules
are the lexical context items, and features from
the General group: relative sentence position, sen-
tence length, and the amount of lexical repetitions
in the utterance.

We see that, when negation is allowed in the
learner, this is mostly applied to the focus word.
Namely, when making rules for the Fragment
class, the hypotheses forbid the focus item to have
certain values such as filled pauses, unintelligible
material, and coordinating conjunctions, suppos-
edly because such items are mostly short and oc-
cur in similar contexts as fragmented words, but
are not fragments themselves.

4.2 Optimized parameters

The interleaved parameter optimization and fea-
ture selection process for IB 1 resulted in ten learn-
ers with identical parameter settings. Namely, the
overlap similarity metric worked uniformly best
for all data partitions, with k=1, employing the
Chi-squared feature weighting metric.

When k is set to 1, 1B 1 's strategy is to return the
class of the immediate nearest neighbor, which is,
according to the resulting overlap similarity met-
ric, the one having the least difference in a feature-
per-feature match between the test instance and a
training instance stored in memory. When calcu-
lating the differences, the features are ranked ac-
cording to their importance in the classification
task. According to the results of iterative deepen-
ing, this importance is defined by the Chi-squared
statistic measure, computed by using observed and
expected feature value and class co-occurrences.

There is a marked difference between the
weights the Chi-squared metric assigns to features,

30

as opposed to those of the default gain ratio metric:
Chi -squred statistics considers the focus item's
identity most important, followed by the right con-
text (R1 and R2), and the left context (L1 and L2).
On the other hand, the gain ratio metric assigns
the highest weight to the overlap between the first
letter of the immediate left and right context (01),
followed by 04, and only the third most important
feature with a much lower weight is the focus word
itself. It is noteworthy that despite the similarity
between our optimized settings and the default set-
tings in IB 1 (the only difference obtained via itera-
tive deepening being the above metric choice), the
optimized learner is able to perform significantly
better.

Although the best optimized learners per folds
are identical, there are alterations in the way they
combine with the feature groups. For the major-
ity of the partitions the best results were obtained
when all features were available to the learners.
In three partitions a learner that did not exploit
all feature groups could outperform those that em-
ployed all available features: twice the Overlap as
well as the Context-type attributes were considered
unneccessary by the learner, and in one case the
General features were not beneficial for classifi-
cation. We see indeed that the Chi-squared met-
ric assigns much lower weights to these feature
groups than to the members of the Lexical fea-
ture group. Most importantly, the Lexical features
were always incorporated in the well-performing
classifiers during the optimization process, which
proves that the identity of the focus word and
its immediate context provides the most valuable
source in learning the fragment detection task.

For the RIPPER algorithm we observe the same
uniformity among the resulting best optimized
learners per partition. The best-performing op-
tions are always those that allow optimization
three times in the rule induction process while
forcing each rule to cover at least one example,
with the loss ratio value set to 0.5. The optimized
value by which the coding cost of the theory is to
be multiplied is 0.1 for the top-scoring learners of
eight partitions, and is 0.25 in two partitions. This
value allows for constructing much more compli-
cated hypotheses than by done by RIPPER'S de-
fault. There is also divergence among the top

learners with respect to allowing negative tests on
feature values: in five partitions negation is used
by the top learner, whereas in the other half of the
cases negation is not employed. Finally, the option
of using random features in RIPPER has not proven
to be useful.

We assume that by allowing RIPPER to induce
more complicated hypotheses than by default, the
learning becomes more case-specific, shifting RIP-

PER in the direction of TB l's strategy, namely not
to abstract away from the examples. We indeed
see that the induced rules' coverage is mostly well
below ten examples. As the option of inducing
detailed hypotheses has proven to work optimally
for RIPPER, we conclude that the reason why
memory-based classification performs better is its
approach of taking the specificities of all training
instances into consideration instead of generaliz-
ing from those.

5 Discussion and Future Work

We tested a memory-based and a rule induction
ML algorithm in the task of automatically clas-
sifying words in transcripts of spoken Dutch dis-
courses as completely uttered or fragmented ones.
We employed readily available, lexically-oriented
features in the learning process. The method used
for optimizing the two classifiers was iterative
deepening search for parameter settings combined
with feature selection. We optimized the algo-
rithms by maximizing the F-score performance of
a large number of learners constructed by vary-
ing the parameter values of IB 1 and RIPPER. It
is preferable to base evaluation on the harmonic
mean of precision and recall measures, as in our
data the Fragment class is sparse, thus simply al-
ways predicting that a word is not a fragment
yields high accuracy scores.

We observe that memory-based learning results
in more success than rule induction, as TB l's F-
score on the task is 74.9%, and that for RIPPER is
46.5%. Even when RIPPER is allowed to induce
very specific rules, it still abstracts away from the
data, whereas for IB 1 it pays off to consider spe-
cific instances. We assume that the iterative deep-
ening method is beneficial for both classifiers, as
the optimized parameters turned out to be different
from and better performing than the default ones.

31

For feature selection we did not observe a defini-
tive impact of the iterative deepening search.

Most studies in the field of applying ML to
disfluency resolution employ features that are ex-
tracted from hand-annotated resources. In the
current study we made use of lexical informa-
tion only, considering that exploiting the gold-
standard syntactic annotation of the corpus would
give too much advantage to our model, as opposed
to a fragment detection task in a real application
where no perfect information would be available.
It seems intuitive that self-repairs in spoken lan-
guage are signalled not only verbally but prosodi-
cally as well. In the future we plan not only to in-
corporate prosodic features into our learners, but
to use the lexical output of an automatic speech
recognizer as well as to generate syntactic infor-
mation from it automatically. Moreover, we plan
to extend our study to identifying other types of
disfluency in order to construct a pre-processing
module of spoken language utterances.

References

J. Bear, J. Dowding, and E. Shriberg. 1992. Integrat-
ing multiple knowledge sources for detection and
correction of repairs in human-computer dialog. In
Meeting of the Association for Computational Lin-
guistics, pages 56-63.

W. W. Cohen. 1995. Fast effective rule induction. In
Proceedings of the Twelfth International Conference
on Machine Learning, Lake Tahoe, California.

W. Daelemans and V. Hoste. 2002. Evaluation of
machine learning methods for natural language pro-
cessing tasks. In Third International Conference on
Language Resources and Evaluation (LREC 2002),
pages 755-760.

W. Daelemans, J. Zavrel, K. van der Sloot, and
A. van den Bosch. 2002. TiMBL: Tilburg mem-
ory based learner, version 4.3, reference guide. ILK
technical report, Tilburg University. Available from
http://ilk.uvt.nl .

R. Eklund and E. Shriberg. 1998. Crosslinguis-
tic disfluency modeling: A comparative analysis of
Swedish and American English human-human and
human-machine dialogs. In Proc. Mt. Conf on Spo-
ken language processing.

P. Heeman and J. Allen. 1994. Detecting and cor-
recting speech repairs. In Proc. 32nd Annual Meet-

ing of the Association for Computational Linguistics
(ACL-94), pages 295-302.

P. Heeman. 1999. Modeling speech repairs and into-
national phrasing to improve speech recognition. In
IEEE Workshop on Automatic Speech Recognition
and Understanding.

R. Kohavi and G. John. 1997. Wrappers for fea-
ture subset selection. Artificial Intelligence, 97(1-
2):273-324.

C. Nakatani and J. Hirschberg. 1994. A corpus-based
study of repair cues in spontaneous speech. In JASA.

N. Oostdijk, 2002. The Design of the Spoken Dutch
Corpus. In: New Frontiers of Corpus Research.
P. Peters, P. Collins and A. Smith (eds.), pages 105-
112. Amsterdam: Rodopi.

S. Oviatt. 1995. Predicting spoken disfluencies dur-
ing human-computer interaction. Computer Speech
Language, 9:19-36.

F. Provost, D. Jensen, and T. Oates. 1999. Efficient
progressive sampling. In Knowledge Discovery and
Data Mining, pages 23-32.

E. Shriberg, A. Stolcke, and D. Baron. 2001. Can
prosody aid the automatic processing of multi-party
meetings? Evidence from predicting punctuation,
disfluencies, and overlapping speech. In Proc. ISCA
Tutorial and Research Workshop on Prosody in
Speech Recognition and Understanding, pages 139—
146.

E. Shriberg. 1994. Preliminaries to a theory of speech
disfluencies. Ph.D. thesis, University of California
at Berkeley.

J. Spilker, A. Batliner, and E. NOth. 2001. How to
Repair Speech Repairs in an End-to-End System. In
Proc. ISCA Workshop on Disfluency in Spontaneous
Speech, pages 73-76.

A. Stolcke, E. Shriberg, R. Bates, M. Ostendorf,
D. Hakkani, M. Plauche, G. Tur, and Y. Lu. 1998.
Automatic detection of sentence boundaries and dis-
fluencies based on recognized words. In Proc. Int.
Conf. on Spoken Language Processing, volume 5,
pages 2247-2250.

C. van Rijsbergen. 1979. Information Retrieval. But-
tersworth, London.

32

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

