Knowledge Graph Construction from Unstructured Text
with Applications to Fact Verification and Beyond

Ryan Clancy, Ihab F. Ilyas, and Jimmy Lin

David R. Cheriton School of Computer Science
University of Waterloo

Abstract

We present a scalable, open-source platform
that “distills” a potentially large text collection
into a knowledge graph. Our platform takes
documents stored in Apache Solr and scales
out the Stanford CoreNLP toolkit via Apache
Spark integration to extract mentions and re-
lations that are then ingested into the Neo4;j
graph database. The raw knowledge graph is
then enriched with facts extracted from an ex-
ternal knowledge graph. The complete prod-
uct can be manipulated by various applica-
tions using Neo4j’s native Cypher query lan-
guage: We present a subgraph-matching ap-
proach to align extracted relations with exter-
nal facts and show that fact verification, locat-
ing textual support for asserted facts, detect-
ing inconsistent and missing facts, and extract-
ing distantly-supervised training data can all
be performed within the same framework.

1 Introduction

Despite plenty of work on relation extraction, en-
tity linking, and related technologies, there is sur-
prisingly no scalable, open-source platform that
performs end-to-end knowledge graph construc-
tion, taking as input a large text collection to “dis-
till” a knowledge graph from it. Many enterprises
today desire exactly such a system to integrate an-
alytics over unstructured text with analytics over
relational as well as semi-structured data. We are
aware of a few commercial solutions for analyz-
ing unstructured text, such as Amazon Compre-
hend and Refinitiv by Thomson Reuters, as well
as many organizations with large internal efforts,
most notably Bloomberg. However, there does not
appear to be comparable open-source solutions.
This gap can be attributed, at least in part, to the
fact that NLP researchers typically think about ex-
traction in terms of sentences (or documents) and
may not be interested in the engineering efforts re-

39

quired to scale out extraction to hundreds of thou-
sands (or even millions) of documents. Further-
more, they are less likely equipped with the ex-
pertise (or interest) necessary to build distributed,
scalable systems.

We share with the community an open-source
platform for scalable, end-to-end knowledge
graph construction from unstructured text called
dstlr. By “end-to-end” we mean a solution that as-
pires to cover all aspect of the data management
lifecycle: from document ingestion to relation ex-
traction to graph management to knowledge cura-
tion to supporting downstream applications, plus
integration with other systems in an enterprise’s
“data lake”. Although other researchers have
proposed solutions to knowledge graph construc-
tion (Augenstein et al., 2012; Kertkeidkachorn and
Ichise, 2017), they do not appear to make open-
source software artifacts available for download
and evaluation.

At a high level, dstlr takes unstructured text and
“distills” from it a usable knowledge graph. From
a corpus stored in Apache Solr, a raw knowledge
graph is populated using Stanford CoreNLP and
ingested into the popular Neo4j graph database.
This raw knowledge graph is further enriched with
facts from an external knowledge graph, in our
case, Wikidata (Vrandeci¢ and Krotzsch, 2014).
The final product can be manipulated via the
declarative Cypher query language. All computa-
tions are orchestrated using Apache Spark for hor-
izontal scaling.

On top of our platform, it is possible to build a
number of applications, for example, to support
business intelligence, knowledge discovery, and
semantic search. In this paper, we describe an ap-
proach to align extracted relations from the cor-
pus with external facts. We show that fact verifi-
cation, locating textual support for asserted facts,
detecting inconsistent and missing facts, and ex-

Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER), pages 39-46
Hong Kong, November 3, 2019. (©2019 Association for Computational Linguistics

tracting distantly-supervised training data can all
be formulated in terms of graph queries. As a case
study, we extract and subsequently manipulate ap-
proximately 100 million triples from nearly 600K
Washington Post articles on a modest cluster.

The contribution of this work is the creation
of an end-to-end platform for constructing knowl-
edge graphs from unstructured text “with minimal
fuss” via the integration of four mature technolo-
gies: Apache Solr, Stanford CoreNLP, Apache
Spark, and Neo4j. We demonstrate the potential
of such a platform and are pleased to share our
open-source project with the community.

2 Problem Formulation

We begin with a more precise formulation of the
problem at hand. Given a (potentially large) col-
lection of text documents, we wish to extract facts
comprising what we call mentions (spans of natu-
ral language text such as named entities) and rela-
tions between them. We further assume the exis-
tence of an external knowledge graph which pro-
vides a “ground-truth” inventory of entities, and
central to our task is linking mentions to these en-
tities. The distinction between mentions and enti-
ties is crucial to our problem formulation, as men-
tions are simply spans of text that exhibit a wide
range of linguistic phenomena (synonymy, poly-
semy, etc.), but entities are unique and have clear
real-world referents. More formally:

Documents contain zero or more mentions.

In each document, there are zero or more rela-
tions between mentions. Mentions can partici-
pate in an arbitrary number of relations.

Each mention has zero or exactly one link to an
entity in the external knowledge graph.

Entities participate in an arbitrary number of
facts in the external knowledge graph.

The usage scenario we have in mind is the con-
struction of enterprise-centric knowledge graphs.
Most large organizations today already have inter-
nal knowledge graphs (or ongoing efforts to build
them); the simplest example might be a machine-
readable product catalog with product specifica-
tions. Our goal is to provide a “360-degree view”
of unstructured text in an organization’s ‘“data
lake”; although similar capabilities already ex-
ist for relational and semi-structured (e.g., log)

40

data, unstructured free text remains vastly under-
explored. As we show, it is exactly this interplay
between relations extracted from unstructured text
and facts in the external knowledge graph that give
rise to interesting applications in fact verification
and related tasks. Currently, we use Wikidata as a
stand-in, as our platform is designed to be enter-
prise and domain agnostic.

Of course, relation extraction and complemen-
tary tasks such as entity linking, coreference res-
olution, predicate mapping, etc. have been studied
for decades. Notable efforts include the Knowl-
edge Base Population (KBP) and Knowledge Base
Acceleration (KBA) tasks in the Text Analysis
Conference (TAC) series (Ji and Grishman, 2011;
Getman et al., 2018), NELL (Never-Ending Lan-
guage Learning) (Mitchell et al., 2015), open in-
formation extractors such as Ollie (Mausam et al.,
2012), and approaches based on weak supervision
such as Snorkel (Ratner et al., 2017). Our focus,
however, is very different as we wish to build an
end-to-end platform that not only supports extrac-
tion, but the entire data management lifecycle, as
discussed in the introduction. Part of this effort
is the development of various applications that ex-
ploit knowledge graphs (for example, fact verifica-
tion). In this sense, our work is complementary to
all these abovementioned systems and techniques,
as the dstlr platform is sufficiently general to in-
corporate their extraction results.

3 System Overview

The overall architecture of our open-source dstlr!
platform is shown in Figure 1. We assume the ex-
istence of a document store that holds the docu-
ment collection we wish to “distill”. Currently,
we use Apache Solr for this role, although a good
alternative would be Elasticsearch (which we are
currently implementing support for).

The rationale for depending on a document
store, as opposed to simply reading documents
from a file system (e.g., one designed for dis-
tributed storage such as the Hadoop Distributed
File System) are many: First, it is likely that users
and applications of dstlr desire full-text and meta-
data search capabilities. A system like Solr readily
provides an “industrial strength” solution. Second,
a document store provides more refined mecha-
nisms for managing incremental data ingestion,
e.g., the periodic arrival of a new batch of docu-

"http://dstlr.ai/

http://dstlr.ai/

Applications |
Graph Store K"Z":;::EE M
o —LLC -
Execution Layer S‘p"a’-’(‘ Extraction —
1— £ j> _ —
=[] & "
a z
2 Solr
Unstructured WIKIDATA
Text Document Store External Knowledge
Graph

Figure 1: The overall architecture of the dstlr plat-
form. Documents are “distilled” into a raw knowledge
graph in the extraction phase, which is then enriched
with facts from an external knowledge graph. Spark
orchestrates execution in a horizontally scalable man-
ner. Neo4j holds the knowledge graph, which supports
applications via its query interface.

ments. Third, the integration of search capabilities
with a document store allows dstlr to focus anal-
yses on subsets of documents, as demonstrated
in Clancy et al. (2019b). For convenience, our
open-source search toolkit Anserini (Yang et al.,
2018) provides a number of connectors for ingest-
ing document collections into Solr (Clancy et al.,
2019a), under different index architectures.

The execution layer, which relies on Apache
Spark, coordinates the two major phases of knowl-
edge graph construction: extraction and enrich-
ment. The knowledge graph is held in the popular
graph database Neo4j. Applications built on top
of the dstlr platform take advantage of a declara-
tive query language called Cypher to manipulate
the contents of the knowledge graph.

The extraction phase is responsible for popu-
lating the raw knowledge graph with mentions,
entities, and relations identified from unstruc-
tured text. Currently, we use Stanford’s CoreNLP
toolkit (Manning et al., 2014) for the JVM due
to its support for many common language anal-
ysis tasks (i.e., tokenization, part-of-speech tag-
ging, named entity recognition, etc.) that can be
chained together in a pipeline. While dstlr is ex-
tractor agnostic and we have explored a number of
different systems, we have found CoreNLP to be
the most straightforward package to deploy from
an engineering perspective. One of the contribu-
tions of our platform is the infrastructure to scale
out the CoreNLP toolkit using Spark to process
large document collections in an scalable manner.

41

At a high level, annotator output is converted into
tuples (as part of Spark DataFrames) that are then
ingested into the knowledge graph.

In the enrichment phase, we extract entities
from the external knowledge graph (Wikidata) that
are found in the unstructured text, thereby enrich-
ing the raw knowledge graph with high-quality
facts from an external source. We perform this
filtering step because, typically, only a portion of
entities in an external source like Wikidata are ref-
erenced in a corpus; thus, for query and storage
efficiency, it makes sense to only enrich entities
that are mentioned in the source documents.

In what follows, we provide more details about
the extraction and enrichment phases.

3.1 Extraction

For each document in the collection, we extract
mentions of named entities, the relations between
them, and links to entities in an external knowl-
edge graph. Through Solr/Spark integration, ex-
traction can be performed on all documents in the
document store, or a subset that a user or an ap-
plication may wish to focus on, for example, con-
taining a particular metadata facet or the results of
a keyword query (Clancy et al., 2019b).

Named Entity Extraction. We use CoreNLP’s
NERClassifierCombiner annotator to extract en-
tity mentions of 20 different types, such as per-
sons, organizations, locations, etc. (Finkel et al.,
2005). Each mention corresponds to a row in a
Spark DataFrame that contains the document id, a
mention id, and a list of key—value pairs containing
the mention class, mention text, and character off-
sets of the mention in the source document. Sub-
sequent occurrences of the same mention in the
same document are mapped to an existing men-
tion so that character offsets can later be consoli-
dated into an array. In this manner, we retain ac-
curate provenance that allows us to trace back an
extracted mention to its source.

Relation Extraction. CoreNLP provides two dif-
ferent annotators for relation extraction: the Open
Information Extraction (OpenlE) annotator (An-
geli et al., 2015) and the Knowledge Base Pop-
ulation (KBP) annotator (Surdeanu et al., 2012).
The OpenlE annotator provides open-class rela-
tions based on the provided text while the KBP
annotator fills slots for a fixed set of 45 relations,
such as org:city_of_headquarters. We use the
latter, as it is more appropriate for our task. As

with the entities, each extracted relation corre-
sponds to a row in a Spark DataFrame with the
document id, the subject mention, the relation, the
object mention, and a confidence score.

Entity Linking. In the final extraction step,
we use CoreNLP’s wikidictAnnotator to link
mentions to their corresponding Wikipedia entity,
which in turn allows us to map to Wikidata enti-
ties. For each entity mention, we produce a row
in a Spark DataFrame that contains the document
id, the mention id, and the URI of the most likely
entity link. If a linked entity for a mention cannot
be found, the row will contain a null; we made
the design decision to explicitly record these cases.
Note that this important step establishes corre-
spondences between information extracted from a
document and the external knowledge graph, and
is critical to enabling the host of applications that
we discuss later.

Pulling everything together, consider the sample
sentence ‘“Facebook is an American social media
and social networking company based in Menlo
Park” from document b2c9a. The dstlr extraction
pipeline might discover the mentions “Facebook”™
and “Menlo Park” with a has_hqg relation between
them. Furthermore, “Facebook” is linked to the
entity Q355 in Wikidata. This translates into the
following knowledge graph fragment, in terms of
(subject, relation, object) triples, simplified for il-
lustrative purposes:

(b2c9a, mentions, “Facebook”)
(b2c9a, mentions, “Menlo Park™)
(“Facebook”, subject_of, has,hq)
(has_hq, object_of, “Menlo Park™)
(“Facebook™, 1inks_to, Q355)

The relation itself is reified into a node to facili-
tate efficient querying by consumers of the knowl-
edge graph (more details later). Following the ex-
traction of all entity mentions, relations, and en-
tity links as described above, the resulting rows
from the Spark DataFrames are bulk-loaded into
Neo4j according to the “schema” above. While
it is entirely possible to construct the raw knowl-
edge graph incrementally, we have found it to be
far more efficient to perform ingestion in bulk.

3.2 Enrichment

In the enrichment phase, we augment the raw
knowledge graph with facts from the external

42

knowledge graph (Wikidata). This is accom-
plished by first manually defining a mapping from
CoreNLP relations to Wikidata properties. For ex-
ample, the “headquarters” relation from CoreNLP
most closely corresponds to P159 in Wikidata.”
Since there are only 45 relations, this did not re-
quire much effort. Then, for each distinct entity
that was discovered in the document collection,
we extracted the corresponding facts from Wiki-
data. This process, in essence, extracts subgraph
fragments around referenced entities to enrich the
raw knowledge graph. Currently, we only perform
the augmentation with relations that are covered
by CoreNLP and referenced entities in the unstruc-
tured text, but we could easily scale up (or down)
the enrichment effort by “pulling in” more (or less)
of Wikidata, depending on the needs of various
applications. For fact verification and the related
tasks that we explore in this paper, the parts of
Wikidata that do not overlap with the raw knowl-
edge graph are not needed.

As with extraction, execution of the enrichment
process is coordinated by Spark via the manipu-
lation of DataFrames. With Spark, it is easy to
identify the distinct entities referenced in the cor-
pus, which are then fed as input into the enrich-
ment process to “pull out” the appropriate parts of
Wikidata. For each entity in the corpus, we pro-
duce a row in a Spark DataFrame containing the
entity URI, the relation type, and its value. These
are then bulk-loaded into Neo4j; once again, this
is done primarily for efficiency, just as with the
extraction output.

In our running example about Facebook, this
would lead to the insertion of the following triple
in the graph (once again, slightly simplified):

(Q355, links_to, FACT34a8d)

where FACT34,84 is a node that has type has_hqg
and value “Menlo Park™. Facts from Wikidata are
factored according to this “schema” to facilitate
efficient querying (more details below).

4 Performance Evaluation

To demonstrate the scalability of our dstlr plat-
form, we describe an evaluation comprising both
extraction and enrichment performed on a clus-
ter comprising nine nodes. Each node has two
Intel E5-2670 @ 2.60GHz (16 cores, 32 threads)

https://www.wikidata.org/wiki/
Property:P159

https://www.wikidata.org/wiki/Property:P159
https://www.wikidata.org/wiki/Property:P159

CPUs, 256GB RAM, 6 x600GB 10K RPM HDDs,
10GbE networking, and runs Ubuntu 14.04 with
Java 9.0.4. We utilize one node for the mas-
ter services (YARN ResourceManager and HDFS
NameNode); the remaining eight nodes each host
a HDFS DataNode, a Solr shard, and are available
for Spark worker allocation via YARN.

We ran dstlr on the TREC Washington Post
Corpus,® which contains 595K news articles and
blog posts from January 2012 to August 2017.
This corpus has been used in several recent TREC
evaluations and is representative of a modern
newswire collection. We performed some light
data cleaning before running extraction, discard-
ing documents longer than 10,000 tokens and sen-
tences longer than 256 tokens. These outliers were
typically HTML tables that our document parser
processes into very long “sentences” (concatenat-
ing all table cells together). After filtering, we ar-
rive at a collection with 580K documents, com-
prising roughly 23M sentences and approximately
500M tokens.

Extraction was performed via a Spark job con-
figured with 32 executors (four per machine),
each allocated 8 CPU cores and 48GB of mem-
ory for task processing; the configuration attempts
to maximize resource usage across the cluster.
We extracted 97M triples from the approximately
580K documents in 10.4 hours, for a process-
ing rate of 13K token per second. Mentions of
entities and mention-to-entity links account for
92.2M triples (46.1M each) while the remaining
4.8M represent relations between mentions. Of
the 46.1M mention-to-entity links, 30.7M corre-
spond to an actual Wikidata entity (recall that we
explicitly store null links); this represents 324K
distinct entities.

Currently, dstlr uses Neo4j Community Edi-
tion, a popular open-source graph database, as the
graph store. Running on a single node, we are
able to insert 97M triples in 7.8 hours using a sin-
gle Spark worker, co-located on the same machine
as Neo4j. This translates into an ingestion rate of
nearly 2.9K triples/sec, which we find acceptable
for a corpus of this size. Further scale out is pos-
sible via a distributed version of Neo4j, which is
available as part of the Enterprise Edition, but re-
quires a commercial license.

Enrichment is performed by querying a local in-
stance of Wikidata that has been ingested into

https://trec.nist.gov/data/wapost/

43

Apache Jena Fuseki, which is an open-source RDF
store that provides a REST-based SPARQL end-
point. We import the “truthy” dump, consist-
ing of only facts, in addition to a mapping from
Wikipedia to Wikidata URIs, as CoreNLP links
entities to Wikipedia URIs.

For each of the 324K distinct entities found in
the corpus, we fetch the corresponding facts from
Wikidata using our Jena Fuseki endpoint. As with
the extraction phase, the enrichment process is or-
chestrated by Spark. For example, for the “head-
quarters” relation, we are able to retrieve 11.7K
corresponding facts from Wikidata in around 14
minutes. These extracted facts are then inserted
into Neo4j, as described in Section 3.2. This in-
gestion takes only a few seconds.

5 Graph Alignment and Applications

In our case study, the “product” of dstlr is a knowl-
edge graph constructed from a corpus of unstruc-
tured text (Washington Post articles) that has been
enriched with high-quality facts extracted from an
external knowledge graph (Wikidata). The knowl-
edge graph, stored in Neo4j, can then be ma-
nipulated by different applications using Neo4;j’s
declarative query language called Cypher.

We describe a query-driven approach to align
extracted relations from CoreNLP to external facts
from Wikidata. This, in essence, performs fact
verification (Thorne and Vlachos, 2018) against
an external knowledge source that is presumed to
have high-quality facts. While fact verification us-
ing external knowledge sources is not novel (Vla-
chos and Riedel, 2015), the contribution of our
particular case study is to illustrate how it can
be recast into a query-driven subgraph alignment
problem. Within this framework, fact verifica-
tion, locating textual support for asserted facts, up-
dating incorrectly-asserted facts, asserting newly-
discovered facts, and data augmentation via dis-
tant supervision can all be viewed as different as-
pects of the same underlying task.

As an illustration of these ideas, we consider
the city.of headquarters relation identified by
CoreNLP. Figure 2 shows a Cypher query that per-
forms one possible subgraph alignment. A typical
Cypher query has three main clauses: the MATCH
clause describes, in a pseudo-graphical notation,
the graph pattern being searched for; the WHERE
clause specifies additional constraints on the pat-
terns, akin to the wHERE clause in SQL; finally,

https://trec.nist.gov/data/wapost/

MATCH (d:Document)—-—->(s:Mention)

MATCH (s)-—>(r:Relation

{ type: "CITY.OF _HEADQUARTERS" })

MATCH (r)-->(o:Mention)

MATCH (s)-->(e:Entity)

MATCH (e)-->(f:Fact {relation: r.type})
RETURN 4, s, r, o, e, f

Figure 2: Cypher query to match extracted relations
with external facts.

the RETURN clause specifies the result of the query.
This particular query looks for two mention nodes
connected by a city.of headquarters relation
for which there exists a linked entity for the sub-
ject mention with the same fact type in Wikidata
as the extracted relation, returning tuples of all
matched instances. In other words, we look for
all instances of extracted headquarters, and then
match the headquarters with what’s stored in the
external knowledge graph.

We query Neo4j with its Spark connector so that
the results can be integrated with subsequent dis-
tributed processing on our cluster. This particu-
lar query returns around 21K results in less than
twenty seconds, where the majority of the time is
spent on Spark overhead such as copying depen-
dencies to worker nodes.

What can we do with the results? Logically,
there are three possibilities: an extracted relation
matches what’s in the external knowledge graph,
an extracted relation doesn’t match what’s in the
external knowledge graph, and the extract rela-
tion isn’t found in the external knowledge graph.*
These correspond to identification of supporting
evidence, inconsistent facts, and missing facts; we
consider each of these cases in detail below.

5.1 Supporting Facts

If an extracted relation matches a fact asserted in a
high-quality external source such as Wikidata, we
can conclude with reasonable certainty that the in-
formation contained in the source document is in-
deed factual. As a specific example, our Cypher
query identified Washington Post article eb3bgt
as discussing the company “Good Technology”,
and from that article, CoreNLP was able to iden-
tify its headquarters as Sunnyvale. Figure 3 shows
this subgraph, illustrating agreement on Sunnyvale
between the external knowledge graph (leftmost
node) and the document (rightmost node).

“This is actually the result of another query, but same idea.

44

Figure 3: Example where an extracted relation matches
an external fact, providing textual support for the fact.

This forms the basis of fact verification, al-
though there are nuanced cases that require human
judgment (and thus are difficult to automate). For
example, it could be the case that both the knowl-
edge graph and the document are wrong, such as
when a fact is outdated. Since we retain the prove-
nance of all extracted relations, it is possible for a
human to trace back evidence to its source in order
to consider the broader context.

This feature allows applications to locate sup-
porting evidence for facts in Wikidata. Exist-
ing knowledge graphs are typically constructed
through a combination of different processes,
ranging from manual entry to semi-automated
techniques. It is frequently the case that the prove-
nance is lost, and thus the knowledge graph cannot
answer the question: how do we know this fact to
be true? Our application can provide such support,
and from multiple sources to boot.

5.2 Inconsistent Facts

Relations extracted from unstructured text may be
inconsistent with facts in the external knowledge
graph for a variety of reasons, but can be grouped
into two categories, either imperfect extractors or
factual errors in the documents. Distinguishing
these two cases requires manual inspection, but
once again, subgraph alignment provides the ba-
sis of fact verification.

Based on our own manual inspection, the over-
whelming majority of inconsistencies stems from
extractor errors. For example, Washington Post
article b02562 contains the sentence “The com-
pany said that it will have watches to demo at
department stores around the world: the Galeries
Lafayette in Paris, Isetan in Tokyo, ...”, from
which CoreNLP asserts that Isetan has headquar-
ter in Paris, which is obviously incorrect to a hu-
man reader. The corresponding subgraph is pre-
sented in Figure 4, which shows that the Wiki-

5
Tokyo HAS_VALUE { |setan LINKS_TO Q

Figure 4: Example where an extracted relation is in-
consistent with an external fact. In this case, the incon-
sistency arises from an extractor error.

data fact (leftmost node) differs from the extracted
value (rightmost node).

These inconsistencies can serve as negative
training data that can then be used to train better
extraction models. While this is a standard tech-
nique in the literature on distant supervision for re-
lation extraction (Smirnova and Cudré-Mauroux,
2018), we show how the process can be formu-
lated in terms of graph queries in our dstlr plat-
form, in essence, as a side effect of fact verifica-
tion. In principle, supporting texts, such as those
from the previous section, can be used as positive
examples as well, although their benefits are likely
to be limited as the extractor was able to correctly
identify the relation to begin with.

5.3 Missing Facts

In trying to align subgraphs from extracted rela-
tions with external facts, the third possibility is
that we find no corresponding fact. For exam-
ple, Washington Post article 498e15 discusses a
climatologist at the International Arctic Research
Center in Fairbanks, Alaska. Our platform extracts
Fairbanks as the headquarters of the International
Arctic Research Center (see Figure 5). During
the enrichment process, no value from Wikidata
was present for the property P159 (based on our
CoreNLP to Wikidata mapping). This can also be
confirmed by noticing the lack of an infobox in the
upper right-hand corner of its Wikipedia page.

In other words, we have discovered a miss-
ing fact in Wikidata, thus providing an opportu-
nity to populate Wikidata with new knowledge.
Of course, human vetting is likely needed be-
fore any facts are added to an external knowledge
graph, but once again, subgraph alignment via
Cypher graph queries provides the starting point
for knowledge acquisition.

45

© K
Interna...< LINKS_TO Q Q
3
%
% S

Figure 5: Example where an extracted relation does not
correspond to any fact in the external knowledge graph,
providing an opportunity acquire new knowledge.

6 Conclusion

The contribution of dstlr is a scalable, open-
source, end-to-end platform that distills a poten-
tially large text collection into a knowledge graph.
While each of the components in our architecture
already exist, they have not been previously inte-
grated in this manner to support knowledge graph
construction and applications that exploit knowl-
edge graphs.

The other interesting aspect of our work is the
use of subgraph alignment to support a number of
related tasks: we show that fact verification, lo-
cating textual support for asserted facts, detect-
ing inconsistent and missing facts, and extract-
ing distantly-supervised training data can all be
performed within the same graph querying frame-
work. The dstlr platform is under active develop-
ment, with plans to integrate more extractors, par-
ticular ones based on neural networks, in support
of applications in business intelligence, knowl-
edge discovery, and semantic search.

Acknowledgments

This research was supported by the Natu-
ral Sciences and Engineering Research Council
(NSERC) of Canada, with additional funding from
the Waterloo—Huawei Joint Innovation Lab.

References

Gabor Angeli, Melvin Johnson Premkumar, and
Christopher D. Manning. 2015. Leveraging linguis-
tic structure for open domain information extraction.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
344-354, Beijing, China.

Isabelle Augenstein, Sebastian Padd, and Sebastian
Rudolph. 2012. LODifier: Generating linked data

from unstructured text. In Proceedings of the 9th
Extended Semantic Web Conference (ESWC 2012),
pages 210-224, Heraklion, Crete.

Ryan Clancy, Toke Eskildsen, Nick Ruest, and Jimmy
Lin. 2019a. Solr integration in the Anserini informa-
tion retrieval toolkit. In Proceedings of the 42nd An-
nual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval
(SIGIR 2019), pages 1285-1288, Paris, France.

Ryan Clancy, Jaejun Lee, Zeynep Akkalyoncu Yilmaz,
and Jimmy Lin. 2019b. Information retrieval meets
scalable text analytics: Solr integration with Spark.
In Proceedings of the 42nd Annual International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR 2019), pages
1313-1316, Paris, France.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by Gibbs
sampling. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL’05), pages 363-370, Ann Arbor, Michigan.

Jeremy Getman, Joe Ellis, Stephanie Strassel, Zhiyi
Song, and Jennifer Tracey. 2018. Laying the
groundwork for knowledge base population: Nine
years of linguistic resources for TAC KBP. In Pro-
ceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC-
2018), Miyazaki, Japan.

Heng Ji and Ralph Grishman. 2011. Knowledge base
population: Successful approaches and challenges.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 1148-1158, Port-
land, Oregon.

Natthawut Kertkeidkachorn and Ryutaro Ichise. 2017.
T2KG: An end-to-end system for creating knowl-
edge graph from unstructured text. In Proceed-
ings of the AAAI-17 Workshop on Knowledge-Based
Techniques for Problem Solving and Reasoning,
pages 743-749, San Francisco, California.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, pages
55-60, Baltimore, Maryland.

Mausam, Michael Schmitz, Stephen Soderland, Robert
Bart, and Oren Etzioni. 2012. Open language learn-
ing for information extraction. In Proceedings of
the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 523-534, Jeju
Island, Korea.

46

Tom M. Mitchell, William Cohen, Estevam Hruschka,
Partha Talukdar, Justin Betteridge, Andrew Carlson,
Bhavana Dalvi Mishra, Matthew Gardner, Bryan
Kisiel, Jayant Krishnamurthy, Ni Lao, Kathryn
Mazaitis, Thahir Mohamed, Ndapa Nakashole, Em-
manouil Antonios Platanios, Alan Ritter, Mehdi
Samadi, Burr Settles, Richard Wang, Derry Wijaya,
Abhinav Gupta, Xinlei Chen, Abulhair Saparov,
Malcolm Greaves, and Joel Welling. 2015. Never-
ending learning. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence (AAAI-
15), pages 2302-2310, Austin, Texas.

Alexander Ratner, Stephen H. Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. Proceedings of the VLDB Endowment,
11(3):269-282.

Alisa Smirnova and Philippe Cudré-Mauroux. 2018.
Relation extraction using distant supervision: A sur-
vey. ACM Computing Surveys, 51(5):106:1-106:35.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
and Christopher D. Manning. 2012. Multi-instance
multi-label learning for relation extraction. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 455—
465, Jeju Island, Korea.

James Thorne and Andreas Vlachos. 2018. Automated
fact checking: Task formulations, methods and fu-
ture directions. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 3346-3359, Santa Fe, New Mexico.

Andreas Vlachos and Sebastian Riedel. 2015. Identi-
fication and verification of simple claims about sta-
tistical properties. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2596-2601, Lisbon, Portugal.

Denny Vrandeci¢ and Markus Krotzsch. 2014. Wiki-
data: A free collaborative knowledgebase. Commu-
nications of the ACM, 57(10):78-85.

Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini:
Reproducible ranking baselines using Lucene. Jour-
nal of Data and Information Quality, 10(4):Arti-
cle 16.

