
Proceedings of the Second Workshop on Machine Reading for Question Answering, pages 203–211
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

203

Generalizing Question Answering System
with Pre-trained Language Model Fine-tuning

Dan Su∗, Yan Xu∗, Genta Indra Winata, Peng Xu,
Hyeondey Kim, Zihan Liu, Pascale Fung

Center for Artificial Intelligence Research (CAiRE)
Department of Electronic and Computer Engineering

The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
{dsu, yxucb, giwinata, pxuab}@connect.ust.hk,

{hdkimaa, zliucr}@connect.ust.hk, pascale@ece.ust.hk

Abstract

With a large number of datasets being released
and new techniques being proposed, Question
answering (QA) systems have witnessed great
breakthroughs in reading comprehension (RC)
tasks. However, most existing methods focus
on improving in-domain performance, leaving
open the research question of how these mod-
els and techniques can generalize to out-of-
domain and unseen RC tasks. To enhance the
generalization ability, we propose a multi-task
learning framework that learns the shared rep-
resentation across different tasks. Our model
is built on top of a large pre-trained language
model, such as XLNet, and then fine-tuned
on multiple RC datasets. Experimental results
show the effectiveness of our methods, with
an average Exact Match score of 56.59 and
an average F1 score of 68.98, which signifi-
cantly improves the BERT-Large baseline by
8.39 and 7.22, respectively.

1 Introduction

Reading comprehension (RC) is a fundamental
human skills needed to answer questions that re-
quire knowledge of the world and understanding
of natural language. This task is essential for in-
telligent dialogue systems to quickly respond in a
search engine or a product recommendation sys-
tem. Recently, we have witnessed several break-
throughs in question answering (QA) systems,
such as bidirectional attention flow (BiDAF) (Seo
et al., 2017), the attention over attention mecha-
nism (AoA) (Cui et al., 2017), and a multi-hop
architecture using gated-attention readers (Dhin-
gra et al., 2017).

A large number of QA datasets have been pro-
posed in recent years for single-hop and multi-hop
reasoning applications (Rajpurkar et al., 2016; Lai
et al., 2017; Saha et al., 2018; Trischler et al.,

∗∗ These two authors contributed equally.

2017; Joshi et al., 2017). However, each QA
dataset is built for a particular domain and fo-
cus (Talmor and Berant, 2019). Dataset pas-
sages cover different topics, such as movies (Saha
et al., 2018), news (Trischler et al., 2017), and
biomedicine (Tsatsaronis et al., 2012). Also, the
styles of questions (e.g., entity-centric, relational,
other tasks reformulated as QA, etc.), the sources
(e.g., crowd-workers, domain experts, exam writ-
ers, etc.), and the relationship of the question to
the passage are different among datasets (e.g., col-
lected as independent vs. dependent on evidence,
multi-hop, etc). The availability of such datasets
promotes the development of models that work
well for only a specific domain. However, little
attention (Chung et al., 2017; Sun et al., 2018)
has been paid towards generalization, i.e., building
QA systems that can generalize well on different
datasets and transfer to new domains quickly.

One major factor that could contribute to gen-
eralization, is effective contextual representation
(Talmor and Berant, 2019). Recently, models pre-
trained on a large unlabeled corpus, by adding an
extra final layer and fine-tuning on task-specific
supervised data, obtained breakthrough perfor-
mances on many language understanding tasks
such as the GLUE benchmark and the SQuAD
QA task (Radford et al., 2018; Devlin et al., 2019;
Yang et al., 2019). This indicates the power of
pre-trained language models in representing con-
textual information. Thus, we adopt XLNet (Yang
et al., 2019), the state-of-the-art pre-trained lan-
guage model as our language representation.

Another critical issue related to generalization
is how to adapt to new QA tasks using few or even
no prior training examples. McCann et al. (2018);
Liu et al. (2019); Talmor and Berant (2019) show
that promising results can be obtained in transfer-
ring to new domains by training models on mul-
tiple tasks simultaneously using multi-task learn-
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ing. Multi-task learning explores the relationships
between different tasks by capitalizing on related-
ness while mitigating interference from dissimilar-
ities, thus forcing models to learn useful represen-
tations more generally by unifying tasks under a
single perspective. Thus, a model, which is trained
on multiple source QA datasets, can achieve ro-
bust generalization and transferring ability.

To summarize, we present our work for the
MRQA 2019 shared task on generalization. We
propose to use multi-task learning on different
source QA datasets and fine-tune XLNet (Yang
et al., 2019), to build a QA system which has gen-
eral linguistic intelligence.
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Figure 1: The model architecture. GPU-version: The
blue boxes (first half) of XLNet layers remain un-
changed during fine-tuning and only green boxes are
updated due to the GPU’s memory limitation. TPU-
version: All layers of XLNet are fine-tuned.

2 Related Work

2.1 Pre-trained Language Models
Fine-tuning pre-trained language models via su-
pervised learning has become the key to achiev-
ing state-of-the-art performance in various nat-
ural language processing (NLP) tasks. Among
them, BERT (Devlin et al., 2019) extracts contex-
tual meaning through bidirectional encoding with

a masked language model and a next-sentence pre-
diction objective. Recently, XLNet (Yang et al.,
2019), a permutation language model, was intro-
duced to leverage the bidirectional context and
overcome the drawbacks of BERT due to its auto-
regressive nature. XLNet-based models have al-
ready achieved better performance than BERT-
based models on many NLP tasks.

2.2 Question Answering
Unlike traditional knowledge-based QA (Kalyan-
pur et al., 2012), nowadays, many QA systems
involve natural language understanding and
knowledge of the world. Many datasets,
such as SQuAD (Rajpurkar et al., 2016),
NewsQA (Trischler et al., 2017), Trivi-
aQA (Joshi et al., 2017), SearchQA (Dunn
et al., 2017), HotpotQA (Yang et al., 2018),
NaturalQuestions (Kwiatkowski et al., 2019),
DROP (Dua et al., 2019), RACE (Lai et al.,
2017), DueRC (Saha et al., 2018), BioASQ (Tsat-
saronis et al., 2012), TextbookQA (Kembhavi
et al., 2017), and RelationExtraction (Levy et al.,
2017), have been published for specific QA tasks.
Among all these tasks, one of the most widely
studied one is extractive QA, which is to find
a directly mentioned span in the article which
answers the particular question. Although many
studies on extractive QA have achieved significant
improvements by leveraging attention-based
models and pre-trained language representations,
QA models might still perform poorly in unseen
domains due to the data scarcity.

2.3 Multi-task Learning
Liu et al. (2019) proposed a multi-task learn-
ing framework-based pre-trained language model
(MT-DNN) that leverages nine natural language
understanding (NLU) datasets and outperforms
BERT models. MT-DNN classifies NLU tasks
into four classes and uses different loss functions
for different task classes, which avoids the model
overfitting on a single task by regularizing the lan-
guage representation.

Meanwhile, Talmor and Berant (2019) pro-
posed MultiQA, which leverages five large QA
datasets and five small QA datasets. Merging var-
ious extractive QA datasets in training brings gen-
eral improvement, and achieves the state-of-the-
art performance on five QA datasets, which illus-
trates that training with multiple datasets improves
both generalization and transferability.
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Dataset Source Question Multi-
hop

In-Domain Datasets
SQuAD Wikipedia Crowd No
NewsQA News Crowd No
TriviaQA Snippets Trivia No
SearchQA Snippets Trivia No
HotpotQA Wikipedia Crowd Yes
NQ Wikipedia Query No
Out-of-Domain Datasets
DROP Wikipedia Crowd Yes
RACE Exam Expert Yes
DuoRC Movie Plot Crowd No
BioASQ Biomedical Crowd No
TQA Textbook Crowd No
RE Wikipedia Crowd No

Table 1: Characterization of the training and devel-
opment datasets. TQA, NQ and RE are the abbre-
viations for TextbookQA, NaturalQuestions and Rela-
tionExtraction, respectively.

3 Methodology

3.1 Baseline

MRQA organizers have released the BERT-base
and BERT-large models as baselines implemented
using the AllenNLP (Gardner et al., 2018) plat-
form. 1 The BERT transformer receives a passage
and a question that is separated by an [SEP] to-
ken. On top of this, the baseline models deploys a
linear layer to find the corresponding span which
answers the question from the passage.

3.2 XLNet

Model XLNet (Yang et al., 2019) is a recently
proposed generalized autoregressive pre-training
model for language understanding which naively
follows the Transformer(-XL) (Dai et al., 2019)
architecture. Instead of the bidirectional encod-
ing structure used in BERT (Devlin et al., 2019),
XLNet leverages a permutation language mod-
eling objective and target-aware representations
with a two-stream attention mechanism to enable
the model to capture the context on both sides.
Besides the datasets which are also used in the
pre-training procedure of BERT (Devlin et al.,
2019), XLNet involves Giga5 (Parker et al., 2011),
ClueWeb 2012-B (an extension version of Callan
et al. (2009)) and Common Crawl (Buck et al.,

1https://github.com/mrqa/MRQA-Shared-Task-2019

2014) for pre-training. XLNet captures general
semantic meanings and produces effective repre-
sentations to generalize language understanding.
BERT is inferior to XLNet because it suffers sig-
nificantly from the independence assumption and
input noise, which prevent BERT from modeling
the dependency between targets and result in a pre-
training-finetune discrepancy.

Fine-tuning The common strategy in leveraging
a pre-trained model is to fine-tune it with an addi-
tional linear layer or multilayer perceptron (MLP)
on top and adapt it to specific tasks. Empirically,
XLNet (Yang et al., 2019) achieves striking results
when applied to other tasks through fine-tuning
methods, and outperforms the previous state-of-
the-art results on 18 tasks, including QA. The re-
sults shown in Yang et al. (2019) on the RACE
and SQuAD datasets, showing that only an XLNet
single model outperforms humans and the best en-
semble by 7.6 and 2.5 points in EM, undoubtedly
reveal the effectiveness of XLNet on QA tasks.

3.3 Attention-over-Attention
Attention-based neural networks have become a
stereotype in most extractive QA systems and is
well-known for its capability of learning the im-
portance of distribution over the inputs. attention-
over-attention (AoA) mechanism (Cui et al., 2017)
is successful because it can generate an "at-
tended attention" which considers the interactive
information from both the query-to-document and
document-to-query perspectives. Its effectiveness
has been proved on public datasets such as the
CNN, Children’s Book Test, and SQuAD datasets.

4 Experiments

4.1 Preprocessing
The original setting of the sequence length is 512
in the XLNet-large model, but because of the con-
straint on the computational ability of a single
GPU, a trade-off is made between the size of the
context and the performance of the model. The
sequence length is set as 340 when fine-tuning on
the GPU but kept at 512 on the tensor process-
ing unit (TPU). All the datasets are tokenized with
SentencePiece (Kudo and Richardson, 2018) and
uniformed in lower cases.

4.2 Data Analysis
Datasets Under the scenario of this task, the
model should be trained on six training datasets.
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Figure 2: The visualization of the similarity between
different datasets using the force-directed placement al-
gorithm via the Gephi platform (Grandjean, 2015). We
leverage the Louvain method (Blondel et al., 2008) to
automatically cluster the node (datasets) into several
communities and mark each community with different
colors.

GPU TPU
Fine-tuned Layers 12 - 24 (13) 1 - 24 (24)
Floating Point 16 32
Training Batch Size 4 48
Sequence Length 340 512
MLP Layer Size 512, 384, 1 1024, 1

Table 2: Difference of hyper-parameters and the MLP
structure when fine-tuning XLNet model on GPU and
TPU.

Six in-domain datasets and six out-of-domain
datasets are offered as development sets for eval-
uation. The characterization of the correspond-
ing datasets is shown in Table 1. The twelve
known datasets differ from each other in terms
of the source of the data, the type of questions,
and whether inference (multi-hop) is required dur-
ing QA. Moreover, the sources of the data on the
development datasets are more diverse and not
fully covered by the training datasets, which in-
dicates that the generalization ability of the rep-
resentations produced by the model can signifi-
cantly improve the performance on the develop-
ment datasets.

Similarity Evaluation Following the similarity
evaluation method utilized in Talmor and Berant
(2019), we fine-tune XLNet with an additional
MLP on a single GPU using the six training

datasets separately, and then evaluate the model
on all the in-domain and out-of-domain develop-
ment sets. More details about fine-tuning the XL-
Net model on the GPU are mentioned in §4.4. The
evaluation results can be found in Table 3. When
evaluating the in-domain datasets, the similarity
can be computed as

Similarity =
Pij

Pj
+

Pji

Pi
, (1)

where Pij refers to the F1 score when fine-tuning
XLNet on dataset Di and evaluating it on Dj ,
while Pi refers to the F1 score when fine-tuning
and evaluating on Di. When evaluating the simi-
larity between the in-domain datasets and out-of-
domain datasets,

Similarity =
2·Pij

Pj
, (2)

where dataset Dj is one of the in-domain datasets,
while Di is among the out-of-domain datasets.

We visualize the datasets using the force-
directed placement algorithm (Fruchterman and
Reingold, 1991) for a more intuitive view, which
is shown in Figure 2. Each node represents a
dataset, and the in-domain datasets and out-of-
domain datasets are distinguished by the size of
the node. The nodes are linked by a set of edges
acting as the springs, pulling nodes towards one
another, while non-linked nodes are pushed apart.
The weights of the edges act as the pulling force,
influencing the distance and the relative position
among nodes. In our case, we consider the similar-
ities between nodes (datasets) as the pulling force.
The nodes with higher similarity tend to be pulled
closer and vise versa.

From Figure 2, the out-of-domain datasets
tend to be pushed to the boundary of the fig-
ure, which indicates that they have lower similar-
ity with the in-domain datasets. Except for the
RelationExtraction dataset, all the out-of-domain
datasets only have a strong relationship with one
or two in-domain datasets but are positioned far
from the others. This implies that to achieve
consistently good performance on out-of-domain
datasets, data samples from all the in-domain
datasets are needed.

4.3 Data Feeding Methods
Empirically, the data feeding order when training
and fine-tuning has a great impact on the perfor-
mance of the model. In terms of the fine-tuning
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Datasets SQuAD NewsQA TriviaQA SearchQA HotpotQA NQ
(I) SQuAD 93.25 84.99 67.67 43.42 83.48 83.52
(I) NewsQA 60.84 72.43 44.13 23.76 56.75 59.13
(I) TriviaQA 66.70 67.50 76.24 67.99 64.32 69.21
(I) SearchQA 35.43 43.70 60.16 79.27 40.21 54.11
(I) HotpotQA 69.28 64.65 54.12 34.07 80.09 64.78
(I) NQ 57.28 66.78 52.36 38.24 63.17 80.60
(O) DROP 51.07 33.62 30.04 16.20 48.07 49.54
(O) RACE 48.25 46.67 34.96 19.22 39.57 47.72
(O) DuoRC 61.73 61.45 48.66 29.49 54.24 59.18
(O) BioASQ 70.64 64.48 59.61 49.78 65.46 69.44
(O) TextbookQA 52.93 55.08 46.30 34.90 37.39 58.77
(O) RE 84.62 69.14 73.08 64.47 81.80 81.31

Table 3: Results for XLNet models that are only fine-tuned on a single training set but tested on all the in-domain
and out-of-domain development sets. The models are fine-tuned on a single GPU following the GPU-version
architecture that is further explained in §4.4. NQ and RE are the abbreviations for NaturalQuestions and Rela-
tionExtraction, respectively. All the results shown in the table are the corresponding F1 scores.

procedure with the six training sets, we propose
two methods for data feeding.

The first method follows the idea of multi-task
learning. In this task, because the six training
sets differ in several aspects as explained in §4.2,
we consider them different tasks and leverage the
model to fully explore the general semantic repre-
sentations of the samples in the training datasets.
During multi-task learning, we combine all the
training datasets and shuffle them to reduce the re-
liance on the model on the order of the data.

The second method is similar to curriculum
learning (Bengio et al., 2009), but because of the
sparse relation among the datasets, it’s not prac-
tical to evaluate the difficulty and the degree of
learning. So we simply propose to fine-tune the
model using the training sets that are shuffled sep-
arately one after another with the same training
steps.

4.4 Fine-tuning Methods

Various fine-tuning methods based on XLNet are
tested to identify the most effective method to
achieve better generalization performance. During
the fine-tuning procedure, all the methods share a
learning rate of 1× 10−5.

Fine-tuning on TPU The trend of the pre-
trained models for language understanding (Yang
et al., 2019; Devlin et al., 2019) is to achieve
better performance with larger models, but this
leads to their reliance on better computational re-
sources. Even the fine-tuning procedure of XL-

Net (Yang et al., 2019) is hard to handle in a
normal GPU such as GTX 1080Ti, because of
the memory size and the processing speed. To
make it possible to fine-tune the XLNet model
and adapt it to QA tasks on a single GPU, we
make modifications to the MLP structure and the
hyper-parameters, which are listed in Table 2. For
the model on the GPU, only the last 13 layers
are further tuned. Except for the reduction of
the three hyper-parameters mentioned above, the
MLP structure is also changed from a single large
linear layer to a deeper but smaller structure.

To fulfill the fine-tuning procedure on the origi-
nal structure of XLNet with a larger additional lin-
ear layer and achieve better performance on de-
velopment sets and test sets, we take advantage
of the TPU (Jouppi et al., 2017) from the Google
cloud service. The TPU is a machine learning-
oriented application-specific integrated circuit. It
has a larger memory and faster computational
speed than a GPU, since it consists of a large high
bandwidth memory (HBM) and 32-bit floating-
point multiply-accumulate systolic array matrix
unit. In contrast to the computational power of
a GTX 1080Ti (11.34 Tflops of 32-bit floating-
point computation and 11 GB of memory), the
TPU has 420 Tflops of a 32-bit floating-point com-
putational speed and a 128 GB HBM, which allow
us to train a deeper and larger model at a faster
speed.

Fine-tuning with MLP Leveraging an MLP
as the additional structure for fine-tuning a pre-
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Dev Datasets
Multi-task XLNet-large XLNet-large
EM F1 EM F1

DROP 40.45 48.93 38.79 48.78
RACE 34.12 49.23 39.02 51.08
DuoRC 54.63 64.64 50.50 60.62
BioASQ 54.79 70.12 52.06 70.67
TextbookQA 53.76 62.88 48.77 58.86
RelationExtraction 71.27 83.67 66.79 81.75
Average 51.50 63.25 49.32 61.96

Table 4: Results of models fine-tuned with different data feeding methods on development datasets. Both of the
models are fine-tuned based on the off-the-shelf XLNet-large pre-trained model on a single GPU. We combine all
the training datasets and shuffle the data to fine-tune the multi-task XLNet-large model, while for the other, we
feed the data in the following order: SQuAD, NewsQA, TriviaQA, SearchQA, HotpotQA and NaturalQuestions.

Dev Datasets
MLP + GPU AoA + GPU MLP + TPU BERT Large Baseline
EM F1 EM F1 EM F1 EM F1

DROP 40.45 48.93 34.20 43.59 41.04 51.11 33.91 43.50
RACE 34.12 49.23 33.83 48.47 37.22 50.46 28.96 41.42
DuoRC 54.63 64.64 53.03 62.47 51.70 63.14 43.38 55.14
BioASQ 54.79 70.12 56.32 71.58 59.62 74.02 49.74 66.57
TextbookQA 53.76 62.88 52.03 61.49 55.50 65.18 45.62 53.22
RelationExtraction 71.27 83.67 69.10 82.63 76.47 86.23 72.53 84.68
Average 51.50 63.25 49.75 61.71 53.59 65.02 45.69 57.42

Table 5: Results of multi-task models that are fine-tuned with the methods described in §4.4. Compared with the
BERT-large baseline, XLNet shows its effectiveness and generalization ability on QA tasks and outperforms the
BERT-large model, but the enormous amount of parameters in the XLNet model causes the performance of the
model to be constrained by the access to better computational resources.

Test Datasets
Multi-task XLNet-large BERT-large Baseline
EM F1 EM F1

BioProcess 56.16 72.91 46.12 63.63
ComplexWebQuestions 54.73 61.39 51.80 59.05
MCTest 64.56 78.72 59.49 72.20
QAMR 56.36 72.47 48.23 67.39
QAST 75.91 88.80 62.27 80.79
TREC 49.85 63.36 36.34 53.55
Dev Average 53.59 65.02 45.69 57.42
Test Average 59.59 72.94 50.71 66.10
Average 56.59 68.98 48.20 61.76

Table 6: Results on test datasets. The multi-task XLNet-large model is the final submission model that is fine-tuned
on the TPU with 15k training steps.

trained model is a common strategy of task adap-
tation. In this task, we test the performance of
XLNet with an MLP when fine-tuning on both the
GPU and TPU. Because of the limitation of the
memory size on the GPU, the MLP structure dif-
fers from that on the TPU. More details are shown
in Table 2.

Fine-tuning with AoA Layer We also test the
performance of the model when fine-tuning XL-
Net with an AoA layer on a single GPU. In this
case, we add an additional AoA layer between the
output layer of XLNet and MLP mentioned above.
In the practical implementation of this method, the
representations of the context and the query need
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to be split from the output of XLNet, while we can
get the corresponding representation directly and
separately when using BERT.

4.5 Results

Comparison between Data Feeding Methods
Table 4 shows the performance of the XLNet mod-
els fine-tuned with the two data feeding methods
mentioned in §4.3 on the development sets. Both
models are fine-tuned with an additional MLP on
a single GPU based on XLNet-large. For the
single-task XLNet model, we feed the data in the
following order: SQuAD, NewsQA, TriviaQA,
SearchQA, HotpotQA, and NaturalQuestions. In
general, the multi-task data feeding method out-
performs the method in which the datasets are fed
one after another. On further observation, multi-
task learning tends to enable the model to achieve
uniform generalization performance on unseen
datasets, while the single-task feeding method bet-
ter benefits the tasks that are similar to the last task
that is involved during fine-tuning. The fact that
the single-task model achieves better performance
on RACE than that using the multi-task learning
method is related to the higher similarity between
RACE and NaturalQuestions, which we can figure
out from Figure 2.

Comparison between Fine-tuning Methods
The results of the experiments on different fine-
tuning methods are shown in Table 5. All the
experiments are evaluated on the development
sets. Although the AoA layer improves the per-
formance of BERT on the SQuAD dataset, which
can be seen on the SQuAD leaderboard, it fails
to improve generalization performance on XLNet.
Moreover, while it takes 300k training steps to fin-
ish fine-tuning, we only need 100k training steps
to fine-tune the XLNet model with an MLP (refer
to §4.4) on this QA task. The XLNet model fine-
tuned with an MLP on the TPU achieves the best
performance, both on average and on each devel-
opment dataset. It outperforms the baseline by a
large margin, but only requires 15k training steps
for fine-tuning. The TPU shows its effectiveness
on training with its ability to afford a larger model,
batch size, and sequence length.

Comparison with Baseline
The results on the test sets shown in Table 6 in-
dicate that the multi-task XLNet-large model fine-
tuned with a larger linear layer on the TPU con-

sistently outperforms the BERT-large baseline by
a huge margin. On the test set, our XLNet based
model fine-tuned under the multi-task learning set-
ting shows its robust generalization and transfer-
ring ability over the baseline.

5 Conclusion

In this paper, we propose a multi-task framework
to improve the generalization ability of question
answering systems by leveraging large pre-trained
language models. Experimental results indicate
the effectiveness of our methods on broader QA
tasks, with an average Exact Match score of 56.59
and an average F1 score of 68.98, which are signif-
icantly higher than the BERT-large baseline results
by 8.39 and 7.22, respectively.
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