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Abstract

This paper describes our model for the reading
comprehension task of the MRQA shared task.
We propose CLER, which stands for Cross-
task Learning with Expert Representation for
the generalization of reading and understand-
ing. To generalize its capabilities, the pro-
posed model is composed of three key ideas:
multi-task learning, mixture of experts, and
ensemble. In-domain datasets are used to
train and validate our model, and other out-of-
domain datasets are used to validate the gen-
eralization of our model’s performances. In
a submission run result, the proposed model
achieved an average F1 score of 66.1 % in the
out-of-domain setting, which is a 4.3 percent-
age point improvement over the official BERT
baseline model.

1 Introduction

Reading comprehension (RC) tasks are important
to measure machines’ capabilities of reading and
understanding. Given a question and context, a
typical extractive RC task aims to automatically
extract an appropriate answer from the given con-
text.

A large number of datasets for RC tasks,
which contains various types of context, such
as Wikipedia article (Rajpurkar et al., 2016;
Yang et al., 2018; Kwiatkowski et al., 2019),
newswire (Trischler et al., 2017), and web snipets
(Dunn et al., 2017; Joshi et al., 2017), have re-
cently been published. Similarly, many types of
RC task, such as multiple passage (Dunn et al.,
2017; Joshi et al., 2017), multi-hop reasoning
(Yang et al., 2018; Welbl et al., 2018), dialog
(Choi et al., 2018; Reddy et al., 2019) and com-
monsense reasoning (Ostermann et al., 2018;
Talmor et al., 2019), are contained in recently
published datasets.

∗Authors contributed equally

Dataset Size Context Question
SQuAD 96K wikipedia crowd
NewsQA 78K newswire crowd
TriviaQA 69K snippets quiz
SearchQA 133K snippets quiz
HotpotQA 78K wikipedia crowd
NaturalQuestions 116K wikipedia crowd
DROP 1,503 wikipedia crowd
RACE 674 exam handcraft
BioASQ 1,504 biomedical handcraft
TextbookQA 1,503 textbook handcraft
RelationExtraction 2,948 wikipedia KB
DuoRC 1,501 plot crowd

Table 1: Characteristics of released datasets for the
MRQA shared task. The top part of the table indicates
in-domain datasets to train and validate the model, and
the bottom part of the table indicates unveiled out-of-
domain datasets to validate the generalization of the
trained model.

To assess the performance of an RC model on
such datasets, basically, we have to train the model
on the target domain. This solution requires the
same domain dataset as the target domain to ap-
propriately train the model. However, it is difficult
to collect the same domain dataset whenever we
train a model for an RC task.

To overcome this problem, transfer learning
can be applied to create a general model, but
there have been few works on this (Chung et al.,
2018; Talmor and Berant, 2019; Sun et al., 2019).
During training on the source dataset, the model
should be generalized to prevent overfitting to the
particular domain. In other words, the model
should be able to deal with examples on the tar-
get domain (i.e., out-of-domain) well.

The MRQA shared task aims to measure
generalization capability for RC tasks. The
shared task released six-domain datasets
(Rajpurkar et al., 2016; Trischler et al., 2017;
Joshi et al., 2017; Dunn et al., 2017; Yang et al.,
2018; Kwiatkowski et al., 2019) to train and vali-
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date the model as in-domain settings, and unveiled
six out of the twelve test datasets 1 (Dua et al.,
2019; Lai et al., 2017; Kembhavi et al., 2017;
Levy et al., 2017; Saha et al., 2018) to validate
the trained model as out-of-domain settings. The
characteristics of released datasets are shown
in Table 1. The goal of this competition is to
demonstrate high performances on out-of-domain
datasets (the bottom part of Table 1 and addition-
ally unseen test datasets) by the trained model
which only utilizes in-domain datasets (the top
part of Table 1).

In this paper, we propose CLER, which
stands for Cross-task Learning with Expert
Representation. CLER is based on BERT
(Devlin et al., 2019), which has recently shown
great success as a large-scale language model. The
proposed model is composed of three concepts;
multi-task learning, mixture of experts (MoE), and
ensemble.

Our first motivation to employ multi-task learn-
ing is inspired by MT-DNN (Liu et al., 2019a).
MT-DNN is based on BERT as a shared layer and
is trained on four tasks: single-sentence classifica-
tion, pairwise text similarity, pairwise text classifi-
cation, and pairwise ranking. In particular, natural
language inference (NLI) as a pairwise sentence
classification task is related to RC tasks, even in
four tasks. Therefore, we train the proposed model
for RC and NLI tasks in a multi-task setting.

Our second motivation to employ MoE is in-
spired by Guo et al. (2018). They demonstrated
the effectiveness of the MoE architecture for trans-
fer learning in sentiment analysis and part-of-
speech tagging tasks. MoE basically has differ-
ent neural networks called “experts” and divides a
single task into several subtasks so that each sub-
task is assigned to one expert. Here, we assume
that each subtask corresponds to each domain in
in-domain settings. Moreover, in MoE, unseen
domains (i.e., out-of-domain) are represented as a
combination of several domains, such as SQuAD,
TriviaQA, and HotpotQA. Therefore, we expect
that MoE can deal with examples in any domain
well.

Finally, we employ an ensemble to enhance
the performance of the proposed model. Be-
cause ensemble models have shown superior per-
formances over than single ones (Seo et al., 2016;
Devlin et al., 2019), we introduce an ensemble

1BioASQ: http://bioasq.org/

mechanism to improve performance.
The contributions of this paper are as follows:

• We propose a BERT-based model with multi-
task learning and mixture of experts called
CLER.

• We demonstrate that our model has better
performances than the official BERT baseline
model in both in-domain and out-of-domain
settings.

2 Related works

RC models: The state-of-the-art in RC tasks
has been rapidly advanced by neural models
(Seo et al., 2016; Yu et al., 2018; Devlin et al.,
2019). In particular, BERT (Devlin et al., 2019)
significantly improves the performance of a wide
range of natural language understanding tasks, in-
cluding RC tasks. BERT is designed to pre-train
contextual representations from unlabeled text and
fine-tune for downstream tasks. By leveraging
large amounts of unlabeled data, BERT can obtain
rich contextual representations.

Multi-task learning: Multi-task learning
(Caruana, 1997) is a widely used technique in
which a model is trained on data from multiple
tasks. Multi-task learning provides the model a
regularization effect to alleviate overfitting to a
specific task, thus enabling universal representa-
tions to be learned across tasks. Liu et al. (2019a)
proposed the multi-task deep neural network (MT-
DNN) based on the BERT model. Similar to the
original BERT model, MT-DNN is pre-trained as a
language model for learning contextual represen-
tations. In the fine-tuning phase, MT-DNN uses
multi-task learning instead of training on only a
specific task.

Mixture-of-Experts : Guo et al. (2018) intro-
duced the mixture-of-experts (MoE) (Jacobs et al.,
1991) approach for unsupervised domain adapta-
tion from multiple sources. MoE is composed of
different neural networks, i.e., experts. In the orig-
inal MoE, a single task is divided into subtasks,
and each expert learns to handle a certain subtask.
Guo et al. (2018) assumes that different source do-
mains are aligned to different sub-spaces of the
target domain.

3 Model

For generalization to RC tasks, we propose CLER,
which is based on BERT (Devlin et al., 2019) and
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Figure 1: Overview of the proposed model called
CLER. Each block in the single model consists of
BERT, MoE, and FC layers. All three blocks are ag-
gregated into an ensemble CLER. Each block is trained
with a different seed.

several other techniques. An overview of the pro-
posed model is illustrated in Figure 1. The core
concepts behind our model are multi-task learn-
ing, mixture of experts (MoE), and the ensemble
mechanism. During training, MoE learns the re-
lationship between domains regardless of the type
of task, while the model is trained on RC and NLI
tasks simultaneously. We refer to this series of
training procedures that trains the model with dif-
ferent experts on two types of task as cross-task
learning.

3.1 BERT-based model

We utilize BERTLARGE to encode a pair of
sentences composed as [CLS] <sentence1>
[SEP] <sentence2>. BERTLARGE, which
consists of 24 transformer blocks, has already
been pre-trained using BooksCorpus (Zhu et al.,
2015) and English Wikipedia. For an RC
task, the given question and context are set
to <sentence1> and <sentence2>, respec-
tively. Similarly, for an NLI task, the given
premise and hypothesis are set to <sentence1>
and <sentence2>, respectively. [CLS] and
[SEP] are special tokens prepared by the default
function of BERT. The given pair of sentences is
tokenized as a wordpiece token with a sequence
length of up to L̃ = 512. Finally, all tokens are
fed into the MoE layer.

Input: 𝑿

Gating 
Network

Expert1 Expert2 ExpertK

Output: 𝒀

・・・

MoE Layer:

Figure 2: Architecture of the MoE layer. ⊗ represents
the multiplication operator, and ⊕ represents the sum-
mation operator.

3.2 Mixture of Experts
To explicitly capture the representation between
domains, we introduce a mixture of experts (MoE)
(Jacobs et al., 1991) layer after encoding the rep-
resentation over BERT. As illustrated in Figure 2,
MoE is composed of K parts in the expert layer to
encode the input representation and a gating net-
work to classify the input representation into the
local experts. Intuitively, we expect that each ex-
pert is able to interpret domain-wise representa-
tions.

Formally, given the representation X ∈ Rd×L,
where d is the number of dimensions of the out-
put of BERT and L indicates the number of input
tokens, the equation for output Y ∈ Rd×L can be
written as follows:

Y =
K∑
i=1

G(X)iEi(X) (1)

where G(x)i indicates the output probability of
the i-th expert via the gating network, Ei(x) indi-
cates the output representation via the i-th expert
layer, and K is the total number of experts.

Here, we give the equations of the gating net-
work G(·) as follows:

G(X) = softmax(W gh+ bg), (2)

h = [
−→
hL;
←−
h1], (3)

−→
hL =

−−−→
GRU(X),

←−
h1 =

←−−−
GRU(X), (4)

where
−−−→
GRU and

←−−−
GRU correspond to a forward

GRU and backward GRU, respectively, W g is a
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weight matrix, bg is a bias vector, ; indicates a con-
catenation operator, and L is the number of given
tokens. Note that each GRU only outputs the final
hidden state vector in Equation 4.

Then, we give the equation of the i-th expert
layer E(·) as follows:

Ei(X) = W iX + bi (5)

where W i is the i-th weight matrix, and bi is the
i-th bias vector.

As mentioned above, each expert has a different
weight matrix and bias vector, and the gating net-
work classifies an input example into local experts.
Therefore, all experts are able to interpret the input
representation with respect to any domain, even if
it is unseen in the source domain.

3.3 Multi-task Learning

According to Liu et al. (2019a), multi-task learn-
ing is effective for improving models on several
NLP tasks. In particular, NLI tasks are related
to RC tasks and even several NLP tasks. There-
fore, we employ the multi-task learning approach
on RC and NLI tasks to enhance the generalization
of our model.

BERT-encoder and MoE layer correspond to a
shared layer, and both FCRC and FCNLI, which
indicate fully connected layers, are task-specific
layers in our multi-task setting. For FCRC at pre-
diction time, given the representation of all tokens
via the MoE layer, FCRC outputs the span with
the maximum logits across all tokens. Specifi-
cally, two types of FCRC layer, which are span
predictors for the start and end position, estimate
the span with the start and end position, individu-
ally. For FCNLI at prediction time, given the rep-
resentation of the first token via the MoE layer cor-
responding to the [CLS] token, FCNLI outputs a
predicted class out of entailment, neutral, and con-
tradiction.

Loss Function
Finally, we minimize the loss function with the
multi-task setting as follows:

L = λLRC + (1− λ)LNLI + Limportance (6)

where LRC is a negative log likelihood loss for
RC tasks, LNLI is a cross entropy loss for NLI
tasks, Limportance is an importance loss, and λ is
a weight hyperparameter.

According to Shazeer et al. (2017), we employ
an importance loss Limportance to avoid the local
minimum. This loss function penalizes some ex-
perts that frequently take a large probability via the
gating network in any domain. Let us denote the
importance loss as follows:

Limportance = wimportanceCV (I(Z))2 (7)

I(Z) =
∑
z∈Z

G(z) (8)

where Z represents all samples in the given mini-
batch, CV (·) is a coefficient of variation, and
wimportance is a weight hyperparameter.

3.4 Ensemble

To further enhance the generalization of our
model, we employ an ensemble mechanism. The
ensemble is only applied at test time.

At test time, we feed examples of RC tasks into
our models, which are trained with different seeds,
independently. We integrate the logits via FCRC

into a merged logit as follows:

ms =
J∑

j=1

oj
s, me =

J∑
j=1

oj
e, (9)

where oj
s ∈ RL and oj

e ∈ RL correspond to the
logits of our j-th model for the start span and end
span, respectively, and J is the total number of
models in the ensemble. Finally, we take the span
with the maximum logits over ms and me.

4 Experiments

4.1 Datasets

Datasets for RC Tasks
MRQA shared task organizers released six types
of train and development dataset to train and val-
idate the model for generalization. Addition-
ally, six out of the twelve types of out-of-domain
dataset were unveiled to only validate the trained
model.

We randomly sampled examples to make the
Test set from the official train dataset. Note that
Train, which was created from the official train
dataset but is not the same as the official one, does
not contain the same examples as in Test. The de-
velopment dataset Dev. was used as the same for
the official development set. The statistics of the
datasets are listed in Table 2.
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Dataset Train Dev. Test
SQuAD 76,079 10,507 10,509
NewsQA 69,947 4,212 4,213
TriviaQA 53,902 7,785 7,786
SearchQA 100,403 16,980 16,981
HotpotQA 67,010 5,904 5,902
NaturalQuestions 91,234 12,836 12,837
DROP - 1,503 -
RACE - 674 -
BioASQ - 1,504 -
TextbookQA - 1,503 -
RelationExtraction - 2,948 -
DuoRC - 1,501 -

Table 2: Statistics of datasets for RC tasks. The top
part of the table indicates in-domain datasets to train
and validate the model, and the bottom part of the ta-
ble indicates unveiled out-of-domain datasets to only
validate the trained model.

Dataset Train Dev.
SNLI 550,152 10,000
FICTION 77,348 2,000
GOVERNMENT 77,350 2,000
SLATE 77,306 2,000
TELEPHONE 83,348 2,000
TRAVEL 77,350 2,000

Table 3: Statistics of datasets for NLI tasks. The bot-
tom part of the table indicates genres in the MNLI
dataset.

At training time, we took only 75 K examples
from each dataset if the total number of examples
in the dataset was larger than 75 K. Otherwise, we
took all examples in the dataset.

Datasets for NLI Tasks
We introduce two types of NLI datasets to
train our model with multi-task learning:
SNLI (Bowman et al., 2015) and MultiNLI
(Williams et al., 2018). The statistics of these
datasets are listed in Table 3.

At training time, the number of examples in
each dataset corresponded to the number of exam-
ples in the RC task dataset. Specifically, the num-
bers of examples on SNLI, FICTION, GOVERN-
MENT, SLATE, TELEPHONE, and TRAVEL
were the same as those of SQuAD, NewsQA, Triv-
iaQA, SearchQA, HotpotQA, and NaturalQues-
tions, respectively.

4.2 Experimental Setup

All of our implementations followed the settings
described in this section.

We used the BERTLARGE model for all of our
implementations. For the MoE layer, the number

of experts was set to 12. We set the hidden unit
sizes of the GRU layer and the hidden unit sizes
of each expert to 512 and 1024, respectively. For
the ensemble model, we trained three models in-
dependently with different seeds. The best model
of the three evaluated on the out-of-domain devel-
opment set was chosen as a single model.

We used Adam with a learning rate of 3e-5 to
optimize the model. We fine-tuned the model for
2 epochs with a batch size of 24. During training,
λ and wimportance were set to 0.5 and 0.1, respec-
tively.

Two types of metrics, exact match (EM) and
partial match (F1), were employed in the MRQA
shared task. EM was 1 if the predicted answer was
perfectly the same as the gold answer, but other-
wise it was 0. For F1, we calculated the overlap
rate between the predicted answer and the gold an-
swer, so the maximum F1 score is 1.

4.3 Comparison Models
As baseline models, we referred to the offi-
cial evaluation results based on BERTBASE and
BERTLARGE. To fairly compare the baseline and
our models, we prepared BERTSTL, which is com-
posed of only the BERT-encoder and FCRC with
the same settings of our models. BERTSTL is dif-
ferent from BERTLARGE with respect to the hy-
perparameter of scheduling (t total in Pytorch im-
plementation). Note that BERTSTL does not em-
ploy both multi-task learning and ensemble.

We also prepared BERTMTL excluding the MoE
layer from CLER, as illustrated in Figure 1, to as-
sess the effectiveness of multi-task learning.

4.4 Results
In-domain Evaluation
We evaluated all models on the in-domain devel-
opment set. Table 4 summarizes the results on the
in-domain development set.

CLER with the ensemble setting consis-
tently demonstrated superior performances on
all datasets. Also, the multi-task learning
(BERTMTL) effectively improved overall perfor-
mances. However, MoE could not improve the
performances compared with BERTMTL on in-
domain datasets.

Out-of-domain Evaluation
We also evaluated all models on the out-of-domain
development set. Table 5 summarizes the evalua-
tion results for out-of-domain.
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Model SQuAD NewsQA TriviaQA SearchQA HotpotQA NaturalQuestions Average
(EM/F1) (EM/F1) (EM/F1) (EM/F1) (EM/F1) (EM/F1) (EM/F1)

BERTBASE 78.5/86.7 50.8/66.8 65.6/71.6 69.5/76.7 59.8/76.6 65.4/77.4 64.9/76.0
BERTLARGE 80.3/88.4 49.6/66.3 68.2/74.7 71.8/79.0 62.4/79.0 67.9/79.8 66.7/77.9

BERTSTL 83.3/90.5 51.5/67.4 68.5/74.3 72.2/79.3 63.9/80.1 67.7/79.7 67.9/78.5
BERTMTL 84.6/91.4 54.1/69.4 70.5/76.0 72.6/79.5 63.9/80.0 67.9/79.5 68.9/79.3
CLER (Single) 84.9/91.6 54.3/69.4 69.9/75.6 72.2/79.0 63.5/79.8 68.1/79.8 68.8/79.2

CLER (Ensemble) 85.5/91.9 55.7/70.5 71.8/77.4 73.7/80.5 64.9/80.9 68.5/80.1 70.0/80.2

Table 4: Results on the in-domain development set. Bold values indicate the best scores overall, and the underlined
values indicate the best scores for each single model. BERTSTL is a single-task learning model composed of only
a BERT-encoder and FCRC based on our reimplementation. BERTMTL is a multi-task learning model excluding
the MoE layer from CLER.

Model DROP RACE BioASQ TextbookQA RelationExtraction DuoRC Average
(EM/F1) (EM/F1) (EM/F1) (EM/F1) (EM/F1) (EM/F1) (EM/F1)

BERTBASE 25.7/34.5 30.4/41.4 47.1/62.7 44.9/53.9 72.6/83.8 44.8/54.6 44.3/55.2
BERTLARGE 34.6/43.8 31.3/42.5 51.9/66.8 47.4/55.7 72.7/85.2 46.8/58.0 47.5/58.7

BERTSTL 38.5/47.3 33.7/45.7 53.9/69.6 48.0/56.6 76.4/86.7 46.9/57.2 49.6/60.5
BERTMTL 37.9/46.8 30.4/44.4 53.5/69.0 49.8/58.9 76.9/87.0 51.4/60.8 50.0/61.2
CLER (Single) 39.3/47.8 32.3/46.6 52.8/67.4 51.4/61.0 76.3/87.0 51.8/61.8 50.7/62.0

CLER (Ensemble) 40.2/49.4 32.2/46.2 52.1/68.4 52.6/62.3 77.3/87.7 52.2/61.9 51.1/62.7

Table 5: Results on the out-of-domain development set. Bold values indicate the best scores overall, and the
underlined values indicate the best scores for each single model. BERTSTL and BERTMTL are the same as in
Table 4.

Model Dev. Test Average
(EM/F1) (EM/F1) (EM/F1)

BERTBASE 43.9/54.6 47.2/62.4 45.5/58.5
BERTLARGE 45.7/57.4 50.7/66.1 48.2/61.8

CLER (Ensemble) 51.1/62.5 53.8/69.7 52.4/66.1

Table 6: Results of submission run. BERTBASE and
BERTLARGE are the MRQA official baseline models.
Bold values indicate the best scores overall.

Overall, the performances of our model were
improved compared to the official baseline mod-
els. It was observed that CLER drastically im-
proved the EM and F1 scores compared with base-
line models on TextbookQA and DuoRC. More-
over, the multi-task learning improved the average
F1 score (+0.7 pt) compared with BERTSTL, and
the MoE layer further improved the average F1
score (+0.8 pt) compared with BERTMTL. This
suggests that both the multi-task learning and MoE
are effective for improving generalization for RC
tasks.

4.5 Submission Run
For the submission run, 6-domain datasets for the
development set and additional 6-domain datasets
for the test set were used to evaluate the submitted
models. All datasets for the submission run were
consistently out-of-domain settings.

Table 6 summarizes the submission run re-
sults. CLER drastically improved the perfor-
mances compared with the official baseline mod-
els. We finally ranked 6th of all participants.

5 Conclusion

In this paper, we proposed a BERT-based model
with multi-task learning and mixture of experts
(MoE) called CLER. To enhance generalization
for RC tasks, we introduced an MoE layer and the
multi-task learning approach. We also applied an
ensemble mechanism to CLER to further improve
its performances. Experimental results showed
that CLER drastically improved EM and F1 scores
compared with the official BERT baseline models.

In future work, we will replace the BERT-
encoder with a more powerful model, such as XL-
Net (Yang et al., 2019) or RoBERTa (Liu et al.,
2019b), which have recently achieved state-of-the-
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art performances on natural language understand-
ing benchmarks. We will also attempt other train-
ing strategies, such as question generation, to au-
tomatically augment the training dataset.
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