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Abstract
Although advances in neural architectures for
NLP problems and unsupervised pre-training
led to impressive improvements on question
answering and natural language inference, rea-
soning over long texts still poses a great chal-
lenge. Here, we consider the task of ques-
tion answering from full narratives (e.g., books
or movie scripts), or their summaries, tack-
ling the NarrativeQA challenge (NQA; Ko-
cisky et al. (2018)). We introduce a heuris-
tic extractive version of the data set, which al-
lows us to approach the more feasible problem
of answer extraction (rather than generation).
We develop models for passage retrieval and
answer span prediction using this data set. We
use pre-trained BERT embeddings for inject-
ing prior knowledge into our system. We show
that our setup leads to state of the art perfor-
mance on summary-level QA. On narrative-
level QA, our model performs competitively
on the METEOR metric. We analyze the rel-
ative contributions of BERT embeddings and
the extractive model setup, and provide a de-
tailed error analysis.

1 Introduction

With recent advances in machine learning tech-
niques, the availability of sizable data sets as well
as compute power, natural language processing
has made impressive advances across a variety of
NLP tasks. A striking gap between machine and
human performance, however, remains the ability
to comprehend text and make inferences over mul-
tiple pieces of information.

Automatic question answering (QA) from text
has received much recent attention as a task de-
signed towards bridging this gap. A variety of
question answering tasks and data sets with dif-
ferent levels of difficulty have been proposed re-
cently, ranging from questions paired with short,

∗Work done while the author was employed at Amazon.

relevant documents containing immediately infer-
able answers (SQUAD; Rajpurkar et al. (2016)),
over questions to be answered from sets of doc-
uments and requiring to connect facts through
multi-step inferences (WikiHop; Welbl et al.
(2018)) to naturally occurring questions as Google
search queries, paired with sets of Wikipedia
pages (Natural Questions; Kwiatkowski et al.
(2019)).

Common characteristics of those data sets are
(1) sets of (question, document, answer)-tuples
in the order of tens- to hundreds of thousands
training and test examples; (2) extractive answers
which can be pin-pointed in the reference docu-
ments; (3) the reference documents from which
answers are derived are of comparatively short
length (e.g., an average of 100 tokens per reference
for WikiHop, vs 60K tokens in NQA). All recently
proposed successful QA systems were trained in a
supervised way, heavily relying on the availability
of answer-annotated data sets as described above.

In this work we consider the highly challeng-
ing task of narrative question answering (NQA),
as introduced by Kocisky et al. (2018). In NQA, a
system is presented with a question on the plot of a
narrative (a book or a movie) and produces a free-
text answer given the raw book or movie script
text.1 The data set was created by pairing each
original narrative with a human-created summary,
and crowd sourcing a large set of of question-
answer pairs based on the summary. Questions are
derived from the summaries to deliberately avoid
answers to be straightforwardly extractable from
the full narrative texts.

Several interesting challenges arise in NQA:
(1) although answers are typically localized in the
summary, the corresponding answer in the book

1Although the NQA data set includes both books and
movie scripts, and we will refer collectively to books for sim-
plicity.
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often requires reasoning across paragraphs or even
chapters; (2) answers are abstractive and as such
not necessarily verbatim in the reference docu-
ments; (3) the size of the data set, shown in Ta-
ble 2, is comparatively small making supervised
training challenging.

This paper explores the utility of heuristic, but
inexpensive training data sets for NQA. We formu-
late NQA as an extractive question answering task,
leveraging the fact that by construction of the data
set, answers tend to be extractable locally from the
summary text (cf., Table 1 for examples). While
ultimately an abstractive system, which synthe-
sizes an answer based on information in the text,
is desirable, a conceptually simpler extractive ap-
proach can serve as a first and more feasible step
towards the goal of answer generation. Our eval-
uation shows that our extractive system performs
competitively on summary- and book-level NQA.

We construct a heuristic extractive NQA data
set by leveraging characteristics of the generating
process of the original data. Specifically, since
question-answer pairs were synthesized based on
the summaries, we hypothesize that the answer to
a question can typically be found in a single sum-
mary sentence (or subspan thereof). We develop
heuristics to retrieve those spans.

Based on our heuristic extractive data set we
train models for two tasks: (1) Question-based
sentence retrieval, which, given a question, se-
lects relevant passages for a question (which may
serve as input to a sophisticated QA model); and
(2) SQUAD-style answer extraction, where the
system learns to point to the beginning and end of
the answer in the reference text. We train systems
for sentence-retrieval and answer extraction on top
of pre-trained BERT embeddings (Devlin et al.,
2018), which serve as a source of prior knowledge.

We train question answering systems on
summary-question-answer tuples, and evaluate the
systems on (1) summary references and (2) on the
full book text. Although summaries are required
for training, our model can answer questions on
unseen test books with no need for a summary.

While a variety of systems has been proposed
for summary-level based NQA, the full NQA
challenge of answering questions based on the
full, raw narrative text has received less attention.
Conceptually similar to our approach of deriving
heuristics from question-answer-summary tuples,
very recent work proposes heuristic generative

pre-training directly on book passages (Tay et al.,
2019). They use pointer-generator networks (See
et al., 2017) which allow to produce an answer
by sampling from the vocabulary (generate) even
when the answer cannot be pointed to directly in
the context passage.

Our system achieves state-of-the-art results on
summary-level answer extraction, and performs
competitively on the book-level specifically on
METEOR, a semantically informed evaluation
metric which scores semantic relevance beyond
word overlap.

In summary, our contributions are:

1. Augmentation of existing (sparse) data sets
with heuristic, inexpensive and supervised
training data, with an application to extrac-
tive question answering for NQA

2. State-of-the-art results on the summary level
NQA benchmark; and competitive results on
the book-level NQA task under the METEOR
metric, which takes into account synonymy
in addition to word overlap

3. An analysis of common errors shedding light
on shortcomings in model performance as
well as evaluation

2 Task Description

The NarrativeQA data set (Kocisky et al., 2018)
provides a testbed for question answering on raw
narrative text. It consists of over 1,567 publicly
available full-length narrative documents (books
or movie scripts), each paired with a human-
created plot summary. For each document a set of
question-answer pairs was collected by presenting
human annotators with the summary. The annota-
tors generated a set of questions (30 per summary)
together with free-text answers (two answers per
question, from distinct annotators), for a total of
46,765 question-answer pairs. Considering the va-
riety in question types, narrative styles (books and
movie scripts of different genres), sheer length of
the documents, and the fact that answers need to
be synthesized, this data set is too small to train
models in a purely in-domain supervised way.

We address the above challenges in two ways.
First, we incorporate prior knowledge in the form
of pre-trained word embeddings (Devlin et al.,
2018). Second, we recognize that by construction
of the data set, answers to questions can gener-
ally be localized in the summaries, even though
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Q:Why does Nora track Mark down? G1: Malcom’s suicide
G2: to confront him after Malcolm commits suicide

E:Nobody knows the true identity of Hard Harry [...] until Nora Diniro (Mathis), a fellow student,
tracks him down and confronts him the day after a student named Malcolm commits suicide after
Harry attempts to reason with him.

Q:Why did the couple visit medium Shaun San
Dena in Pasadena in 1969?

G1: their son has been hearing voices from evil spirits
G2: because their son was hearing evil spirits voices

E: In 1969 Pasadena, California, a couple seeks the aid of the medium Shaun San Dena (Flor de Maria
Chahua) saying their son (Shiloh Selassie) has been hearing evil spirits’ voices after stealing a
silver necklace [...]

Q:How was Hadley’s Hope Colony destroyed? G1: the nuclear blast from the damaged power plant
G2: an explosion

E:All four escape moments before the station explodes with the colony consumed by the nuclear
blast.

Table 1: Example questions (Q) from the NarrativeQA data set, with gold free-text answers (G), the most relevant
sentence as automatically extracted from the summary (E) and the most relevant sub-sentence level span (boldface).

the free-text answers are typically not found ver-
batim in the summary. We leverage this property
to construct extractive data sets for sentence-level
and sub-sentence level answer extraction.

3 Data Sets for Extractive NarrativeQA

We derive data sets for supervised query-based
sentence retrieval (Section 3.1), and answer span
extraction (Section 3.2).

3.1 Sentence Retrieval Data Set
For each question, and its corresponding sum-
mary, we proceed as follows. We first obtain a
relevance score of each summary sentence s to the
input question q: we concatenate the question2 q
with both human-created free text answers a1, a2,

z = [q; a1; a2], (1)

and obtain a relevance score of each summary sen-
tence s w.r.t. z by passing both through the Uni-
versal Sentence Encoder (USE)3 (Cer et al., 2018)
and computing the cosine similarity between the
encodings,

relz(s) = cos(USE(z),USE(s)). (2)

We can thus rank summary sentences by their rele-
vance to input qa-pair z. Our method can serve as

2We remove the question mark and the first word if it in-
dicates a wh-question.

3In preliminary experiments we tested ROUGE-L as an
alternative to USD, but found a bias towards mapping to short
sentences.

a sentence or passage retrieval system, providing
pre-selected input to a more sophisticated ques-
tion answering model. Assuming the top-ranked
sentence to be the true relevant sentence (and all
other sentences to be irrelevant), we train super-
vised retrieval models given a question as input.
We further use sentence relevance scores as a basis
for heuristic answer-span annotation as described
in the following section. Example questions, to-
gether with the most relevant retrieved sentence,
are shown in Table 1.

3.2 Answer Span Prediction Data Set
Although sentence retrieval is an important step
towards question answering from narratives, ulti-
mately a more flexible answer granularity is desir-
able. Building on sentence-level relevance scores,
given a question-answer pair, we extract the most
relevant contiguous word sequence to a question q
in the summary. We employ the following back-
off strategy:

1. if available, return an exact match of one of
the reference answers (if both answer candi-
dates match, choose one at random)

2. if unsuccessful: considering the three most
question-relevant sentences as determined by
the USE (Section 3.1) find the longest sub-
string bounded by content words in the an-
swers

3. if unsuccessful: considering any sentence in
the summary, return the longest substring
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train valid test

# QA-pairs 32,170 3,461 10,557
# documents 1,102 115 355

Table 2: Statistics of the NarrativeQA data set (Ko-
cisky et al., 2018). We obtain a heuristic answer match
for each original question, and maintain the original
train/valid/test splits.

bounded by content words in the answers

Our resulting dataset of questions paired with
answer-annotated summaries containing the an-
swers, allows us to train SQUAD-style answer
prediction systems (cf., Section 5; Rajpurkar et al.
(2016); Devlin et al. (2018)). Figure 1 shows ex-
amples of automatically annotated answer spans in
NarrativeQA summaries (boldfaced).

4 Experiment Setup

We train systems for sentence retrieval and answer
span prediction on questions paired with answer-
annotated summaries, obtained as described in
Sections 3.1 and 3.2. We evaluate sentence re-
trieval and answer span prediction performance
on both summary level data, and full narrative
texts. We evaluate our extractive model predic-
tions against the original, abstractive NarrativeQA
gold answers using the evaluation setup proposed
in the original paper to ensure comparability.

Our experiments investigate (a) the effective-
ness of a heuristic training data set on sentence re-
trieval and answer span prediction in the context of
NQA; (b) the extent of generalization of systems
trained on summary data to book full texts; and
(c) the utility of prior knowledge in the form of
pre-trained word embeddings. We train sentence
retrieval and span prediction models on top of pre-
trained BERT embeddings (Devlin et al., 2018).

4.1 BERT

BERT embeddings (Devlin et al., 2018) are con-
textualized word representations, pre-trained on
enormous training corpora on unsupervised word-
and sentence prediction tasks using bi-directional
transformers. They have been shown to encode
substantial semantic and syntactic information,
and have been efficiently fine-tuned towards a va-
riety of NLP tasks leading to new state-of-the-art
results (Devlin et al., 2018). Here, we fine-tune

accuracy precision recall f1

prel > 0.5 0.87 0.88 0.83 0.86

Table 3: Results on summary-level sentence-relevance
classification on the NQA test set of 25K question-
answer pairs. We set the relevance threshold to
p > 0.5.

BERT embeddings for NQA sentence retrieval and
answer span selection, as described below.

5 Sentence Retrieval

Given a question and a reference text, our models
retrieve the most relevant sentences from the refer-
ence to the query by computing a relevance score
for each sentence in the reference.

Approach Given a large set of sentence-
question pairs, we train a relevance prediction
model on top of BERT embeddings. Follow-
ing closely the architecture for BERT-based sen-
tence classification, our system takes as input the
BERT-embedded query q concatenated with a sin-
gle BERT-embedded summary sentence s. The
two sequences are separated with a special separa-
tion token ([SEP ]) and pre-pended with another
special token [CLS] which will be trained to cap-
ture the aggregate sentence pair representation,

z = [CLS]enc(q)[SEP ]enc(s). (3)

The final sentence pair representation [CLS] is
passed through a single linear layer followed
by a softmax layer to produce an output class
(relevant vs irrelevant in our case). We use
queries paired with top-ranked summary sentences
(Section 3.1) as positive examples, and queries
paired with random sentences from the same sum-
mary as negative examples, and minimize cross-
entropy classification loss.

For each sentence-query pair we obtain a rele-
vance score ∈ [0, 1], from which we can derive
a summary sentence ranking by query relevance.
We retrieve the top n most relevant sentences from
this ranking for further predictions.

We use the default parameters from the original
BERT implementation.4

Summary-level results We apply our model to
the book summaries from test data set of Nar-
rativeQA. We evaluate the extent to which truly

4https://github.com/google-research/
bert

https://github.com/google-research/bert
https://github.com/google-research/bert
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p@1 p@5 MRR

BM25f 10.53 51.42 0.276
BERT 13.80 53.02 0.305

Table 4: Fraction of correct answers contained in the
top {1 / 5} answer candidates, and MRR of the cor-
rect answer in passages retrieved by the BERT-based
retrieval method (BERT) or an IR method (BM25f).

relevant sentences (as extracted by our heuris-
tic method) were assigned a relevance probability
p > 0.5. Results are shown in Table 3, and show
that the model detects the most relevant summary
sentence for a question accurately across a variety
of metrics.

Book-level results We apply our model to the
considerably harder task of NQA on full doc-
uments, computing a question-specific relevance
score for each sentence in the document. Note
that we cannot evaluate retrieval scores directly,
because we do not have access to a gold standard
of relevant book sentences for a given question.
Instead, we treat our system as a passage retrieval
model given an input question. As an approxi-
mation to the quality of the retrieved passages we
compute the extent to which the correct answer is
found in the N most frequent answer candidates.5

We compare our BERT-retrieval with an IR-
style retrieval system (BM25f; Zaragoza et al.
(2004)) which retrieves text passages of five con-
secutive sentences based on word token and char-
acter mention overlap with the question. From
both systems, we retrieve the 20 most relevant
predicted sentences, each in a context of ±2 sen-
tences.

The results are shown in Table 4. We can ob-
serve that BERT-based retrieval outperforms the
IR retrieval-based model. We will also incorpo-
rate this model as a passage-preselection module
for book-level answer span prediction in Section 6.

Qualitatively, we observed that most book sen-
tences receive a very low relevance probability in
our BERT-based retrieval system, which makes
the model amenable for the task of narrowing
down the context to few relevant passages. For ex-
ample, on average across all books, only 1.4% of

5We evaluate our system only in the context of who?
questions with an entity as answer and consider all book en-
tities as candidate answers. We extract character mentions
using the BookNLP pipeline (Bamman et al., 2014).

all sentences are predicted as relevant with p >=
0.8 and 4.3% with p >= 0.01%.

6 Answer Span Prediction

Given a question and a reference text (summary or
full narrative), the task is to predict a contiguous
sub-span of arbitrary length in the reference text
as the answer to the question.

Approach We fine-tune BERT embeddings for
answer extraction, similar to the approach for
BERT-based SQUAD question answering in De-
vlin et al. (2018). Given a query q and a text pas-
sage c, we map both to BERT embeddings, and
concatenate the embedded representations,

z = [CLS]enc(q)[SEP ]enc(c). (4)

BERT fine-tuning for answer-span prediction in-
volves training a start-vector representation S and
an end-vector representation E. The probability of
a word i ∈ enc(c) being the start of the answer is
the dot-product between enc(c)i and S, softmax-
normalized over all words in enc(c); and the prob-
ability distribution over end tokens is computed
analogously. The probability of a span from word
i to word j, s.th. i < j, is the sum of its start and
end position

S × enc(c)i + E × enc(c)j . (5)

Pointing to the [CLS] token, the model also has
the capacity to predict no answer at all. We use
the start and end positions of our heuristic answer
spans (Section 3.2) as gold training examples, and
maximize the sum of log likelihoods of the start
and end position as our training objective.

While we use the whole summaries as contexts
for summary-based QA, considering full narrative
texts is prohibitive. To this end, we leverage the
sentence retrieval model from Section 5 to obtain
a subset of relevant sentences. In our experiment
we retrieve the 100 most likely sentences given a
question, each in a context of±2 sentences, result-
ing in contexts of (up to) 500 sentences per ques-
tion.

Even after this pre-selection, memory con-
straints prohibit processing of the full contexts, or
summary texts. Following Kocisky et al. (2018),
we limit context length to a maximum of 384
words, split the original reference documents into
multiple such segments, and pass each segment in-
dividually as context, and return the most likely
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model BLEU-1 BLEU-4 METEOR Rouge-L

BiDAF Span Prediction (Kocisky et al., 2018) 33.45 15.69 15.68 36.74
DecaProp (Tay et al., 2018) 42.00 23.42 21.80 44.69
ConZNet (Indurthi et al., 2018) 42.76 22.49 19.24 46.67

BERT SQUAD train 36.22 17.14 23.61 48.58
BERT SQUAD train 31K 40.71 20.60 19.78 45.06

BERT heur 50.36 24.24 27.09 58.50

Table 5: Summary-level answer extraction results by previous models and our systems trained on out-of-domain
SQUAD data (BERT SQUAD *), and our heuristic data set (BERT heur). All results reported on the NarrativeQA
test split.

model BLEU-1 BLEU-4 METEOR Rouge-L

BiDAF Span Prediction (Kocisky et al., 2018) 5.68 0.25 3.72 6.22
AS Reader 10 chunks (Kocisky et al., 2018) 19.09 1.81 4.29 14.03
AS Reader 20 chunks (Kocisky et al., 2018) 19.06 2.11 4.37 14.02
IAL-CL (Tay et al., 2019)(F) 22.92 2.47 5.59 17.67

BERT SQUAD train 9.06 1.03 4.29 10.58
BERT SQUAD train 31K 9.23 1.47 3.55 10.29

BERT heur 12.26 2.06 5.28 15.15

Table 6: Book-level answer extraction results by previous models and our systems trained on out-of-domain
SQUAD data (BERT SQUAD *), and our heuristic data set (BERT heur). All results reported on the NarrativeQA
test split. (F): Work developed concurrently with ours; added post acceptance.

span across all passages as an answer. For each
test input, we return the most likely non-empty an-
swer candidate returned by the model.

In order to disentangle the contribution of pow-
erful BERT embeddings from the utility of our
heuristic training corpus, we also trained an an-
swer extraction model using SQUAD-V2.0 train-
ing data (Rajpurkar et al. (2018); BERT SQUAD).
We train the models using either the full SQUAD
data set, or a random subset of 31,000 training
items, comparable in size to our heuristic training
data set. On the one hand, this data set is a gold-
standard of perfect context-span to answer corre-
spondences. On the other hand, the data stems
from a different domain, and thus potentially less
informative for the NarrativeQA task.

We evaluate the predicted answers against
the human-provided free-text answers us-
ing BLEU (Papineni et al., 2002) and ME-
TEOR (Banerjee and Lavie, 2005) scores. We
report results given (1) summaries as contexts, and
(2) the full narrative texts, and compare against
previously reported results on the respective tasks.

Summary-level Results Table 5 displays
summary-level answer span extraction results
for previous models (top), the BERT-based span
prediction model trained on SQUAD data (cen-
ter), and the same model trained on our heuristic
extractive NQA corpus (bottom).

BiDAF is a span prediction model, conceptu-
ally similar to our own and was used as a baseline
method in Kocisky et al. (2018). DecaProp (Tay
et al., 2018) is a neural network which, through
dense connections between neighboring layers, is
designed to distill information from hierarchical
passage representations (over words, sentences,
and paragraphs). CoZNet (Indurthi et al., 2018) is
a neural network architecture designed to ‘zoom
into’ relevant passages of contiguous, long text
passages, using co-attention on query and passage
and reinforcement learning with answer genera-
tion as target. The latter models generate, rather
than extract, an answer. All models were evalu-
ated against the human free-text answers.

Our model trained on the heuristic data set out-
performs all prior work. The model trained on
SQUAD data compares poorly against all other
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models, demonstrating that the prior information
from BERT embeddings by themselves do not au-
tomatically lead to improvements on NQA. In-
terestingly, the SQUAD-data trained model per-
form better with fewer data (31K) compared with
the full training data set, suggesting that fitting
the model to SQUAD-data prediction decreases its
generalization ability to out-of-domain NQA test
data. The strong performance with our heuristic
training corpus suggests that a heuristic and po-
tentially noisy in-domain data set is of great utility
for summary-level answer span extraction.

Note that our model scores higher than the hu-
man results reported in (Kocisky et al., 2018),
where the automatic evaluation metrics were com-
puted by evaluating one human annotation against
the other. By extracting the answer string from the
summary, our system is frequently in agreement
with at least one human annotator; however, as hu-
mans were allowed to provide free-text answers,
the two annotations often do not match exactly, re-
sulting in overly pessimistic automatic scores. We
discuss shortcomings of automatic evaluation met-
rics like BLEU in the context of NarrativeQA in
more detail in Section 7.

Q1 Who is Mark Hunter?
G he is a high school student in Phoenix
E high school student (3)

Q2 Why do more students tune into Mark’s
show?

G Mark talks about what goes on at school
and in the community

E speaks his mind (3)

Q3 Why do Faulkland and Julia always fight?
G he thinks she’s unfaithful
E jealous suspicion. He is constantly fretting

himself about her fidelity (3)

Q4 Who was Murphy’s ghost?
G Cooper from the future
E a poltergeist (7)

Figure 1: Example questions (Q) with gold (G) and
top-ranking model-extracted answer (E) from the book
summaries. 3: correct; 7: incorrect.

Book-level Results Although a range of prior
models have been proposed for summary-level
QA, the only prior work that tackles the full Narra-
tiveQA task has been developed concurrently with

our work (IAL-CL; Tay et al. (2019)). IAL-CL
is a pipelined approach of tfidf/cosine similarity-
based passage retrieval pointer-generator networks
for question answering model, together with so-
phisticated block-based alignment (IAL) strategy,
trained with curriculum learning (CL). We also
compare against the most competitive systems de-
scribed in the original paper (Kocisky et al., 2018).

All results are shown in Table 6. We compare
our own model trained on the heuristic training
corpus (bottom), against another span prediction
model, Bi-Directional Attention Flow (BiDAF;
Seo et al. (2016)), as reported in Kocisky et al.
(2018), as well as their most competitive model, an
adaptation of the Attention Sum Reader (Kadlec
et al., 2016) (AS Reader). AS Reader follows
an encoder-decoder architecture with attention,
where the decoder is an LSTM sequence decoder
which can synthesize an answer (rather than ex-
tract). Both prior models are combined with a
passage pre-selection method (similar to our own),
which is based on tf-idf based cosine similarity of
answers (for training sets) and questions for (test
sets). Like for the summary-level task, we com-
pare our architecture fine-tuned on quality out-of-
domain training data (SQUAD).

Tay et al. (2019) achieve the most competitive
results across the board. Our model outperforms
the conceptually similar span extraction model
(BiDAF). The AS Reader performs similarly to
our model, with the ranking depending on the met-
ric used. Our model outperforms previous systems
in terms of METEOR score. METEOR includes
synonym matching and as such recognizes seman-
tically similar predictions to the gold standard.
The error analysis (Section 7), provides a variety
of examples which demonstrate that model predic-
tions are indeed often correct, despite having little
word overlap with the gold standard. Like in the
summary-level evaluation, models trained on our
own corpus outperform the SQUAD-based mod-
els, suggesting again the utility of training on eas-
ily obtainable, inexpensive but heuristic in-domain
data.

7 Error Analysis

We inspect a variety of examples on both
summary- and narrative level QA to shed light on
shortcomings of the model and evaluation. We
show qualitative support for our model’s discrep-
ancy in METEOR and BLEU performance (Ta-
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Q5 What is Tom trying to desperately get working?
G his latest invention
E a photo telephone ( 3)
C I ’m trying to make a photo telephone. I have the telephone part down Pat, but I can’t see

anything of the photo image.

Q6 What is Dubuches passion besides painting?
G music
E music (3)
C his landscapes were at least conscientiously painted, excellent in intention; but his real passion

was music, a madness for music, a cerebral bonfire which set him on a level with the wildest of
the band.

Q7 How does Claude die?
G he hangs himself
E knocked down by a little hand-truck (7)
C Claude, stepping back, narrowly escaped being knocked down by a little hand-truck which

two big full-bearded fellows brought up

Q8 How does Mr. Peters feel about Tom not allowing him access to the patents?
G he gets angry
E embarrassed (7)
C ”Who are these men?” Tom felt a little embarrassed over what he had said. ”Couldn’t he make

him pay?” asked Tom.

Q9 What were Owen and George found doing the morning after Brenda died?
G they were laughing and singing
E singing snatches of songs (?)
C George and Owen were singing snatches of songs and gibbering like two great apes.

Q10 How long does Jimmy Gator have to live?
G just a few months
E two months (3)
C [[Jimmy Gator]]: I have about two months, I have no time.

Q11 What happened to the doctor who was called to the house after Mortimer’s brothers went insane?
G he collapsed at the sight of Brenda’s body
E fell into a chair ( 3)
C you will recollect that Mortimer Tregennis, in describing the episode of his last visit to his

brother’s house, remarked that the doctor on entering the room fell into a chair?

Q12 How does Linda try to commit suicide?
G by overdosing on Earls prescription medication
E swallows a whole bottle of pills (3)
C Linda takes some pills. Then she takes some more... Then she takes some more... Then she

swallows a whole bottle of pills... She drinks from a small bottle of vodka

Q13 What is ironic about Donnie’s teeth being knocked out when he falls from the pole?
G he no longer has to worry about getting braces on his teeth
E Donnie’s mouth is full of blood and his teeth (7)
C he.he . Donnie’s mouth is full of blood and his teeth are broken ... [[Donnie]]: My teeff ... My

teeef .... [[Jim Kurring]]: You ’re ok

Figure 2: Example questions (Q), gold (G) and extracted (E) answers, and local extraction contexts (C) for NQA
on full narrative texts. Correct (3), incorrect (7) or undecidable (?) answers.
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ble 6), with model predictions frequently para-
phrasing gold answers. Furthermore, incorrect an-
swer predictions are often still topically relevant
to the question, which highlights a need for mod-
els that go beyond word co-occurrence based prior
knowledge (as obtained through pre-trained em-
beddings like BERT).

Figure 1 displays example questions with gold
and model predicted answers from the summaries
as reference documents. Example Q1 shows a
case where the correct answer is conceptually sim-
ple and easily extractable. In examples Q2 and
Q3, answers are complex concepts as indicated by
the more verbose human and model-produced an-
swers. Still, the model predictions are correct in
both cases. For Example Q4 the model predic-
tion is incorrect, even though the predicted span
is clearly semantically related to the question.

We show questions with gold and model an-
swers based on passages from the full narrative
in Figure 2. We also include the local context
from which the model answer was extracted (the
full context is up to 500 sentences long). Exam-
ples Q5, Q6, Q10, Q11 and Q12 are predicted
correctly. Note that some predicted answers have
very little lexical overlap with the gold answer, al-
though the prediction is correct as supported by
the context. Example Q7 illustrates a case where
the model-predicted answer is wrong, however,
the proposed passage refers to a situation which
is similar to the correct answer (nearly escaping a
potentially deadly situation, rather than real death
of the same person). Example Q8 is a wrong pre-
diction, a result of confusing semantic roles of the
participants. Example Q9 seems to be correct,
however, from the context it is not clear whether
the extracted passage indeed refers to the morning
after brenda died. Example Q13 shows another
wrong prediction, however, the extracted context
is arguably semantically relevant to the query.

Overall, the error analysis suggests that purely
data-driven models tend to overly rely on surface
semantic similarity and local contexts. We also
find that automatic evaluation scores like BLEU
and METEOR, which rely on word overlap, are
overly conservative regarding the output of our
model. A series of recent papers discussed prob-
lems of comparing models on abstractive NLI
tasks using automatic metrics as the ones listed
above (Novikova et al., 2017; Chaganty et al.,
2018). While there is decent agreement between

human and automatic judgments on bad model
outputs, disagreements tend to be substantial on
good outputs. Our analysis provides further sup-
port for these observations.

8 Conclusion

Answering questions on the basis of long and
comples texts is a major challenge even for the
most advanced NLP methods. While the Narra-
tiveQA data set provides an excellent benchmark
for this task, it is comparatively small, and not
designed for developing extractive question an-
swering models, an arguably more straightforward
task compared to extractive Q&A. We heuris-
tically constructed an extractive summary-level
Q&A data set and showed that it can be used to
train accurate sentence- and span-level answer ex-
traction systems from summary text. We also ap-
plied our models to full book text and showed that
it outperforms IR-based retrieval systems when in-
corporated in a entity classification network.

On book-level QA, our model achieves com-
petitive METEOR results. Our results and er-
ror analysis suggest that pure word overlap-based
evaluation methods can lead to misleading results.
The model produced answers were often correct
despite lacking lexical overlap with the gold an-
swers. Word overlap-based methods like BLEU
or METEOR are agnostic of such hits. METEOR,
in contrast takes synonymy into account, and our
methods outperformed previous systems in this
metric. Our observation follows recent published
work on evaluating abstractive NLI systems (Cha-
ganty et al., 2018). Concurrently with improv-
ing NLI methodology, it is worth investing in the
development of evaluation methods that reflect
progress faithfully.

We believe that general, prior knowledge is nec-
essary for successful narrative understanding. We
incorporated prior knowledge through pre-trained
BERT embeddings, and used heuristic but inex-
pensive data for supervised training. We hope that
our approach opens up avenues for more sophis-
ticated data creation methods for future work, in-
cluding background knowledge and better models
of the full stories.
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