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Abstract

To produce a domain-agnostic question an-
swering model for the Machine Reading Ques-
tion Answering (MRQA) 2019 Shared Task,
we investigate the relative benefits of large pre-
trained language models, various data sam-
pling strategies, as well as query and context
paraphrases generated by back-translation. We
find a simple negative sampling technique to
be particularly effective, even though it is typ-
ically used for datasets that include unanswer-
able questions, such as SQuAD 2.0. When
applied in conjunction with per-domain sam-
pling, our XLNet (Yang et al., 2019)-based
submission achieved the second best Exact
Match and F1 in the MRQA leaderboard com-
petition.

1 Introduction

Recent work has demonstrated that generalization
remains a salient challenge in extractive question
answering (Talmor and Berant, 2019; Yogatama
et al., 2019). It is especially difficult to generalize
to a target domain without similar training data,
or worse, any knowledge of the domain’s distribu-
tion. This is the case for the MRQA Shared Task.1

Together, these two factors demand a represen-
tation that generalizes broadly, and rules out the
usual assumption that more data in the training do-
main will necessarily improve performance on the
target domain. Consequently, we adopt the overall
approach of curating our input data and learning
regime to encourage representations that are not
biased by any one domain or distribution.

As a requisite first step to a representation that
generalizes, transfer learning (in the form of large
pre-trained language models such as Peters et al.
(2018); Howard and Ruder (2018); Devlin et al.
(2019); Yang et al. (2019)), offers a solid founda-
tion. We compare BERT and XLNet, leveraging

∗ equal contribution
1https://mrqa.github.io/shared

Transformer based models (Vaswani et al., 2017)
pre-trained on significant quantities of unlabelled
text. Secondly, we identify how the domains of
our training data correlate with the performance
of “out-domain” development sets. This serves
as a proxy for the impact these different sets may
have on a held-out test set, as well as evidence of
a representation that generalizes. Next we explore
data sampling and augmentation strategies to bet-
ter leverage our available supervised data.

To our surprise, the more sophisticated tech-
niques including back-translated augmentations
(even sampled with active learning strategies)
yield no noticeable improvement. In contrast,
much simpler techniques offer significant im-
provements. In particular, negative samples de-
signed to teach the model when to abstain from
predictions prove highly effective out-domain. We
hope our analysis and results, both positive and
negative, inform the challenge of generalization in
multi-domain question answering.

We begin with an overview of the data and tech-
niques used in our system, before discussing ex-
periments and results.

2 Data

We provide select details of the MRQA data as
they pertain to our sampling strategies delineated
later. For greater detail refer to the MRQA task
description.

Our training data consists of six separately col-
lected QA datasets. We refer to these and their
associated development sets as “in-domain” (ID).
We are also provided with six “out-domain” (OD)
development sets sourced from other QA datasets.
In Table 1 we tabulate the number of “examples”
(question-context pairs), “segments” (the question
combined with a portion of the context), and “no-
answer” (NA) segments (those without a valid an-
swer span).

To clarify these definitions, consider examples

https://mrqa.github.io/shared
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Dataset Examples Segments NA (%)

SQuAD (Rajpurkar et al., 2016) 87K 87K 0.1
SearchQA (Dunn et al., 2017) 117K 657K 56.3
NaturalQuestions (Kwiatkowski et al., 2019) 104K 189K 36.3
TriviaQA (Joshi et al., 2017) 62K 337K 57.3
HotpotQA (Yang et al., 2018) 73K 73K 0.3
NewsQA (Trischler et al., 2017) 74K 214K 49.0

Total 517K 1557K 47.3

Table 1: Number of examples (question-context pairs),
segments (question-context chunks), and the percent-
age of No Answer (NA) segments within each dataset.

with long context sequences. We found it neces-
sary to break these examples’ contexts into mul-
tiple segments in order to satisfy computational
memory constraints. Each of these segments may
or may not contain the gold answer span. A
segment without an answer span we term “no-
answer”. To illustrate this pre-processing, con-
sider question, context pair (q, c) where we im-
pose a maximum sequence length of M tokens. If
len(c) > M then we create multiple overlapping
input segments (q, c1), (q, c2), ..., (q, ck) where
each ci contains only a portion of the larger con-
text c. The sliding window that generates these
chunks is parameterized by the document stride
D, and the maximum sequence length M , shown
below in Equation 1.

(q, c)→
{

(q, ci·D:M+i·D), ∀i ∈ [0, k]
}

(1)

The frequencies presented in Table 1 are based
on our settings of M = 512 and D = 128.

3 System Overview

3.1 XLNet

While we used BERT Base (Devlin et al., 2019)
for most of our experimentation, we used XLNet
Large (Yang et al., 2019) for our final submission.
At the time of submission this model held state-
of-the-art results on several NLP benchmarks in-
cluding GLUE (Wang et al., 2018). Leveraging the
Transformer-XL architecture (Dai et al., 2019), a
“generalized autoregressive pretraining” method,
and much more training data than BERT, its rep-
resentation provided a strong source of transfer
learning. In keeping with XLNet’s question an-
swering module, we also computed the end logits
based on the ground truth of the start position dur-
ing training time, and used beam search over the
end logits at inference time. We based our code

on the HuggingFace implementation.2 of BERT
and XLNet, and used the pre-trained models in the
GitHub repository.

3.2 Domain Sampling

For the problem of generalizing to an unseen and
out-domain test set, it’s important not to overfit to
the training distribution. Given the selection of di-
verse training sources, domains, and distributions
within MRQA we posed the following questions.
Are all training sources useful to the target do-
mains? Will multi-domain training partially mit-
igate overfitting to any given training set? Is it al-
ways appropriate to sample equally from each?

To answer these questions, we fine-tuned a va-
riety of specialized models on the BERT Base
Cased (BBC) pre-trained model. Six models were
each fine-tuned once on their respective in-domain
training set. A multi-domain model was trained
on the union of these six in-domain training sets.
Lastly, we used this multi-domain model as the
starting point for fine-tuning six more models, one
for each in-domain training set. In total we pro-
duced six dataset-specialized models each fine-
tuned once, one multi-domain model, and six
dataset-specialized models each fine-tuned twice.

There are a few evident trends. The set of
models which were first fine-tuned on the multi-
domain dataset achieved higher Exact Match
(EM) almost universally than those which weren’t.
This improvement extends not just to in-domain
datasets, but also to out-domain development sets.
In Figure 1 we observe these models on the Y-
axis, and their Exact Match (EM) scores on each
in-domain and out-domain development set. This
confirms the observations from Talmor and Be-
rant (2019) that multi-domain training improves
robustness and generalization broadly, and sug-
gests that a variety of question answering domains
is significant across domains. Interestingly, the
second round of fine-tuning, this time on a spe-
cific domain, did not cause models to significantly,
or catastrophically forget what they learned in the
initial, multi-domain fine-tuning. This is clear

2https://github.com/huggingface/
pytorch-transformers Our implementation modifies
elements of the tokenization, modeling, and training pro-
cedure. Specifically, we remove whitespace tokenization
and other pre-processing features that are not necessary for
MRQA-tokenized data. We also add subepoch checkpoints
and validation, per dataset sampling, and improved post-
processing to select predicted text without special tokens or
unusual spacing.

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
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Multi-Domain → SQuAD BBC

Multi-Domain → SearchQA BBC

Multi-Domain → TriviaQA BBC
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Figure 1: Heatmap of Exact Match (EM) for BERT Base Cased (BBC) models, the top six fine-tuned directly
on each training dataset, and the bottom six fine-tuned on multi-domain before being fine-tuned on each training
dataset.

from comparing the generic “Multi-Domain BBC”
to those models fine-tuned on top of it, such as
“Multi-Domain→ SQuAD FT BBC”.

Secondly, we observe that the models we fine-
tune on SearchQA (Dunn et al., 2017) and Triv-
iaQA (Joshi et al., 2017) achieve relatively poor
results across all sets (in-domain and out-domain)
aside from themselves. The latter datasets are both
Jeopardy-sourced, distantly supervised, long con-
text datasets. In contrast, the SQuAD (Rajpurkar
et al., 2016) fine-tuned model achieves the best re-
sults on both in and out-domain “Macro-Average”
Exact Match. Of the models with multi-domain
pre-fine-tuning NewsQA, SearchQA, and Trivi-
aQA performed the worst on the out-domain (O)
Macro-Average. As such we modified our sam-
pling distribution to avoid oversampling them and
risk degrading generalization performance. This
risk is particularly prevalent for SearchQA, the
largest dataset by number of examples. Addition-
ally, its long contexts generate 657K segments,
double that of the next largest dataset (Table 1).
This was exacerbated further when we initially
included the nearly 10 occurrences of each de-
tected answer. TriviaQA shares this characteris-
tic, though not quite as drastically. Accordingly,
for our later experiments we chose not to use
all instances of a detected answer, as this would
further skew our multi-domain samples towards
SearchQA and TriviaQA, and increase the num-

In-Domain Out-Domain
NA Model MSL EM F1 EM F1

No BBC 200 65.70 75.98 45.80 56.78
BBC 512 65.29 76.01 45.59 57.40
XBC 200 43.78 65.24 43.78 52.12
XBC 512 65.91 74.93 49.59 59.61

Yes BBC 200 66.11 76.41 46.19 57.51
BBC 512 66.20 76.77 46.28 58.00
XBC 200 68.67 77.69 50.04 59.68
XBC 512 70.04 79.15 50.71 61.16

Table 2: Model performance including or excluding
No-Answer (NA) segments in training. We examine
how these results vary with the max sequence length
(MSL). BBC refers to BERT Base Cased and XBC
refers to XLNet Base Cased.

ber of times contexts from these sets are repeated
as segments. We also chose, for many experi-
ments, to sample fewer examples of SearchQA
than our other datasets, and found this to improve
F1 marginally across configurations.

3.3 Negative Sampling

While recent datasets such as SQuAD 2.0 (Ra-
jpurkar et al., 2018) and Natural Questions
(Kwiatkowski et al., 2019) have extended extrac-
tive question answering to include a No Answer
option, in the traditional formulation of the prob-
lem there is no notion of a negative class. Formu-
lated as such, the MRQA Shared Task guarantees
the presence of an answer span within each exam-
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ple. However, this is not guaranteed within each
segment, producing NA segments.

At inference time we compute the most proba-
ble answer span for each segment separately and
then select the best span across all segments of
that (q, c) example to be the one with the high-
est probability. This is computed as the sum of
the start and end span probabilities. At training
time, typically the NA segments are discarded al-
together. However, this causes a discrepancy be-
tween train and inference time, as “Negative” seg-
ments are only observed in the latter.

To address this, we include naturally occurring
“Negative” segments, and add an abstention op-
tion for the model. For each Negative segment,
we set the indices for both the start and end span
labels to point to the [CLS] token. This gives
our model the option to abstain from selecting a
span in a given segment. Lastly, at inference time
we select the highest probability answer across all
segments, excluding the No Answer [CLS] op-
tion.

Given that 47.3% of all input segments are NA,
as shown in Table 1, its unsurprising their inclu-
sion significantly impacted training time and re-
sults. We find that this simple form of Nega-
tive Sampling yields non-trivial improvements on
MRQA (see Table 2). We hypothesize this is pri-
marily because a vaguely relevant span of tokens
amid a completely irrelevant NA segment would
monopolize the predicted probabilities. Mean-
while the actual answer span likely appears in a
segment that may contain many competing spans
of relevant text, each attracting some probability
mass. As we would expect, the improvement this
technique offers is magnified where the context
is much longer than M . To our knowledge this
technique is still not prevalent in purely extractive
question answering, though Alberti et al. (2019)
cite it as a key contributor to their strong baseline
on Google’s Natural Questions.

3.4 Paraphrasing by Back-Translation

Yu et al. (2018) showed that generating context
paraphrases via back-translation provides signifi-
cant improvements for reading comprehension on
the competitive SQuAD 1.1 benchmark. We em-
ulate this approach to add further quantity and
variety to our data distribution, with the hope
that it would produce similarly strong results for
out-domain generalization. To extend their work,

we experiment with both query and context para-
phrases generated by back-translation. Lever-
aging the same open-sourced TensorFlow NMT
codebase,3 we train an 8-layer seq2seq model
with attention on the WMT16 News English-
German task, obtaining a BLEU score of 28.0
for translating from English to German and 25.7
for German to English, when evaluated on the
newstest2015 dataset. We selected German as
our back-translation language due to ease of repro-
ducibility, given the public benchmarks published
in the nmt repository.

For generating query paraphrases, we directly
feed each query into the NMT model after per-
forming tokenization and byte pair encoding. For
generating context paraphrases, we first use SpaCy
to segment each context into sentences,4 using
the en core web sm model. Then, we translate
each sentence independently, following the same
procedure as we do for each query. In the course
of generating paraphrases, we find decoded se-
quences are occasionally empty for a given con-
text or query input. For these cases we keep the
original sentence.

We attempt to retrieve the new answer span us-
ing string matching, and where that fails we em-
ployed the the same heuristic described in Yu et al.
(2018) to obtain a new, estimated answer. Specif-
ically, this involves finding the character-level 2-
gram overlap of every token in the paraphrase sen-
tence with the start and end token of the original
answer. The score is computed as the Jaccard sim-
ilarity between the sets of character-level 2-grams
in the original answer token and new sentence to-
ken. The span of text between the two tokens that
has the highest combined score, passing a mini-
mum threshold, is selected as the new answer. In
cases where there is no score above the threshold,
no answer is generated. Any question in each con-
text without an answer is omitted, and any para-
phrased example without at least one question-
answer pair is discarded.

3.4.1 Augmentation Strategy
For every query and context pair (q, c), we used
our back-translation model to generate a query
paraphrase q′ and a context paraphrase c′. We then
create a new pair that includes the paraphrase q′

instead of q with probability Pq(x), and indepen-
dently we choose the paraphrase c′ over c with

3https://github.com/tensorflow/nmt
4https://spacy.io/

https://github.com/tensorflow/nmt
https://spacy.io/
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probability Pc(x). If either q′ or c′ is sampled,
we add this augmented example to the training
data. This sampling strategy allowed us flexibility
in how often we include query or context augmen-
tations.

3.4.2 Active Learning
Another method of sampling our data augmenta-
tions was motivated by principles in active learn-
ing (Settles, 2009). Rather than sampling uni-
formly, might we prioritize the more challenging
examples for augmentation? This is motivated by
the idea that many augmentations may not be rad-
ically different from the original data points, and
may consequently carry less useful, repetitive sig-
nals.

To quantify the difficulty of an example we used
1 − F1 score computed for our best model. We
chose F1 as it provides a continuous rather than
binary value, and is robust to a model that may
select the wrong span, but contains the correct an-
swer text. Other metrics, such as loss or Exact
Match do not provide both these benefits.

For each example we derived its probability
weighting from its F1 score. This weight replaces
the uniform probability previously used to draw
samples for query and context augmentations. We
devised three weighting strategies, to experiment
with different distributions. We refer to these as
the hard, moderate and soft distributions. Each
distribution employs its own scoring function Sx
(Equation 2), which is normalized across all exam-
ples to determine the probability of drawing that
sample (Equation 3).

S(x) =


1− F1(x) + ε Hard Score
2− F1(x) Moderate Score
3− F1(x) Soft Score

(2)

P (x) =
S(x)

Σi=1..nS(i)
(3)

The hard scoring function allocates negligible
probability to examples with F1 = 1, empha-
sizing the hardest examples the most of the three
distributions. We used an ε value of 0.01 to
prevent any example from having a zero sam-
ple probability. The moderate and soft scoring
functions penalize correct predictions less aggres-
sively, smoothing the distribution closer to uni-
form.

4 Experiments and Discussion

During our experimentation process we used our
smallest model BERT Base Cased (BBC) for the
most expensive sampling explorations (Figure 1),
XLNet Base Cased (XBC) to confirm our findings
extended to XLNet (Table 2), and XLNet Large
Cased (XLC) as the initial basis for our final sub-
mission contenders (Table 3).

Our training procedure for each model involved
fine-tuning the Transformer over two epochs, each
with three validation checkpoints. The checkpoint
with the highest Out-Domain Macro-Average (es-
timated from a 2, 000 dev-set subsample) was se-
lected as the best for that training run. Our multi-
domain dataset originally consisted of 75k exam-
ples from every training set, and using every de-
tected answer. We modified this to a maximum
of 120k samples from each dataset, 100k from
SearchQA, and using only one detected answer
per example; given our findings in Section 3.2.

We trained every model on 8 NVIDIA Tesla
V100 GPUs. For BBC and XBC we used a learn-
ing rate of 5e − 5, single-GPU batch size of 25,
and gradient accumulation of 1, yielding an effec-
tive batch size of 200. For XLC we used a learn-
ing rate of 2e− 5, single-GPU batch size of 6, and
gradient accumulation of 3, yielding an effective
batch size of 6 · 8 · 3 = 144. We found the gra-
dient accumulation and lower learning rate critical
to achieve training stability.

We conduct several experiments to evaluate the
various sampling and augmentation strategies dis-
cussed in Section 3. In Table 2 we examine
the impact of including No Answer segments in
our training set. We found this drastically out-
performed the typical practice of excluding these
segments. This effect was particularly noticeable
on datasets with longer sequences. As expected,
the improvement is exaggerated at the shorter max
sequence length (MSL) of 200, where includ-
ing NA segments increases Out-Domain EM from
43.78 to 50.04 on the XBC model.

Next, we evaluate our back-translated query and
context augmentations using the sampling strate-
gies described in Section 3.4.2. To select the best
Pq(x), Pc(x) and sampling strategy we conducted
the following search. First we explored sampling
probabilities 0.2, 0.4, 0.6, 0.8, 1.0 for query and
context separately, using random sampling, and
subsequently we combined them using values in-
formed from the previous exploration, this time
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In-Domain F1 Out-Domain F1

Mode Pq(x) Pc(x) HotpotQA Natural
Questions NewsQA SearchQA SQuAD TriviaQA Macro-Average BioASQ DROP DuoRC RACE Relation

Extraction TextbookQA Macro-Average

– 0 0 82.62 82.15 72.52 82.80 94.50 78.28 82.14 73.00 63.52 65.68 53.25 88.49 64.38 68.07

R 0.2 0.2 82.42 82.29 72.45 83.20 94.09 79.44 82.32 70.45 63.97 62.75 52.66 88.09 63.28 66.87
0.2 0.4 82.59 82.51 72.30 84.50 94.35 79.09 82.56 72.02 64.29 63.61 52.32 88.85 64.12 67.54
0.4 0.4 82.58 82.28 71.72 83.80 94.02 77.78 82.03 69.60 63.45 63.56 52.74 88.22 63.67 66.87

S 0.2 0.2 82.44 82.10 72.06 83.67 94.32 76.58 81.86 70.47 64.14 63.15 52.61 88.37 63.60 67.06
0.2 0.4 82.50 81.69 72.43 84.46 93.98 76.80 81.98 70.79 60.62 63.48 52.38 87.38 62.07 66.12
0.4 0.4 82.07 82.15 72.07 84.20 93.99 77.20 81.95 71.34 62.64 62.81 50.65 87.60 63.12 66.36

M 0.2 0.2 82.72 82.26 72.22 83.45 94.12 76.55 81.89 71.46 63.89 63.29 51.67 87.98 64.85 67.19
0.2 0.4 82.41 82.15 72.60 84.88 93.85 77.34 82.20 71.66 63.89 62.12 52.67 88.03 64.05 67.07
0.4 0.4 82.55 82.09 72.57 84.30 94.19 76.97 82.11 71.13 63.03 62.58 51.65 87.76 64.67 66.80

H 0.2 0.2 81.68 81.15 70.55 80.51 94.05 74.80 80.46 70.60 62.55 61.96 52.23 87.87 61.16 66.06
0.2 0.4 82.05 81.45 70.84 81.92 94.18 75.49 80.99 72.89 62.29 63.30 51.66 87.63 62.00 66.63
0.4 0.4 81.93 81.45 71.67 81.71 93.92 75.96 81.11 71.26 61.52 62.06 51.36 86.91 60.18 65.55

Table 3: F1 scores for data augmentation using different proportions of query and context paraphrasing and dif-
ferent sampling distributions on XLNet Large Cased, on individual datasets. R, S, M, H refer to random, soft,
moderate, and hard modes from Section 3.4.2 respectively.

Out-Domain
Dataset EM F1

BioASQ (Tsatsaronis et al., 2015) 60.28 71.98
DROP (Dua et al., 2019) 48.50 58.90
DuoRC (Saha et al., 2018) 53.29 63.36
RACE (Lai et al., 2017) 39.35 53.87
RelationExtraction (Levy et al., 2017) 79.20 87.85
TextbookQA (Kembhavi et al., 2017) 56.50 65.54

Macro-Average 56.19 66.92

Table 4: Breakdown of hidden development set results
by dataset using our best XLNet Large model.

Submission EM F1

D-NET (Baidu) 60.39 72.55
Ours (Apple) 59.47 70.75
FT XLNet (HIT) 58.37 70.54
HLTC (HKUST) 56.59 68.98
BERT-cased-whole-word (Aristo@AI2) 53.52 66.27
XERO (Fuji Xerox) 52.41 66.11
BERT-large + Adv. Training (Team 42-alpha) 48.91 62.19

BERT large baseline (MRQA Organizers) 48.20 61.76
BERT base baseline (MRQA Organizers) 45.54 58.50

Table 5: Macro-Average EM and F1 on the held-out
leaderboard test sets.

searching over sampling strategies: random, soft,
moderate and hard. We present the best results
in Table 3 and conclude that these data augmenta-
tions did not help in-domain or out-domain perfor-
mance. While we observed small boosts to metrics
on BBC using this technique, no such gains were
found on XLC. We suspect this is because (a) large
pre-trained language models such as XLC already
capture the linguistic variations in language intro-
duced by paraphrased examples quite well, and (b)
we already have a plethora of diverse training data
from the distributions these augmentations are de-
rived from. It is not clear if the boosts QANet Yu

et al. (2018) observed on SQuAD 1.1 would still
apply with the additional diversity provided by the
five additional QA datasets for training. We no-
tice that SearchQA and TriviaQA benefit the most
from some form of data augmentation, both by
more than one F1 point. Both of these are distantly
supervised, and have relatively long contexts.

Our final submission leverages our fine-tuned
XLC configuration, with domain and negative
sampling. We omit the data augmentation and ac-
tive sampling techniques which we did not find to
aid out-domain performance. The results of the
leaderboard Out-Domain Development set and fi-
nal test set results are shown in Table 4 and Ta-
ble 5 respectively.

5 Conclusion

This paper describes experiments on various com-
petitive pre-trained models (BERT, XLNet), do-
main sampling strategies, negative sampling, data
augmentation via back-translation, and active
learning. We determine which of these strate-
gies help and hurt multi-domain generalization,
finding ultimately that some of the simplest tech-
niques offer surprising improvements. The most
significant benefits came from sampling No An-
swer segments, which proved to be particularly
important for training extractive models on long
sequences. In combination these findings cul-
minated in the second ranked submission on the
MRQA-19 Shared Task.
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