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Abstract
To solve the shared tasks of COIN: COmmon-
sense INference in Natural Language Process-
ing) Workshop in EMNLP-IJCNLP 2019, we
need explore the impact of knowledge repre-
sentation in modeling commonsense knowl-
edge to boost performance of machine reading
comprehension beyond simple text matching.
There are two approaches to represent knowl-
edge in the low-dimensional space. The first is
to leverage large-scale unsupervised text cor-
pus to train fixed or contextual language repre-
sentations. The second approach is to explic-
itly express knowledge into a knowledge graph
(KG), and then fit a model to represent the
facts in the KG. We have experimented both
(a) improving the fine-tuning of pre-trained
language models on a task with a small dataset
size, by leveraging datasets of similar tasks;
and (b) incorporating the distributional repre-
sentations of a KG onto the representations of
pre-trained language models, via simply con-
catenation or multi-head attention. We find
out that: (a) for task 1, first fine-tuning on
larger datasets like RACE (Lai et al., 2017)
and SWAG (Zellers et al., 2018), and then fine-
tuning on the target task improve the perfor-
mance significantly; (b) for task 2, we find
out the incorporating a KG of commonsense
knowledge, WordNet (Miller, 1995) into the
Bert model (Devlin et al., 2018) is helpful,
however, it will hurts the performace of XL-
NET (Yang et al., 2019), a more powerful pre-
trained model. Our approaches achieve the
state-of-the-art results on both shared task’s
official test data, outperforming all the other
submissions.

1 Introduction

Machine reading comprehension (MRC) tasks
have always been the most studied tasks in the
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field of natural language understanding. Common
forms of reading comprehension tasks involve
question answer (QA) , cloze-style and multiple-
choice questions. Many models have achieved
excellent results on MRC datasets such as (Ra-
jpurkar et al., 2016; Nguyen et al., 2016; Lai et al.,
2017; Zhang et al., 2018a). However, Kaushik and
Lipton (2018) demonstrate that most questions in
previous MRC tasks can be answered by simply
matching the patterns in the textual level even with
passage or question only, but existing models per-
form badly on questions that require incorporating
knowledge in more sophisticated ways. In con-
trast, human beings can easily reason with knowl-
edge from contexts or commonsense knowledge
when doing MRC task. Thus, it is of significance
for models to be able to reason with knowledge,
especially commonsense knowledge.

Various deep learning models have been pro-
posed and shown pretty good performance on
MRC tasks (Parikh et al., 2019; Zhu et al., 2018;
Sun et al., 2018; Xu et al., 2017). Majority of
these approaches utilize sequence relevant neu-
ral networks such as GRU (Cho et al., 2014),
LSTM (Hochreiter and Schmidhuber, 1997) and
Attention mechanism (Vaswani et al., 2017) to
model the implicit relation among passages, ques-
tions and answers.

As pre-trained language models have shown
miraculous performance on several NLP tasks, a
large number of methods utilize this pre-trained
language model to extract textual level features
in MRC tasks. (Zhang et al., 2019; Ran et al.,
2019) compute the contextual representation of
passages, questions and options separately with
BERT and match the representation in down-
stream networks. They achieved the best results
on RACE dataset at their submission time.

Shared task 1 in COIN workshop is a two-
choice question task with short narrations about
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everyday scenarios, which is an extended ver-
sion of SemEval 2018 Task 11 (Ostermann
et al., 2018). Shared task 2 uses the ReCoRD
dataset (Zhang et al., 2018a), a machine reading
comprehension dataset in news articles. It anno-
tates named entities in the news articles and ad-
ditionally provides some brief bullet points that
summarize the news. It then asks for cloze-style
answers, filling in a blank in a sentence related to
the news article. Accomplishing these tasks re-
quires both the capability of reading comprehen-
sion and commonsense knowledge inference.

Our system is based on XLNet (Yang et al.,
2019), a generalized auto-regressive pretraining
method which achieves state-of-the-art results on
many NLP tasks. For task 1, We first pre-train
the model on multiple-choice question dataset
RACE (Lai et al., 2017) to gain certain reading
comprehension abilities. Afterwards, we mine
commonsense knowledge by fine-tuning grounded
commonsense inference dataset SWAG (Zellers
et al., 2018) on XLNet instead of introduc-
ing knowledge graph of general knowledge such
as ConceptNet (Speer et al., 2017) or Word-
Net (Miller, 1995). For task 2, other than utiliz-
ing XLNet’s representation power, we also exper-
iment on enhancing the representation and regu-
larizing predicted prior of named entities, by con-
catenating the pre-trained embedding of WordNet
of contextual word embedding. We finally im-
plement a series of post-processing strategies to
improve the model prediction results. Our sys-
tem achieves state-of-the-art performance on the
both shared tasks’ official test data, even though
we only train on the train sets and only submit sin-
gle models.

2 Model settings

In this section, we present the system designs we
experimented for the two shared tasks.

2.1 Pretrained language model Fine-tuning

As shown in Devlin et al. (2018) and Yang et al.
(2019), the usual way to employ pre-trained lan-
guage models in representing multiple text input is
concatenation of text inputs in certain orders. For
this section, the denotations mainly follow Yang
et al. (2019) since we mainly use XLNet as the
text encoder. Since the notations for Bert will be
quite similar, which will not be included in this
work.

For task 1, the inputs are a context passage (de-
noted as P ), two queries (denoted as Qi, i = 1, 2),
and two answer options for each query, Ai,j , for
j = 1, 2. Following Yang et al. (2019)’s solution
on the RACE dataset, we concatenate the inputs as
follows:

Concat 2
i=1[P, [SEP ], QAi, [SEP ], [CLS]],

(1)
where QAi is the concatenation of the query-
answer pairs:

QAi = Concat 2
j=1[Qi, Ai,j ]. (2)

As for Task 2, the inputs are a context passage (de-
noted as P ), which in this case is a piece of a news-
paper article, and a assertive sentence (denoted as
S) part of which is masked out, thus they are con-
catenated as follows:

Concat [P, [SEP ], S, [SEP ], [CLS]]. (3)

After the text inputs are concatenated accord-
ingly, they will go through XLNet to get a contex-
tual representation. The output layer for the two
tasks are different. For task 1, a fully-connected
layer is put on the [CLS] token’s representation
two give out the likelihood of which answer op-
tion is the answer. For task 2, the answer is se-
lected from the context passage, thus we have to
predict the start position and end position. Thus
two fully-connected layers are needed, where the
first is to estimate the likelihood of being the start
position for each token, and the second combines
the encoded representation and the output of the
first fully-connected layer and predicts the end po-
sition.

2.2 Multi-funetuning
Finetuning a pre-trained language model on a
small target task dataset has shown significant per-
formance gains, as is shown in Devlin et al. (2018)
and Yang et al. (2019). However, directly fine-
tuning is proven not to be the most effective way,
since although pre-trained LMs are known to gen-
eralize well, overfitting problem is still inevitable.
Thus, related corpus or similar datasets are often
used, such as Wang et al. (2019) and Phang et al.
(2018), to form a multi-stage fine-tuning proce-
dure. For example, Wang et al. (2019) first fine-
tune on the MultiNLI datset before training the
CB, RTE, and BoolQ tasks. The intuition behind
why this multi-stage fine-tuning strategy works is
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Dataset Options Sentence A Sentence B
RACE 4 passage query+option
SWAG 4 query option
Task 1 2 passage query+option

Table 1: Structure of inputs for the two supplementary
tasks and the target task dataset

Dataset Train Dev
RACE 87866 4887
SWAG 73546 20006
Task 1 14191 2020

Table 2: Basic statistics for the three datasets involved
in solving task 1

that (a) to let the pre-trained LMs to adopt to the
similar contextual environment, (b) and make the
model more suitable for this specific task forma-
tion.

Due to the fact that task 1 dataset is small and
during fine-tuning the original XLNet model over-
fits very quickly, we experimented on a multi-
stage fine-tuning strategy. The first additional
dataset we choose is RACE, which is relatively
larger. Then we choose to fune-tune on SWAG,
whose queries are similar to our target task and
requires commonsense reasoning. Then we fine-
tune till convergence on the task 1 train set.

Table 1 presents the structure of the inputs for
the three datasets, where k is the number of op-
tions for each query. After each stage before
the final fine-tuning, we disregard the final fully-
connected output layer and use the updated XLNet
layers to fine-tune on the next dataset.

2.3 Knowledge fusing

Besides the original basic fine-tuning architecture
adopted by the XLNet, we also experiment on in-
volving commonsense knowledge for context en-
coding, as is depicted in Figure 1.

The commonsense knowledge graph we use is
the WordNet (Miller, 1995). The KG embedding
is trained using DistMult (Yang et al., 2014a).
First, we will match the phrases in the passage to
entities in the WordNet, using Aho-Corasick algo-
rithm (Arudchutha et al., 2014).1 Then each to-
ken in the entity will be given the same embed-

1If a phrase is matched to multiple entities in the KG, we
will take the average of all entity embeddings as the entity
embedding for the phrase.

Figure 1: The architecture of our KG infusing model
with XLNet as text encoder

ding vector, which is the embedding of the en-
tity in WordNet. Tokens not in any entity will be
given a zero vector as embedding. The KG en-
coded text input will be incorporated with the en-
coded output of XLNet using a multi-head atten-
tion layer (Vaswani et al., 2017), where the XLNet
encoded output acts as the query and the KG en-
coded output acts the key and value. Then the out-
put layer is the same with answer span prediction
layers described in the previous subsection.

2.4 Answer Verification
To improve the prediction results of a model, we
implement a series of answer verification strate-
gies, which are the following:

• as there are additional entity information pro-
vided with the dataset, at the span predict
stage, we filter invalid predicted spans ac-
cording to whether it match a named entity

• if we can not find any entities in all predic-
tions, we randomly select one from the enti-
ties provided to us

• some entity is a part of the ‘-‘ concatenation
span, then we match the answer by its left or
right concatenated contexts

3 Experiment

3.1 Dataset
Statistics for the datasets involved in training for
task 1, which are RACE, SWAG and the official
task 1 dataset are shown in Table 2. The statistics
represent the total number of queries in the corre-
sponding dataset. The final submission result on
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the leader-board is calculated on official test data,
which will not be published. Only training and de-
velopment data for the task are available to us.

Task 2, which is the ReCoRD dataset (Zhang
et al., 2018b) has 65, 000 queries on the train set
and 10, 000 queries on the dev set. The answer for
the ReCoRD dataset is not unique, since an entity
is likely to be mentioned multiple times in a news
article. Thus, we take each passage-query-answer-
span as one sample during training, which can also
be seen as a kind of data augmentation.

For both tasks, we only submit the models
trained on the train sets of the target tasks.

3.2 Experimental setting

We use XLNet (large, cased) as the pre-trained
language model. For task 1 dataset, we truncate
the query-answer pair to a maximum length of
128, and set the maximum length of the passage-
query-answer pair to 384. So the max length of
the whole text inputs of one sample is 768. With a
Tesla V100-PCIE-16GB GPU card, the batch size
can only be set to be 2 on each card, thus we em-
ploy 8 GPUs for training. Firstly we fine-tune the
original XLNet on RACE for 100,000 steps with
the sequence length of 192, query-answer length
of 96 and Adam optimizer leaning rate of 1e-6.
Afterwards, we fine-tune the model on SWAG for
12,500 steps with the same parameters as RACE’s.
Eventually, the model is fine-tuned on the task 1
dataset till convergence, where the learning rate is
set as 8e-6.

For task 2, the maximum length of the passage-
querypair is set to be 384, in which the maximum
length for the query is 64. During training the
learning rate is 5e-6 and batch size is 4 on each
GPU card.

When we try to infuse the KG into the XL-
Net, we use the OpenKE library (Han et al., 2018)
to train the KG representions of WordNet. We
choose DistMult (Yang et al., 2014b) as the em-
bedding model, set the embedding size as 100,
epoches as 10, batch size as 32 and the learning
rate as 1e-4. The multi-head attention betwen the
XLNet encoded output and the entity encoded out-
put has the same number of attention head as the
XLNet large model. During training, we will keep
the KG embedding trainable. Besides multi-head
attention, we also experiment using a whole trans-
former block, i.e., a multi-head attention layer fol-
lowed by a position-wise feed-forward network,

Model Dev Test
Human - 97.4%

Final submission 91.44% 90.6%
XLNet 91.09% -

XLNet+RACE 92.46% -
XLNet+SWAG 89.36% -

XLNet+RACE+SWAG 92.76% -

Table 3: Main results on the task 1.

and combining the entity encoding by simply con-
catenating it onto the XLNet encoded output. For
comparison, we switch XLNet with Bert (large
model), and repeat the above experiments.

3.3 Results

The main experimental accuracy results for task
1 are shown in Table 3, in which human perfor-
mance is provided by task organizers. Our sys-
tem consists of fine-tuning XLNet on RACE and
SWAG. We also conduct an ablation experiment to
investigate the effects of the two external dataset.
As a result, Table 3 illustrates that pre-training on
RACE plays a significant role in the system. Ori-
gin XLNet achieves an accuracy of 91.09%, indi-
cating its powerful text representation ability, es-
pecially in the reading comprehension task. Pre-
training on SWAG without RACE does not im-
prove the accuracy perhaps because SWAG mis-
leads the model to better adjust its task forma-
tion, thus making it worse on the machine reading
comprehension. Meanwhile, combining SWAG
together with RACE makes sense, indicating the
model can improve its commonsense inference
ability.

We achieved the best performance on the offi-
cial dev dataset with the training steps described in
section 3.2 while our submission result on the offi-
cial leader-board was obtained with fewer training
steps due to queue submission time impact on Co-
dalab. Despite being not fully trained, our system
still achieve the best result with the accuracy of
90.6%, outperforming other participating teams.

For task 2, the results are presented on Table 4,
where the bolded models are our submissions on
the test leaderboard. Due to limited resources and,
the results are not run multiple times, thus the re-
sults may be affected by random effects. We find
out the original XLNet performs the best, signif-
icantly outperforming the Bert models. While it
seems adding a commonsense KG is beneficial for
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Model Dev EM Dev F1 Test EM Test F1
Human - - 91.31 % 91.69 %

Bert 69.83 % 71.05 % - -
Bert + KG (multi-head attn) 71.08 % 72.69 % - -

Bert + KG (transformer) 70.36 % 71.84 % - -
Bert + KG (concat) 70.74 % 72.09 % - -

XLNet 80.64 % 82.10 % 81.46 % 82.66 %
XLNet + KG (multi-head attn) 80.31 % 81.62 % - -

XLNet + KG (transformer) 80.16 % 81.55 % - -
XLNet + KG (concat) 80.25 % 81.67 % - -

XLNet + answer verification 82.72 % 83.38 % 83.09 % 83.74 %

Table 4: The main results on task 2.

Bert, it does not help improving XLNet models.
For the models with KG, regardless of what the
underlying pre-trained langugae model is, multi-
head attention works best on infusing the knowl-
edge, and simple concatenation works better than
adding a whole transformer block.

For task 2, implementing the answer verifica-
tion process after we obtain the predictions of
XLNet model boost the performance significantly,
both on the dev set and the test set. Since we did
not see significant improvements by adding KG
into the model, we did not submit results from KG
infused models.

Conclusions

To conclude, we have shown that XLNet, a re-
cently proposed pre-trained language model, is
powerful in text representation for machine read-
ing tasks. Simply fine-tuning XLNet on the shared
tasks already outperforms the other models which
use Bert as text encoder. However, we demon-
strate on task 1 that multi-stage fine-tuning on sim-
ilar tasks can help providing more stable conver-
gence and improve the final results significantly.
For task 2, we also show that the model predic-
tions can be improved by adding human designed
post-processing strategies. We also experiments
on incorporating commonsense KG into the archi-
tecture of XLNet, however, due to our limited ex-
periments, we haven’t obtain significant improve-
ments by adding KG into the model, especially
models based on XLNet. However, it is a direc-
tion worth further research.
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cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Xu Han, Shulin Cao, Xin Lv, Yankai Lin, Zhiyuan Liu,
Maosong Sun, and Juanzi Li. 2018. Openke: An
open toolkit for knowledge embedding. In Proceed-
ings of EMNLP, pages 139–144.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Divyansh Kaushik and Zachary C Lipton. 2018. How
much reading does reading comprehension require?
a critical investigation of popular benchmarks.
arXiv preprint arXiv:1808.04926.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale reading
comprehension dataset from examinations. arXiv
preprint arXiv:1704.04683.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human-generated machine
reading comprehension dataset.



98

Simon Ostermann, Michael Roth, Ashutosh Modi, Ste-
fan Thater, and Manfred Pinkal. 2018. Semeval-
2018 task 11: Machine comprehension using com-
monsense knowledge. In Proceedings of The 12th
International Workshop on Semantic Evaluation,
pages 747–757.

Soham Parikh, Ananya B Sai, Preksha Nema, and
Mitesh M Khapra. 2019. Eliminet: A model
for eliminating options for reading comprehension
with multiple choice questions. arXiv preprint
arXiv:1904.02651.

Jason Phang, Thibault Fvry, and Samuel R. Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Qiu Ran, Peng Li, Weiwei Hu, and Jie Zhou.
2019. Option comparison network for multiple-
choice reading comprehension. arXiv preprint
arXiv:1903.03033.

Robert Speer, Joshua Chin, and Catherine Havasi.
2017. Conceptnet 5.5: An open multilingual graph
of general knowledge. In Thirty-First AAAI Confer-
ence on Artificial Intelligence.

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie.
2018. Improving machine reading comprehension
with general reading strategies. arXiv preprint
arXiv:1810.13441.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. 2019. Superglue:
A stickier benchmark for general-purpose language
understanding systems.

Yichong Xu, Jingjing Liu, Jianfeng Gao, Yelong Shen,
and Xiaodong Liu. 2017. Dynamic fusion networks
for machine reading comprehension. arXiv preprint
arXiv:1711.04964.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2014a. Embedding Entities and
Relations for Learning and Inference in Knowledge
Bases. arXiv e-prints, page arXiv:1412.6575.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2014b. Embedding Entities and
Relations for Learning and Inference in Knowledge
Bases. arXiv e-prints, page arXiv:1412.6575.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and
Yejin Choi. 2018. Swag: A large-scale adversarial
dataset for grounded commonsense inference. arXiv
preprint arXiv:1808.05326.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng
Gao, Kevin Duh, and Benjamin Van Durme. 2018a.
Record: Bridging the gap between human and ma-
chine commonsense reading comprehension. CoRR,
abs/1810.12885.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng
Gao, and Benjamin Van Durme. 2018b. Record:
Bridging the gap between human and machine com-
monsense reading comprehension.

Shuailiang Zhang, Hai Zhao, Yuwei Wu, Zhuosheng
Zhang, Xi Zhou, and Xiang Zhou. 2019. Dual co-
matching network for multi-choice reading compre-
hension. arXiv preprint arXiv:1901.09381.

Haichao Zhu, Furu Wei, Bing Qin, and Ting Liu. 2018.
Hierarchical attention flow for multiple-choice read-
ing comprehension. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.

http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1810.12885
http://arxiv.org/abs/1810.12885

