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Abstract

New conversation topics and functionalities

are constantly being added to conversational

AI agents like Amazon Alexa and Apple Siri.

As data collection and annotation is not scal-

able and is often costly, only a handful of ex-

amples for the new functionalities are avail-

able, which results in poor generalization per-

formance. We formulate it as a Few-Shot In-

tegration (FSI) problem where a few examples

are used to introduce a new intent. In this pa-

per, we study six feature space data augmen-

tation methods to improve classification per-

formance in FSI setting in combination with

both supervised and unsupervised representa-

tion learning methods such as BERT. Through

realistic experiments on two public conversa-

tional datasets, SNIPS, and the Facebook Dia-

log corpus, we show that data augmentation in

feature space provides an effective way to im-

prove intent classification performance in few-

shot setting beyond traditional transfer learn-

ing approaches. In particular, we show that

(a) upsampling in latent space is a competi-

tive baseline for feature space augmentation

(b) adding the difference between two exam-

ples to a new example is a simple yet effective

data augmentation method.

1 Introduction

Virtual artificial assistants with natural language

understanding (NLU) support a variety of func-

tionalities. Throughout the lifespan of the de-

ployed NLU systems, new functionalities with

new categories, are regularly introduced. While

techniques such as active learning (Peshterliev

et al., 2018), semi-supervised learning (Cho et al.,

2019b) are used to improve the performance of ex-

isting functionalities, performance for new func-

tionalities suffers from the data scarcity problem.

Recently, Few-Shot Learning has been explored

to address the problem of generalizing from a few

examples per category. While it has been exten-

sively studied (Koch et al., 2015; Snell et al., 2017;

Vinyals et al., 2016) for image recognition, a lit-

tle attention has been paid to improve NLU per-

formance in the low-data regime. Moreover, re-

searchers have been mostly working on the unre-

alistic setting that considers tasks with few cate-

gories unseen during (pre)training, each with only

a few examples, and introduces new categories

during test time. We argue that a more realistic set-

ting is Few-Shot Integration (FSI) where new cat-

egories with limited training data are introduced

into an existing system with mature categories.

FSI is well aligned with the goal of lifelong learn-

ing of conversational agents and measures the per-

formance in a real-life system setting when only

a few examples of a new class are added to the

existing data from the old classes. To address the

poor generalization in data scare scenarios, several

pre-training methods such as ELMo (Peters et al.,

2018), Generative pre-trained Transformer (Rad-

ford et al., 2018), BERT (Devlin et al., 2018),

have been proposed which are trained on a large

amount of unannotated text data. Such pre-trained

models can be fine-tuned on a particular NLP task

and have shown to greatly improve generaliza-

tion. However, in FSI setting where only a handful

of examples are provided, building accurate NLU

model is still a challenging task.

In this paper, we focus on Feature space Data

Augmentation (FDA) methods to improve the

classification performance of the categories with

limited data. We study six widely different fea-

ture space data augmentation methods: 1) up-

sampling in the feature space UPSAMPLE, 2) ran-

dom perturbation PERTURB, 3) extrapolation (De-

vries and Taylor, 2017) EXTRA, 4) conditional

variational auto-encoder (CVAE) (Kingma and

Welling, 2013) CVAE, 5) delta encoder that have

been especially designed to work in the few-shot
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learning setting (Schwartz et al., 2018) DELTA, 6)

linear delta which is a linear version of the delta

encoder LINEAR. While UPSAMPLE, PERTURB,

EXTRA and LINEAR doesn’t require any training

beyond hyper-parameter optimization, DELTA and

CVAE are trained deep neural network generators.

We compare these six FDA techniques on

two open datasets for Intent Classification (IC) :

SNIPS (Coucke et al., 2018) and Facebook Di-

alog corpus (Gupta et al., 2018). We show that

BERT combined with LINEAR data augmentation

provides an effective method to bootstrap accurate

intent classifiers with limited training data. We

make the following contributions:

1. We propose the FSI evaluation, a relaxation

of the few-shot learning setting that aims to

better model the requirement of modern NLU

systems. We provide a comprehensive eval-

uation of FSI for text classification and show

that UPSAMPLE and PERTURB are simple yet

efficient baselines that are often neglected in

few-shot learning evaluations.

2. We provide an in-depth analysis of various

FDA methods. We show that complex meth-

ods such as DELTA and CVAE do not always

improve over simple methods like LINEAR,

and the performance heavily depends on the

feature extractor.

3. Finally, we provide guidance on when and

how to apply FDA for FSI. We show that

FDA consistently provides gains on top of

the unsupervised pre-training methods such

as BERT in FSI setting.

2 Related work

Few-shot learning has been studied extensively

in the computer vision domain. In particular, sev-

eral metric learning based methods (Koch et al.,

2015; Vinyals et al., 2016; Snell et al., 2017; Rip-

pel et al., 2015) has been proposed for few-shot

classification where a model first learns an em-

bedding space and then a simple metric is used to

classify instances of new categories via proxim-

ity to the few labeled training examples embedded

in the same space. In addition to metric-learning,

several meta-learning based approaches (Ravi and

Larochelle, 2016; Li et al., 2017; Finn et al., 2017)

have been proposed for few-shot classification on

unseen classes.

Recently, Few-Shot Learning on text data has

been explored using metric learning (Yu et al.,

2018; Jiang et al., 2018). In (Yu et al., 2018),

authors propose to learn a weighted combination

of metrics obtained from meta-training tasks for

a newly seen few-shot task. Similarly, in (Cheng

et al., 2019), authors propose to use meta-metric-

learning to learn task-specific metric that can han-

dle imbalanced datasets.

Generative models are also widely used to

improve classification performance by data aug-

mentation. For example, generative models are

used for data augmentation in image classifica-

tion (Mehrotra and Dukkipati, 2017; Antoniou

et al., 2018; Zhang et al., 2018), text classifica-

tion (Gupta, 2019), anomaly detection (Lim et al.,

2018). Data augmentation through deformation

of an image has been known to be very effec-

tive for image recognition. More advanced ap-

proaches rely on Auto-Encoders (AEs) or Gener-

ative Adversarial Networks (GANs). For exam-

ple, in (Mehrotra and Dukkipati, 2017) the authors

combine metric-learning with data augmentation

using GANs for few-shot learning. However, clas-

sical generative approaches require a significant

amount of training data to be able to generate good

enough examples that will improve classification

accuracy. To overcome this challenge, (Hariha-

ran and Girshick, 2017) proposed to augment the

training data in the feature space. This both eases

the generation problem and enforces generation of

discriminative examples. In addition, the authors

propose to transfer deformations from base classes

to new classes, which allows circumventing the

data scarcity problem for new classes. Finally, in

(Schwartz et al., 2018), authors used an Autoen-

coder to encode transformations between pairs of

examples of the same class and apply them to an

example of the new class.

Generative models are a good candidate for

FSI tasks, as one can just combine the generated

data for new classes with the old classes training

data (Hariharan and Girshick, 2017; Wang et al.,

2018). For text classification, several text gen-

eration based data augmentation techniques have

also been explored (Hou et al., 2018; Zhao et al.,

2019; Guu et al., 2018; Yoo et al., 2018; Cho et al.,

2019a). However, generating discrete sequences,

e.g. text, is known to be quite difficult and requires

lots of training data. That is why, in this paper, we

focus on generative models, which augment data
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Figure 1: Data augmentation in the feature space

in latent(feature) space to solve a few-shot inte-

gration problem for text classification.

3 Data Augmentation in Feature Space

Feature space data Augmentation (FDA) is an ef-

fective method to improve classification perfor-

mance on different ML tasks (Chawla et al., 2002;

Hariharan and Girshick, 2017; Devries and Taylor,

2017; Guo et al., 2019). As shown on Figure 1,

FDA techniques usually work by first learning a

data representation or feature extractor, and then

generating new data for the low resource class in

the feature space. After generating data, a classi-

fier is trained with real and augmented data.

For IC, we finetune a pre-trained English BERT-

Base uncased model 1 to build our feature extrac-

tor. The BERT model has 12 layers, 768 hidden

states, and 12 heads. We use the pooled represen-

tation of the hidden state of the first special token

([CLS]) as the sentence representation. A dropout

probability of 0.1 is applied to the sentence rep-

resentation before passing it to the 1-layer Soft-

max classifier. BERT Encoder and MLP classi-

fier are fine-tuned using cross-entropy loss for IC

task. Adam (Kingma and Ba, 2014) is used for

optimization with an initial learning rate of 5e−5.

For data augmentation, we apply six different

FDA methods, described below, to generate new

examples in the feature space. Finally, we train a

1- layer Softmax classifier as in the feature learn-

ing phase.

1https://github.com/huggingface/pytorch-transformers

3.1 Upsampling

The simplest method to augment training data for

underrepresented categories is to duplicate the ex-

isting training data. Upsampling is a well studied

technique to handle the class imbalance problem

(Estabrooks et al., 2004). We show that for intents

with limited labeled data, upsampling the existing

data in latent space consistently improves model

performance, and thus is a good baseline method

for FDA techniques. We call this method UPSAM-

PLE.

3.2 Random Perturbation

Adding random noise to the existing training data

is another simple yet effective data augmentation

technique. Random perturbation data augmenta-

tion has been previously used to improve the per-

formance of classification models as well as for

sequence generation models. For example, (Ku-

rata et al., 2016) applied additive and multiplica-

tive perturbation to improve the text generation for

data augmentation. In our experiments, we apply

both additive and multiplicative perturbation to the

existing training data. We sample noise from a

uniform distribution [-1.0, 1.0]. We use PERTURB

to refer to this method.

3.3 Conditional VAE

Conditional Variational Autoencoder (CVAE)

is an extension of Variational Autoencoder

(VAE) (Kingma and Welling, 2013) which can be

used to generate examples for a given category.

All components of the model are conditioned on

the category. First, we train CVAE on the sen-

tence representations and then generate new ex-

amples by sampling from the latent distribution.

The encoder and decoder sub-networks are imple-

mented as multi-layer perceptrons with a single

hidden layer of 2048 units, where each layer is fol-

lowed by a hyperbolic tangent activation. The en-

coder output Z is 128-dimensional. Mean Square

Error (MSE) loss function is used for reconstruc-

tion. All models are trained with Adam optimizer

with the learning rate set to 10− 3.

3.4 Linear Delta

A simple method to generate new examples is to

first learn the difference between a pair of exam-

ples, and then add this difference to another exam-

ple. In this case, we first compute the difference

Xi − Xj between two examples from the same
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class and then add it to a third example Xk also

from the same class as shown in (1). We use LIN-

EAR to refer to this method.

X̂ = (Xi −Xj) +Xk (1)

3.5 Extrapolation

In (Devries and Taylor, 2017), authors proposed

to use extrapolation to synthesize new examples

for a given class. They demonstrated that extrap-

olating between samples in feature space can be

used to augment datasets. In extrapolation, a new

example, X̂ is generated according to (2). In our

experiments, we use λ = 0.5. We call this method

EXTRA.

X̂ = (Xi −Xj) ∗ λ+Xi (2)

3.6 Delta-Encoder

Delta-Encoder (Schwartz et al., 2018) extends the

idea of learning differences between two examples

using an autoencoder-based model. It first extracts

transferable intra-class deformations (deltas) be-

tween same-class pairs of training examples, then

applies them to a few examples of a new class to

synthesize samples from that class. Authors show

that Delta-Encoder can learn transferable defor-

mations from different source classes which can

be used to generate examples for unseen classes.

While the authors used Delta-Encoder to generate

examples for unseen classes, in our experiments,

for FSI, we also use the examples from the tar-

get class to the train both the feature extractor and

the Delta-Encoder along with all other examples.

Then we generate new examples for the target cat-

egory using trained delta encoder. For data gener-

ation, we try two different approaches to select a

source sentence pair.

1. DeltaR: Sample a pair of sentences (Xi, Xj)

from a randomly selected class. DELTAR ap-

plies deltas from multiple source categories

to synthesize new examples.

2. DeltaS: Sample a pair of sentences (Xi, Xj)

from the target category. DELTAS applies

deltas from the same target category.

The encoder and decoder sub-networks are im-

plemented as multi-layer perceptrons with a single

hidden layer of 512 units, where each layer is fol-

lowed by a leaky ReLU activation (max(x, 0.2 ∗
x)). The encoder output Z is 16-dimensional. L1

loss is used as reconstruction loss. Adam opti-

mizer is used with a learning rate of 10 − 3. A

high dropout with a 50% rate is applied to all lay-

ers, to avoid the model memorizing examples.

4 Experiment

4.1 Datasets

We evaluate different FDA techniques on two pub-

lic benchmark datasets, SNIPS (Coucke et al.,

2018), and Facebook Dialog corpus (FBDialog)

(Gupta et al., 2018). For SNIPS dataset, we use

train, dev and test split provided by (Goo et al.,

2018) 2.

SNIPS dataset contains 7 intents which are col-

lected from the Snips personal voice assistant.

The training, development and test sets contain

13, 084, 700 and 700 utterances, respectively. FB-

Dialog has utterances that are focused on naviga-

tion, events, and navigation to events. FBDialog

dataset also contains utterances with multiple in-

tents as the root node. For our experiment, we

exclude such utterances by removing utterances

with COMBINED intent root node. This leads

to 31, 218 training, 4, 455 development and 9, 019
testset utterances. Note that while SNIPS is a bal-

anced dataset, FBDialog dataset is highly imbal-

anced with a maximum 8, 860 and a minimum of

4 training examples per intent.

4.2 Simulating Few-Shot Integration

In virtual assistants, often a new intent develop-

ment starts with very limited training data. To

simulate the integration of a new intent, we ran-

domly sample k seed training examples from the

new intent, referred to as target intent, and keep

all the data from other intents. We also remove the

target intent data from the development set. We

train the feature extractor on the resulting training

data, and then generate 100, 512 examples using

different augmentation methods for the target in-

tent. To account for random fluctuations in the re-

sults, we repeat this process 10 times for a given

target intent and report the average accuracy with

the standard deviation. In all experiments, models

are evaluated on the full test set.

2https://github.com/MiuLab/SlotGated-SLU
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Size Method SNIPS FBDialog

No Augmentation 98.14 (0.42) 94.99 (0.18)

5%

UPSAMPLE 98.14 (0.47) 95.01 (0.16)

PERTURB 98.26 (0.40) 94.98 (0.19)

LINEAR 98.14 (0.45) 95.02 (0.21)

EXTRA 98.14 (0.45) 95.02 (0.20)

CVAE 98.14 (0.45) 94.98 (0.24)

DELTAR 98.23 (0.46) 95.00 (0.22)

DELTAS 98.26 (0.42) 95.00 (0.20)

10%

UPSAMPLE 98.14 (0.47) 94.94 (0.18)

PERTURB 98.23 (0.41) 94.98 (0.24)

LINEAR 98.09 (0.50) 95.02 (0.18)

EXTRA 98.11 (0.49) 95.01 (0.19)

CVAE 98.20 (0.42) 94.99 (0.26)

DELTAR 98.26 (0.42) 94.99 (0.21)

DELTAS 98.23 (0.42) 94.97 (0.22)

20%

UPSAMPLE 98.14 (0.45) 95.02 (0.12)

PERTURB 98.14 (0.44) 94.99 (0.20)

LINEAR 98.17 (0.43) 95.05 (0.23)

EXTRA 98.14 (0.45) 95.07 (0.11)

CVAE 98.11 (0.44) 94.98 (0.23)

DELTAR 98.26 (0.40) 95.08 (0.19)

DELTAS 98.20 (0.46) 95.04 (0.22)

Table 1: IC accuracy on SNIPS and Facebook dataset

with all training data, reported as mean (SD).

5 Results and Discussion

5.1 FDA For Data-Rich Classification

For both datasets, we generate 5%, 10%, and 20%
examples using different FDA methods. Then, we

train a classifier using both generated as well as

real data. Table 1 shows that augmenting data in

feature space provides only minor improvements

in classification accuracy. In particular, on SNIPS

dataset, PERTUB and DELTAR improve accuracy

from 98.14 to 98.26. On FBDialog dataset, DeltaR

provides a minor gain, 95.02 to 95.08 over upsam-

ple baseline.

5.2 Impact Of The Number Of Seed

Examples

To understand the impact of the number of seed

examples, we vary it to 5, 10, 15, 20, 25, and 30 for

SNIPS’s AddToPlaylist. For each experiment, we

generate 100 examples using different FDA meth-

ods. Figure 2 shows that as the number of seed ex-

amples increases, the accuracy of the model goes

up. We also observe that for a few seed examples

5 - 15, LINEAR outperforms other FSA methods.

Finally, gains are less significant after 30 seed ex-

amples.
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Figure 2: IC accuracy on SNIPS’s AddToPlaylist in-

tent with varying number of seed examples. 100 ex-

amples are generated using different FDA techniques.

As indicated by the accuracy trend, increasing the seed

examples leads to better performance.

5.3 Few-Shot Integration

We simulate FSI IC for all 7 intents of SNIPS

dataset. For FBDialog dataset, we run simula-

tions on the six largest intents, viz. GetDirections,

GetDistance, GetEstimatedArrival, GetEstimated-

Duration, GetInfoTraffic, and GetEvent. Since,

BERT generalizes well with just 30 examples, to

compare the effectiveness of different FDA meth-

ods, we use 10 seed examples in FSI simulations.

For each intent, we select k = 10 seed training ex-

amples and use all training data for other intents.

Table 2 shows average accuracy for all intents’

FSI simulations. Results on individual intent’s FSI

simulations can be found in Appendix’s Table 5

and Table 6. On both datasets, all FDA methods

improve classification accuracy over no augmen-

tation baseline. Also, UPSAMPLE provides huge

gains over no augmentation baseline. Addition-

ally, on both datasets, with 512 augmented ex-

amples, LINEAR and DELTAS works better than

PERTURB and UPSAMPLE.

5.4 Upsampling: Text Space vs Latent Space

In this section, we explore how upsampling in text

space impacts performances as it is supposed to

both improve the feature extractor and the linear

classifier, compared to UPSAMPLE. To investigate

whether upsampling in text space helps FDA, we

upsampled the 10 seed examples to 100 and repeat

the FSI experiments on all 7 intents of the SNIPS

dataset. Table 3 shows the mean accuracy of all

7 intents FSI simulations results for different FDA

techniques. FSI simulations scores for individual

intents can be found in Appendix’s Table 7. We
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# Method SNIPS FBDialog

No Augmentation 87.46(2.87) 81.29(0.11)

100

UPSAMPLE 94.26(1.66) 84.34(1.84)

PERTURB 94.18(1.74) 84.04(1.95)

CVAE 94.10(1.83) 84.10(1.94)

LINEAR 94.36(1.69) 84.31(1.9)

EXTRA 94.30(1.68) 84.13(1.83)

DELTAR 91.32(3.12) 81.97(0.76)

DELTAS 94.28(1.92) 83.50(1.92)

512

UPSAMPLE 95.68(0.86) 89.03(0.99)

PERTURB 95.65(0.92) 89.02(0.99)

CVAE 95.46(1.03) 88.71(1.09)

LINEAR 95.87(0.87) 89.30(1.03)

EXTRA 95.82(0.89) 89.21(0.99)

DELTAR 95.33(1.56) 87.28(1.46)

DELTAS 95.88(1.04) 89.15(1.12)

Table 2: Average IC accuracy for all intents’ FSI simu-

lations on SNIPS and FBDialog dataset. For each sim-

ulation, k = 10 seed examples are used for target in-

tent. Scores are reported as mean (SD). Refer to Ap-

pendix’s Table 5 and Table 6 for individual intents’ re-

sults.

observe that upsampling in text space improves the

no augmentation baseline for all intents. The mean

accuracy score improves from 87.46 to 94.38. We

also observe that different FDA techniques further

improve model accuracy. Interestingly, upsam-

pling in text space helps DELTAR the most. Sur-

prisingly, upsampling in latent space provides bet-

ter performance than upsampling in the text space.

In particular, without upsampling the seed exam-

ples to learn the feature extractor, the best score

is 95.88 for DELTAS, whereas with text space up-

sampling the best score decreases to 94.88. This

decrease in performance is only seen with BERT

and not with the Bi-LSTM feature extractor (see

Table 4). We hypothesize that upsampling text

data leads to BERT overfitting the target category

which results in less generalized sentence repre-

sentations. Overall, we found that augmentation in

the latent space seems to work better with BERT,

and is more effective than text space upsampling.

5.5 Effect Of The Pre-trained BERT Encoder

In FSI setting, Fine-Tuned BERT model provides

very good generalization performance. For exam-

ple, for SNIPS’s RateBookIntent (column Book in

Table 5), it yields 96.81% accuracy. Overall for

BERT representations, LINEAR and DELTAS aug-

mentation methods provide the best accuracy.

# Method Overall Mean

No Augmentation 94.38(1.23)

100

UPSAMPLE 94.53(1.12)

PERTURB 94.52(1.18)

CVAE 94.53(1.18)

LINEAR 94.53(1.12)

EXTRA 94.53(1.13)

DELTAR 94.62(1.16)

DELTAS 94.57(1.14)

512

UPSAMPLE 94.67(1.11)

PERTURB 94.68(1.14)

CVAE 94.73(1.11)

LINEAR 94.67(1.11)

EXTRA 94.67(1.11)

DELTAR 94.88(1.12)

DELTAS 94.74(1.12)

Table 3: IC accuracy on SNIPS dataset in the FSI set-

ting, reported as mean (SD). The 10 seed examples are

upsampled to 100 to train the feature extractor. Refer

to Appendix’s Table 7 for individual intents’ results.

To investigate whether these augmentation im-

provements can be generalized to other sentence

encoders, we experiment with a Bi-LSTM sen-

tence encoder. For feature learning, we use a 1-

layer Bi-LSTM encoder followed by a single layer

softmax classifier. In our experiments, we use 128
as hidden units and 300 dimension Glove embed-

dings. For SNIPS dataset, we use 10 examples of

AddToPlaylist intent and for FB Dialog dataset,

we use 10 examples of GetDirections intent.

Table 4 shows intent accuracy for SNIPS and

Facebook datasets. We find that, unlike BERT,

in the FSI setting, the Bi-LSTM encoder provides

a lower accuracy. In contrast to BERT FSI ex-

periments, DELTAS performs worse than the UP-

SAMPLE and PERTURB baselines. The main rea-

son is that Delta-Encoder’s performance relies on

a good feature extractor and with 10 seed exam-

ples, the Bi-LSTM encoder fails to learn good sen-

tence representations. To improve representation

learning, we upsample 10 utterances to 100 and

then train the feature extractor. Upsampling in

text space improves the performance of both delta

encoder methods, DELTAS, and DELTAR. More-

over, for both SNIPS’s AddToPlayList and FBDi-

alog’s GetDirections intent, DELTAR outperforms

all other FDA methods.
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Size Method SNIPS’s AddToPlaylist FBDialog’s GetDirections

seed examples (k) 10 100∗ 10 100∗

No Augmentation 80.07 (2.08) 90.17 (1.39) 87.44 (0.12) 87.94 (0.32)

100

UPSAMPLE 88.27 (1.74) 90.61 (1.52) 88.01 (0.26) 88.17 (0.32)

PERTURB 88.03 (1.52) 90.86 (1.39) 88.01 (0.32) 88.25 (0.31)

LINEAR 88.14 (1.62) 91.06 (1.58) 88.05 (0.25) 88.26 (0.32)

EXTRA 88.09 (1.57) 90.74 (1.57) 88.10 (0.29) 88.20 (0.3)

CVAE 88.27 (2.08) 90.90 (1.69) 88.04 (0.24) 88.17 (0.32)

DELTAR 82.23 (2.21) 91.46 (1.19) 87.60 (0.23) 88.75 (0.43)

DELTAS 84.4 (2.74) 91.07 (1.44) 88.02 (0.22) 88.57 (0.36)

512

UPSAMPLE 91.41 (1.03) 91.61 (1.4) 88.68 (0.49) 88.40 (0.35)

PERTURB 91.46 (0.99) 91.73 (1.32) 88.89 (0.57) 88.56 (0.39)

LINEAR 91.20 (1.28) 91.41 (1.52) 88.97 (0.65) 88.47 (0.33)

EXTRA 91.26 (1.22) 91.57 (1.55) 88.85 (0.61) 88.48 (0.37)

CVAE 91.39 (0.94) 91.44 (1.2) 89.02 (0.52) 88.48 (0.4)

DELTAR 87.09 (2.75) 92.97 (1.2)) 88.61 (0.35) 89.70 (0.53)

DELTAS 89.34 (1.48) 92.00 (1.25) 89.34 (0.4) 89.09 (0.51)

Table 4: IC accuracy on SNIPS’s AddToPlaylist and

FBDialog’s GetDirections in the FSI setting, reported

as mean (SD). A 1-layer Bi-LSTM model is used as a

feature extractor. 100∗ represents 10 seed examples are

upsampled to 100 to train the feature extractor.

5.6 Is Delta-Encoder Effective On Text?

While on few-shot image classification, Delta-

Encoder provides excellent generalization perfor-

mance (Schwartz et al., 2018) on unseen classes,

on text classification, its performance is heavily

dependent on the feature extractor. We observe

that in most cases, DELTAR performs worse than

DELTAS which suggests that unlike for few-shot

image classification, Delta-Encoder fails to learn

variations which can be applied to a different cat-

egory. In addition, in FSI with BERT encoder,

DELTAS performance is close to LINEAR. This in-

dicates that in the low-data regime, simple subtrac-

tion between BERT sentence representations is a

good proxy to learn intra-class variations. Upsam-

pling data in text space improves Delta-Encoder

performance for both BERT and Bi-LSTM en-

coders. As shown in Table 3, with upsampling in

text space, DELTAR performs better than any other

FDA method.

5.7 Qualitative Evaluation

We observe significant accuracy improvements in

all FSI experiments for all FDA methods. Since

UPSAMPLE and PERTURB also provide significant

gains, it seems that most of the gains come from

the fact that we are adding more data. However,

in the FSI setting, LINEAR and DELTAS method

consistently perform better than both UPSAMPLE

and PERTURB, which indicates that these meth-

ods generate more relevant data than just noise,

and redundancy. Here, we focus on visualizing

generated examples from LINEAR, DELTAS and

DELTAR methods using t-SNE.

Figure 3 shows visualizations for SNIPS’s Ad-

dToPlaylist generated sentence representations us-

ing different FDA methods. We use 10 seed exam-

ples of AddToPlaylist and use BERT as sentence

encoder. While data generated by LINEAR and

EXTRA are close to the real examples, DELTAS

and DELTAR generated examples form two dif-

ferent clusters. Since, Delta-Encoder performance

improves when seed examples are upsampled in

text space, we plot sentence examples from up-

sampled data.

Figure 4 shows that when 10 seed examples

are upsampled to 100, DELTAS cluster moves

closer to the seed examples, and while most of the

DELTAR generated data forms a separate cluster, a

few of the generated examples are close to the seed

examples. Since, in experiments with upsampled

text examples, DELTAR performs better than other

FDA methods, we hypothesize that DELTAR in-

creases the amount of variability within the dataset

by generating diverse examples which leads to a

more robust model.

6 Conclusion and Future Work

In this paper, we investigate six FDA methods

including UPSAMPLE, PERTURB, CVAE, Delta-

Encoder, EXTRA, and LINEAR to augment train-

ing data. We show that FDA works better when

combined with transfer learning and provides an

effective way of bootstrapping an intent classifier

for new classes. As expected, all FDA methods

become less effective when the number of seed ex-

amples increases and provides minor gains in the

full-data regime. Through comparing methods on

two public datasets, our results show that LINEAR

is a competitive baseline for FDA in FSI setting,

especially when combined with transfer learning

(BERT).

Additionally, we provide empirical evidence

that in few-shot integration setting, feature space

augmentation combined with BERT provides bet-

ter performance than widely used text space up-

sampling. Given that pre-trained language mod-

els provide state of the art performance on sev-

eral NLP tasks, we find this result to be in particu-

lar encouraging, as it shows potential for applying

FDA methods to other NLP tasks.

Our experiments on Delta-Encoder also shows

that unlike few-shot image classification, Delta-

Encoder fails to learn transferable intra-class vari-

ations. This result emphasizes that methods pro-
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Figure 3: 10 seed examples
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Figure 4: 10 seed examples are upsampled to 100

Figure 5: t-SNE visualization of different data augmentation methods for AddToPlaylist intent. BERT encoder is

used to learn sentence representations.

viding improvements in computer vision domain

might not produce similar gains on NLP tasks,

thus underlining the need to develop data augmen-

tation methods specific to NLP tasks.
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vides average accuracy for all intents’ FSI simula-

tions.
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# Method Playlist Restaurant Weather Music Book Work Event Overall Mean

No Augmentation 82.63(5.11) 87.86(3.53) 84.51(1.3) 88.07(2.37) 96.81(2.94) 85.14(1.53) 87.19(3.31) 87.46(2.87)

100

UPSAMPLE 92.24(2.96) 97.7(0.67) 96.44(0.75) 94.57(1.1) 97.96(0.82) 89.61(3.01) 91.26(2.35) 94.26(1.66)

PERTURB 93.09(2.55) 97.41(0.92) 96.07(1.35) 94.39(1.13) 97.86(0.93) 89.36(2.76) 91.09(2.53) 94.18(1.74)

CVAE 92.4(3.66) 97.47(0.67) 96.49(1.07) 94.36(1.26) 97.71(1.1) 89.1(2.79) 91.2(2.22) 94.1(1.83)

LINEAR 92.61(3.02) 97.74(0.67) 96.44(0.77) 94.63(1.18) 97.97(0.78) 89.61(3.05) 91.53(2.34) 94.36(1.69)

EXTRA 92.36(3.0) 97.74(0.66) 96.41(0.77) 94.6(1.18) 97.97(0.78) 89.47(3.11) 91.51(2.3) 94.3(1.68)

DELTAR 87.07(4.67) 93.57(4.07) 91.0(4.23) 94.87(1.28) 97.66(1.42) 85.97(2.34) 89.11(3.84) 91.32(3.12)

DELTAS 92.64(4.49) 97.76(0.7) 96.41(1.25) 94.99(0.92) 97.83(0.99) 88.69(2.69) 91.64(2.36) 94.28(1.92)

512

UPSAMPLE 95.3(1.09) 98.0(0.64) 97.63(0.34) 95.57(0.87) 98.03(0.55) 92.0(1.49) 93.26(1.05) 95.68(0.86)

PERTURB 95.33(1.2) 97.94(0.6) 97.6(0.44) 95.5(0.91) 97.91(0.55) 92.03(1.78) 93.21(0.99) 95.65(0.92)

CVAE 95.46(1.12) 97.89(0.62) 97.54(0.43) 95.36(1.02) 97.93(0.7) 91.34(2.17) 92.73(1.19) 95.46(1.03)

LINEAR 95.39(1.1) 98.0(0.64) 97.67(0.36) 95.74(0.89) 98.04(0.5) 92.61(1.47) 93.66(1.13) 95.87(0.87)

EXTRA 95.36(1.17) 98.0(0.64) 97.66(0.37) 95.74(0.88) 98.04(0.5) 92.29(1.52) 93.63(1.17) 95.82(0.89)

DELTAR 95.36(1.74) 97.81(0.69) 97.6(0.44) 95.9(0.97) 97.74(1.02) 90.27(3.44) 92.61(2.64) 95.33(1.56)

DELTAS 95.66(1.18) 97.96(0.59) 97.8(0.45) 95.91(0.88) 97.91(0.74) 92.26(2.57) 93.66(0.86) 95.88(1.04)

Table 5: IC accuracy on SNIPS dataset in the FSI setting (k = 10), reported as mean (SD).

# Method Directions Distance Arrival Duration Traffic Event Overall Mean

No Augmentation 89.61(0.1) 89.94(0.09) 90.56(0.12) 81.74(0.13) 68.5(0.13) 67.39(0.11) 81.29(0.11)

100

UPSAMPLE 89.89(0.27) 93.64(0.87) 92.95(0.57) 84.28(3.45) 68.99(0.49) 76.26(5.41) 84.34(1.84)

PERTURB 89.82(0.24) 93.58(0.84) 92.81(0.55) 84.81(3.77) 69.15(0.68) 74.07(5.6) 84.04(1.95)

CVAE 89.91(0.32) 93.46(0.77) 92.7(0.67) 84.45(3.52) 69.11(0.9) 74.94(5.49) 84.1(1.94)

LINEAR 89.93(0.24) 93.65(0.88) 92.98(0.57) 84.2(3.44) 68.96(0.51) 76.12(5.77) 84.31(1.9)

EXTRA 89.88(0.27) 93.61(0.89) 92.96(0.59) 84.21(3.43) 68.94(0.46) 75.18(5.34) 84.13(1.83)

DELTAR 89.64(0.11) 92.57(1.3) 90.79(0.37) 81.72(0.12) 68.48(0.08) 68.63(2.59) 81.97(0.76)

DELTAS 89.88(0.34) 93.68(0.72) 92.6(0.76) 83.88(3.2) 68.93(0.67) 72.05(5.83) 83.5(1.92)

512

UPSAMPLE 91.93(0.48) 94.58(0.34) 93.99(0.31) 92.56(0.72) 75.84(2.19) 85.27(1.87) 89.03(0.99)

PERTURB 91.78(0.49) 94.58(0.43) 94.02(0.25) 92.53(0.87) 76.0(2.27) 85.22(1.61) 89.02(0.99)

CVAE 91.85(0.52) 94.57(0.39) 94.0(0.34) 92.45(0.92) 74.91(2.73) 84.5(1.61) 88.71(1.09)

LINEAR 92.14(0.66) 94.6(0.35) 94.05(0.32) 92.78(0.67) 76.0(2.49) 86.22(1.7) 89.3(1.03)

EXTRA 92.11(0.57) 94.61(0.35) 94.04(0.29) 92.72(0.7) 75.79(2.45) 85.98(1.58) 89.21(0.99)

DELTAR 90.43(0.55) 94.54(0.35) 93.8(0.3) 86.64(4.38) 71.68(1.46) 86.55(1.75) 87.28(1.46)

DELTAS 91.83(0.47) 94.66(0.4) 94.08(0.24) 92.31(1.45) 75.81(2.1) 86.23(2.08) 89.15(1.12)

Table 6: IC accuracy on FBDialog dataset in the FSI setting (k = 10), reported as mean (SD).

# Method Playlist Restaurant Weather Music Book Work Event Overall Mean

No Augmentation 96.0(1.69) 95.39(1.59) 96.41(1.18) 93.1(1.38) 97.79(0.77) 88.46(1.14) 93.49(0.87) 94.38(1.23)

100

UPSAMPLE 96.0(1.57) 95.87(1.26) 96.51(1.04) 93.19(1.25) 97.83(0.7) 88.63(1.21) 93.7(0.83) 94.53(1.12)

PERTURB 96.1(1.64) 95.7(1.23) 96.43(1.28) 93.33(1.1) 97.8(0.77) 88.56(1.32) 93.7(0.9) 94.52(1.18)

CVAE 96.07(1.46) 95.91(1.43) 96.43(1.31) 93.2(1.15) 97.83(0.78) 88.63(1.28) 93.66(0.86) 94.53(1.18)

LINEAR 96.0(1.57) 95.89(1.26) 96.51(1.04) 93.19(1.25) 97.83(0.7) 88.63(1.21) 93.7(0.83) 94.53(1.12)

EXTRA 96.0(1.57) 95.84(1.3) 96.51 (1.04) 93.19(1.25) 97.83(0.7) 88.63(1.21) 93.7(0.83) 94.53(1.13)

DELTAR 96.09(1.51) 95.74(1.46) 96.44(1.29) 93.56(0.95) 97.86(0.75) 88.79(1.25) 93.86(0.93) 94.62(1.16)

DELTAS 96.11(1.52) 95.69(1.44) 96.46(1.29) 93.44(0.93) 97.86(0.75) 88.64(1.18) 93.76(0.89) 94.57(1.14)

512

UPSAMPLE 96.07(1.54) 96.09(1.2) 96.6(1.06) 93.5(1.14) 97.87(0.69) 88.73(1.23) 93.8(0.92) 94.67(1.11)

PERTURB 96.23(1.6) 96.17(1.23) 96.63(1.13) 93.49(1.03) 97.84(0.72) 88.6(1.3) 93.79(0.98) 94.68(1.14)

CVAE 96.14(1.46) 96.24(1.18) 96.63(1.06) 93.6(1.08) 97.87(0.75) 88.76(1.29) 93.87(0.98) 94.73(1.11)

LINEAR 96.07(1.54) 96.11(1.21) 96.6(1.06) 93.49(1.13) 97.87(0.69) 88.76(1.25) 93.8(0.92) 94.67(1.11)

EXTRA 96.07(1.54) 96.13(1.18) 96.6(1.06) 93.5(1.14) 97.87(0.69) 88.73(1.25) 93.8(0.92) 94.67(1.11)

DELTAR 96.29(1.52) 96.29(1.34) 96.71(1.1) 93.87(1.04) 97.86(0.75) 89.11(1.22) 94.03(0.89) 94.88(1.12)

DELTAS 96.19(1.61) 96.2(1.23) 96.69(1.07) 93.61(0.96) 97.86(0.75) 88.84(1.28) 93.83(0.94) 94.74(1.12)

Table 7: IC accuracy on SNIPS dataset in the FSI setting, reported as mean (SD). The 10 seed examples are

upsampled to 100 to train the feature extractor.


