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Abstract

Recognizing the implicit link between a claim
and a piece of evidence (i.e. warrant) is the key
to improving the performance of evidence de-
tection. In this work, we explore the effective-
ness of automatically extracted warrants for
evidence detection. Given a claim and can-
didate evidence, our proposed method extracts
multiple warrants via similarity search from an
existing, structured corpus of arguments. We
then attentively aggregate the extracted war-
rants, considering the consistency between the
given argument and the acquired warrants. Al-
though a qualitative analysis on the warrants
shows that the extraction method needs to be
improved, our results indicate that our method
can still improve the performance of evidence
detection.

1 Introduction

An argument is composed of two key compo-
nents: claim and a supporting piece of evidence.
Identification of these components and predicting
the relationship among them forms the core of
an important research area in NLP known as Ar-
gument Mining (Peldszus and Stede, 2013). Al-
though claims can be identified with a promis-
ing level of accuracy in typical argumentative dis-
course (Eger et al., 2017; Stab et al., 2018), identi-
fication of a supporting evidence piece for a given
claim (i.e., evidence detection) still remains a chal-
lenge (Gleize et al., 2019).

Shown in Figure 1 is an example of a given
topic and claim, and three evidence candidates
from Wikipedia. In this example, identification of
the best supporting piece of evidence is challeng-
ing, as all three evidence are related to the topic.
Although all evidence candidates appear to be se-
mantically similar to the claim, only E1 supports
it, as it has an underlying, implicit link that can
be established with the claim (i.e., children’s fun-

Topic: This house believes that male infant 
circumcision is tantamount to child abuse.
Claim: Infant circumcision infringes upon individual 
autonomy.
Evidences:
• E1: In Netherlands, the Royal Dutch Medical 

Association (KNMG) stated in 2010 that non-
therapeutic male circumcision “conflicts with the 
child's right to autonomy and physical integrity”.

• E2: The British Medical Association states that, 
”Parents should determine how best to promote their 
children's interests”.

• E3: American Academy of Pediatrics states that, 
“Newborns who are circumcised without analgesia 
experience pain and physiologic stress”.

Warrant:
• Children’s fundamental right shouldn’t be trumped 

by parental rights.

Figure 1: Three evidence candidates (E1-E3) for a
given topic and claim, where E1 can be considered the
best evidence piece (shown in blue).

damental right shouldn’t be trumped by parental
rights). Thus, for detecting the best piece of ev-
idence for a claim, it is crucial to capture such
implicit reasoning between them (Habernal et al.,
2018).

Existing approaches for evidence detection have
often relied on lexical features extracted from ar-
gument components such as semantic similarity,
adjacent sentence relation and discourse indica-
tors (Stab and Gurevych, 2014; Rinott et al., 2015;
Nguyen and Litman, 2016; Hua and Wang, 2017).
However, no prior work has considered identify-
ing the underlying, implicit reasoning, henceforth
warrants (Toulmin, 2003), between a claim and a
piece of evidence as a means for improving evi-
dence detection. For example, if a model could
establish a warrant between the claim and a piece
of evidence (e.g., warrant in Figure 1 for E1), the
most plausible evidence piece could be detected.

Towards filling this reasoning gap, Boltužić and
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Figure 2: The proposed warrant-aware evidence detec-
tion framework.

Šnajder (2016) and Habernal et al. (2018) both
created a corpus of explicit warrants for a given
claim and its evidence piece. However, to the best
of our knowledge, such corpora of explicit war-
rants have not yet been applied to the task of evi-
dence detection.

In this paper, we explore the effectiveness of
leveraging warrants for evidence detection. Given
a claim and evidence, our framework first extracts
relevant warrants from an existing, well-known
corpus of warrant-annotated arguments (Haber-
nal et al., 2018). It then attentively aggregates
the acquired warrants, considering the consistency
between the given argument and warrants. Our
experiments demonstrate that exploiting warrants
has the potential to help improve the performance
of evidence detection.

2 Proposed Method

2.1 Overview
Given a topic, claim, and a piece of evidence as
input, our framework estimates the likelihood of
the claim being supported by that evidence piece.
As described in Section 1, in order to identify such
support relations, it is crucial to recognize the un-
derlying, implicit link between a claim and a given
piece of evidence (i.e. warrants). Our framework
first extracts multiple warrants that link a given
claim to an evidence piece, and later leverages the
acquired warrants to estimate the score. We as-
sume that for a given claim and a piece of ev-
idence, there can be several possible variants of
warrants for one given claim-evidence pair.

As shown in Figure 2, our proposed framework
consists of: (i) Base Component and (ii) War-
rant Component. The Base Component encodes
a topic, claim, and an evidence piece into a corre-
sponding vector representation t,c,e ∈ Rd. The
warrant component then extracts multiple war-
rants linking the given claim with that piece of

evidence and produces its vector representation
w ∈ Rd.

Finally, we generate a feature representation f
of all these vectors as follows: f = [t; c; e;w; t�
c � e � w; i] ∈ R(5d+12d), where � denotes
element-wise multiplication, and i is the feature
vector which captures the pairwise interaction be-
tween all ingredients. Analogously to Conneau
et al. (2017), we calculate absolute difference and
element-wise multiplication for all possible pairs
of vectors: i = concat({[|u − v|;u � v] |
u,v ∈ {t, c, e,w}}). Finally, we feed f into a
linear classifier: y = softmax(Uf + b), where
U ∈ R(5d+12d)×2 and b ∈ R2 are model parame-
ters to be learned.

2.2 Base Component

The base component produces vector represen-
tations of topic, claim, and an evidence piece.
This component consists of three types of lay-
ers: an embedding layer, a BiLSTM (Hochreiter
and Schmidhuber, 1997) layer and a max-pooling
layer.

Let (xt1, x
t
2, ..., x

t
n) be a sequence of words in

a topic. The embedding layer outputs a vec-
tor xt

i ∈ Rg for each word xti. The BiL-
STM layer then takes a sequence of these vectors
(xt

1,x
t
2, · · · ,xt

n) as an input and produces a con-
textualized vector zt

i = [ ~hi; ~hi] for each word,
where ~hi, ~hi ∈ Rh are the hidden states of the for-
ward and backward LSTM, respectively. Finally,
the max pooling layer extracts the most salient
word features over the words to produce a fixed-
length vector, i.e. t = maxni=1(z

t
i) ∈ Rd=2h. In

a similar fashion, we obtain vector representations
c, e of claim and an evidence piece.

2.3 Warrant Component

Extracting warrants Given a claim and a piece
of evidence, our goal is to extract multiple, rel-
evant warrants that link the claim with that evi-
dence piece. As described in Section 1, ideally,
we can find plausible warrants for correct claim-
evidence pieces but we cannot for wrong pieces.
Instead, for wrong claim-evidence pieces, we find
non-reasonable warrants that would be less con-
vincing and irrelevant.

Let D = {(ti, ci, ei, wi)}ni=1 be a database of
warrant-annotated arguments, where ti, ci, ei, wi

are a topic, claim, a piece of evidence, and a war-
rant linking ci with ei, respectively. Given an ar-
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gument t, c, e to be analyzed, we extract warrants
linking cwith e via similarity search onD. Specif-
ically, we retrieve the top-m most similar argu-
ments inD to the given argument in terms of topic,
claim and an evidence piece, and then extract war-
rants from these similar arguments.

We define the similarity between arguments as
follows: sim(〈t, c, e〉, 〈ti, ci, ei〉) = sim(t, ti) ·
sim(c, ci) · sim(e, ei). To calculate the similarity
between components u, v, we encode each com-
ponent into a vector representation u,v, and then
resort to vector-based similarity. In our experi-
ments, we use Universal Sentence Encoder as a
sentence encoder and angular-based similarity as
sim(u,v), following Cer et al. (2018) because of
its state of the art performance in various semantic
textual similarity tasks.

Constructing D is a challenging problem. In
our study, we rely on a database of arguments
that have arguments which are explicitly annotated
with warrants (see Section 3.1 for further details).
In future work, we plan to extract warrants from
web debate forums, where people frequently dis-
cuss controversial topics and ask warrants for dis-
cussion with each other.

Encoding warrants Given a set W of extracted
warrants {w1, w2, ..., wn}, we first encode each
warrant wi into a vector representation wi ∈ Rd

in a similar manner to topic, claim, and a piece
of evidence. Because the quality and relevance
of extracted warrants may vary, we attentively ag-
gregate sentence-level vector representations of all
extracted warrants. We take a similar approach to
Lin et al. (2016), which demonstrated the advan-
tage of sentence level selective attention for mul-
tiple sentences, and take advantage of information
present in multiple warrants.

Specifically, the final vector representation
v(W ) ∈ Rd is computed as a weighted sum over
all warrant vectors:

v(W ) =
n∑

i=1

αiwi, (1)

where αi is the importance of wi (s.t.
∑n

i=1 αi =
1). We calculate αi as follows:

αi =
ef([t;c;e;wi])∑n
j e

f([t;c;e;wj ])
, (2)

where f(x) = tanh(u>x + b). u ∈ R4d and
b ∈ R are model parameters to be learned. Analo-
gously to attentions in neural models, f estimates

the consistency between a given topic, claim, an
evidence piece, and warrant.

In our experiments, we also consider a model
in which we assume that all warrants are of equal
importance and have the same contribution to-
wards the final vector representation v(W ) , i.e.
∀i, αi =

1
n .

3 Experiments

3.1 Dataset

Benchmark of evidence detection To test the
model’s evidence detection ability, we use the
Context Dependent Evidence Detection (CDED)
dataset (Rinott et al., 2015). Each instance in
CDED consists of (i) topic, (ii) claim, and (iii) a
piece of evidence. To create the dataset, Rinott
et al. (2015) initially selected 39 topics at random
from Debatabase.1 For each topic, they collected
5-7 related Wikipedia articles and then annotated
sentences in each article with a claim and its piece
of evidence. They also classified each evidence
piece into the types anecdotal, study, and expert.
In total, the test and training data consists of 3,057
distinct instances (anecdotal: 385, study: 1,020,
and expert: 1,8962).

Database of warrant-annotated arguments
We utilize the dataset of the Argument Reason-
ing Comprehension Task (ARCT) (Habernal et al.,
2018), because it provides a large collection of
warrant-annotated arguments that cover a wide
variety of topics. The dataset contains 1,970
warrant-annotated arguments covering over 172
topics. Specifically, each instance in the dataset
consists of (i) topic, (ii) claim, (iii) premise (i.e.,
a piece of evidence), (iv) correct warrant, and (v)
wrong warrant. For our experiments, we utilize
only the correct warrants. The word overlap be-
tween topics of CDED and ARCT after stemming
and lemmatization was found to be approximately
15%.

3.2 Setting

Evaluation protocol We evaluate our model in
the task of evidence ranking (Rinott et al., 2015).
Specifically, given a claim and candidate evidence,
the task is to rank the candidates properly. For
each instance in CDED, we extract one false piece
of evidence from instances with the same topic but

1https://idebate.org/debatabase
2Each evidence piece can consists of more than one type.

https://idebate.org/debatabase
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Number of warrants Importance αi MQ (Anecdotal) MQ (Study) MQ (Expert)

None - 0.47 0.52 0.67

m = 1 - 0.48 0.56 0.70
m = 1 (random) - 0.47 0.51 0.56

m = 5 Equal 0.44 0.51 0.65
m = 5 Weighted 0.49 0.51 0.64

Table 1: Performance of evidence ranking. Results in bold indicate the best MQ score.

different claim. In general, when we haveN types
of claims in one topic, the task is to rankN+1 can-
didate evidence consisting of one correct and N
false evidence. As an evaluation measure, we re-
port Mean Quantile (MQ) score (Guu et al., 2015)
which gives a normalized version of Mean Recip-
rocal Rank. Specifically, for instance, we define
the quantile of a correct piece of evidence k as the
fraction of incorrect evidence ranked after k. MQ
is defined to be the average quantile score over all
instances in the dataset, with the quantile ranging
from 0 to 1 (1 being optimal).

Following Rinott et al. (2015), we use leave-
one-out cross validation schema to evaluate our
approach. For every topic, we train our model on
instances in all other topics and then test the re-
sulting model on the left out topic. Prior to our
experiments, we exclude topics of each evidence
type that had less than 3 evidence.

Hyperparameters For both base and warrant
components, we use pre-trained 100-dimensional
GloVe embeddings (Pennington et al., 2014) to
initialize the word embedding layer (g = 100).
For the BiLSTM layer, we set h = 100 (i.e.
d = 200) and apply dropout before the linear clas-
sifier with probability of 0.5. We optimize the cat-
egorical cross-entropy loss using Adagrad (Duchi
et al., 2011) with a learning rate of 0.01 and the
batch size of 32. We choose the model that per-
forms best on the validation set.

3.3 Results

The results are shown in Table 1. The results
indicate that incorporating warrant information
is effective for ranking evidence across all evi-
dence types. Among warrant-aware models, we
found that using a single warrant is more effec-
tive overall. We attribute this to the fact that ex-
tracted warrants are not of high quality (see Sec-
tion 3.4), which introduces noisy information into
the model. Our future work includes developing
a more sophisticated method for extracting war-

Type α A1 A2

Anecdotal 0.50 2.05 2.30
Study 0.50 1.60 2.10
Expert 0.26 1.35 1.95
Overall 0.39 1.60 2.10

Table 2: Results of qualitative evaluation of automati-
cally acquired warrants.

rants. The results also indicate that estimating
the importance of each warrant is effective on the
anecdotal type evidence.

To see the importance of the quality of ex-
tracted warrants, we experimented with randomly
extracted warrants from the database. The results
(i.e. “m = 1 (random)”) show that the perfor-
mance does not improve or degrade over the non-
warrant-aware model. This indicates that extract-
ing relevant warrants is indeed crucial, and that our
improvement is attributed to relevant warrants.

3.4 Qualitative Analysis of Warrants

To investigate the quality of the extracted war-
rants, two annotators (A1, A2) experienced in the
field of argumentation were asked to score 20 ran-
domly sampled positive instances for each evi-
dence type. Depending on the degree to which a
warrant helped them understand the relation be-
tween a claim and a piece of evidence, they were
asked to score each instance in the range of 1-
5. A score of 1 indicates that the given warrant
is unrelated to the evidence piece and its paired
claim, and 5 indicates that the relationship be-
tween the claim and its piece of evidence pair is
easy to understand with the warrant. For calculat-
ing the agreement scores, we used Krippendorff’s
α (Krippendorff, 2011). We also show the average
scores given by each annotator.

The results of the analysis are shown in Ta-
ble 2. Although the anecdotal and study agree-
ment scores can be considered fair, the average
scores given by both annotators was low, which
indicates that the extracted warrants might not be
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as useful in linking the claim to its evidence piece.
One successful example of an automatically ex-

tracted warrant is shown in Figure 1. As described
in Section 1, a warrant gives good support for the
link between the claim and a piece of evidence.
Additionally, our framework extracted the war-
rant “a doctor has a responsibility to treat patients
problems at all costs”, which does not support the
link and is irrelevant.

4 Conclusion and Future Work

In this paper, we have explored an approach for
exploiting warrant information for the task of ev-
idence detection. Our experiments demonstrated
that leveraging warrants even at the coarse-grained
sentence-level can improve the overall perfor-
mance of evidence detection. However, in our fu-
ture work, we will focus on a fine-grained level
to capture a better reasoning structure of warrants.
Furthermore, instead of using separate sentence
encoders, we will experiment with using a sin-
gle general sentence encoder. In our qualitative
analysis, we found that the automatically acquired
warrants are not of high-quality on average. This
can be attributed due to the low lexical overlap be-
tween the topics of the two datasets used in our
experiments. To address this, we will focus on
finding relevant warrants from online web discus-
sion portals, in addition to the current structured
database of arguments. Simultaneously, we will
explore methods for acquiring warrants at a large-
scale, such as crowdsourcing.
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