Let Me Know What to Ask: Interrogative-Word-Aware Question
Generation

Junmo Kang*

Haritz Puerto San Roman*

Sung-Hyon Myaeng

School of Computing, KAIST
Daejeon, Republic of Korea
{junmo.kang, haritzpuerto94, myaeng } @kaist.ac.kr

Abstract

Question Generation (QG) is a Natural Lan-
guage Processing (NLP) task that aids ad-
vances in Question Answering (QA) and con-
versational assistants. Existing models focus
on generating a question based on a text and
possibly the answer to the generated question.
They need to determine the type of interrog-
ative word to be generated while having to
pay attention to the grammar and vocabulary
of the question. In this work, we propose
Interrogative-Word-Aware Question Genera-
tion IWAQG), a pipelined system composed
of two modules: an interrogative word classi-
fier and a QG model. The first module pre-
dicts the interrogative word that is provided
to the second module to create the question.
Owing to an increased recall of deciding the
interrogative words to be used for the gener-
ated questions, the proposed model achieves
new state-of-the-art results on the task of QG
in SQuAD, improving from 46.58 to 47.69 in
BLEU-1, 17.55 to 18.53 in BLEU-4, 21.24 to
22.33 in METEOR, and from 44.53 to 46.94
in ROUGE-L.

1 Introduction

Question Generation (QG) is the task of creating
questions about a text in natural language. This
is an important task for Question Answering (QA)
since it can help create QA datasets. It is also use-
ful for conversational systems like Amazon Alexa.
Due to the surge of interests in these systems, QG
is also drawing the attention of the research com-
munity. One of the reasons for the fast advances
in QA capabilities is the creation of large datasets
like SQuAD (Rajpurkar et al., 2016) and TriviaQA
(Joshi et al., 2017). Since the creation of such
datasets is either costly if done manually or prone
to error if done automatically, reliable and mean-

*Equal contribution.

163

Q. Who produces a list
What, Where, -, Who of requirements for a project?

! !

! !
Passage

L—— Who produces a list
of requirements for a project,
giving an overall view
of the project’s goals.

Passage

produces a list
of requirements for a project,
giving an overall view
of the project’s goals.

Figure 1: High-level overview of the proposed model.

ingful QG can play a key role in the advances of
QA (Lewis et al., 2019).

QG is a difficult task due to the need for un-
derstanding of the text to ask about and generat-
ing a question that is grammatically correct and
semantically adequate according to the given text.
This task is considered to have two parts: what
to ask and how to ask. The first one refers to
the identification of relevant portions of the text
to ask about. This requires machine reading com-
prehension since the system has to understand the
text. The latter refers to the creation of a natu-
ral language question that is grammatically cor-
rect and semantically precise. Most of the current
approaches utilize sequence-to-sequence models,
composed of an encoder model that first trans-
forms a passage into a vector and a decoder model
that given this vector, generates a question about
the passage (Liu et al., 2019; Sun et al., 2018;
Zhao et al., 2018; Pan et al., 2019).

There are different settings for QG. Some au-
thors like (Subramanian et al., 2018) assumes that
only a passage is given, attempts to find candidate
key phrases that represent the core of the questions
to be created. Others follow an answer-aware set-
ting, where the input is a passage and the answer
to the question to create (Zhao et al., 2018). We
assume this setting and consider that the answer
is a span of the passage, as in SQuAD. Follow-

Proceedings of the Second Workshop on Machine Reading for Question Answering, pages 163—171
Hong Kong, China, November 4, 2019. (©2019 Association for Computational Linguistics

ing this approach, the decoder of the sequence-to-
sequence model has to learn to generate both the
interrogative word (i.e., wh-word) and the rest of
the question simultaneously.

The main claim of our work is that separating
the two tasks (i.e., interrogative-word classifica-
tion and question generation) can lead to a bet-
ter performance. We posit that the interrogative
word must be predicted by a well-trained classi-
fier. We consider that selecting the right inter-
rogative word is the key to generate high-quality
questions. For example, a question with a wrong
interrogative word for the answer “the owner”
is: “what produces a list of requirements for a
project?’. However, with the right interrogative
word, who, the question would be: “who produces
a list of requirements for a project?”, which is
clear that is more adequate regarding the answer
than the first one. According to our claim, the
independent classification model can improve the
recall of interrogative words of a QG model be-
cause 1) the interrogative word classification task
is easier to solve than generating the interroga-
tive word along with the full question in the QG
model and 2) the QG model would be able to gen-
erate the interrogative word easily by using the
copy mechanism, which can copy parts of the in-
put of the encoder. With these hypotheses, we
propose Interrogative-Word-Aware Question Gen-
eration (IWAQG), a pipelined system composed of
two modules: an interrogative-word classifier that
predicts the interrogative word and a QG model
that generates a question conditioned on the pre-
dicted interrogative word. Figure 1 shows a high-
level overview of our approach.

The proposed model achieves new state-of-the-
art results on the task of QG in SQuAD, improving
from 46.58 to 47.69 in BLEU-1, 17.55 to 18.53 in
BLEU-4, 21.24 to 22.33 in METEOR, and from
44.53 t0 46.94 in ROUGE-L.

2 Related Work

Question Generation (QG) problem has been ap-
proached in two ways. One is based on heuristics,
templates and syntactic rules (Heilman and Smith,
2010; Mazidi and Nielsen, 2014; Labutov et al.,
2015). This type of approach requires a heavy hu-
man effort, so they do not scale well. The other
approach is based on neural networks and it is be-
coming popular due to the recent progress of deep
learning in NLP (Pan et al., 2019). Du et al. (2017)

164

is the first one to propose an sequence-to-sequence
model to tackle the QG problem and outperformed
the previous state-of-the-art model using human
and automatic evaluations.

Sun et al. (2018) proposed a similar approach to
us, an answer-aware sequence-to-sequence model
with a special decoding mode in charge of only
the interrogative word. However, we propose to
predict the interrogative word before the encoding
stage, so that the decoder can focus more on the
rest of the question rather than on the interrogative
word. Besides, they cannot train the interrogative-
word classifier using golden labels because it is
learned implicitly inside the decoder. Duan et al.
(2017) proposed, in a similar way to us, a pipeline
approach. First, the authors create a long list of
question templates like “who is author of”, and
“who is wife of”’. Then, when generating the ques-
tion, they select first the question template and
next, they fill it in. To select the question template,
they proposed two approaches. One is a retrieval-
based question pattern prediction, and the second
one is a generation-based question pattern predic-
tion. The first one has the problem that is com-
putationally expensive when the question pattern
size is large, and the second one, although it yields
to better results, it is a generative approach and
we argue that just modeling the interrogative word
prediction as a classification task is easier and can
lead to better results. As far as we know, we are
the first one to propose an explicit interrogative-
word classifier that provides the interrogative word
to the question generator.

3 Interrogative-Word-Aware Question
Generation

3.1 Problem Statement

Given a passage P, and an answer A, we want to
find a question (), whose answer is A. More for-
mally:

Q = argmax Prob(Q|P, A)
Q

We assume that P is a paragraph composed of
a list of words: P = {x;}},, and the answer is a
subspan of P.

We model this problem with a pipelined ap-
proach. First, given P and A, we predict the in-
terrogative word I, and then, we input into QG
module P, A, and I,,. The overall architecture of
our model is shown in 2.

Interrogative Word

!

Raw Scores

al-al_n
I

Gated
Self-attention

!

CTETTT]

[CLS]

!

[ITTTT]

NER

iy Scores
la -

T Maxout

!

Bi-LSTM _— LSTM

Final Distribution

I-__llT--_. [|

Generative Scores

ol n Ban

I

Context

Output

!

— Passage
= Question Word

Yt

=— Answer
— <ANS> Tag

Interrogative-Word Classifier

Question Generator

Figure 2: Overall architecture of IWAQG.

3.2 Interrogative-Word Classifier

As discussed in section 5.2, any model can be used
to predict interrogative words if its accuracy is
high enough. Our interrogative-word classifier is
based on BERT, a state-of-the-art model in many
NLP tasks that can successfully utilize the context
to grasp the semantics of the words inside a sen-
tence (Devlin et al., 2018). We input a passage
that contains the answer of the question we want
to build and add the special token [ANS] to let
BERT knows that the answer span has a special
meaning and must be used differently to the rest
of the passage. As required by BERT, the first to-
ken of the input is the special token [CLS], and
the last is [SEP]. This [CLS] token embedding
originally was designed for classification tasks. In
our case, to classify interrogative words, it learns
how to represent the context and the answer infor-
mation.

On top of BERT, we build a feed-forward net-
work that receives as input the [CLS] token em-
bedding concatenated with a learnable embedding
of the entity type of the answer, as shown on the
left side of Figure 2. We propose to utilize the
entity type of the answer because there is a clear
correlation between the answer type of the ques-
tion and the entity type of the answer. For exam-
ple, if the interrogative word is who, the answer is
very likely to have an entity type person. Since we

165

are using [CLS] token embedding as a represen-
tation of the context and the answer, we consider
that using an explicit entity type embedding of the
answer could help the system.

3.3 Question Generator

For the QG module, we employ one of the current
state-of-the-art QG models (Zhao et al., 2018).
This model is a sequence-to-sequence neural net-
work that uses a gated self-attention in the encoder
and an attention mechanism with maxout pointer
in the decoder.

One way to connect the interrogative-word clas-
sifier to the QG model is to use the predicted in-
terrogative word as the first output token of the de-
coder by default. However, we cannot expect a
perfect interrogative-word classifier and also, the
first word of the questions is not necessarily an in-
terrogative word. Therefore, in this work, we add
the predicted interrogative word to the input of the
QG model to let the model decide whether to use
it or not. In this way, we can condition the gener-
ated question on the predicted interrogative word
effectively.

3.3.1 Encoder

The encoder is composed of a Recurrent Neural
Network (RNN), a self-attention network, and a
feature fusion gate (Gong and Bowman, 2018).
The goal of this fusion gate is to combine two

intermediate learnable features into the final en-
coded passage-answer representation. The input
of this model is the passage P. It includes the
answer and the predicted interrogative word I,
which is located just before the answer span. The
RNN receives the word embedding of the tokens
of this text concatenated with a learnable meta-
embedding that tags if the token is the interrog-
ative word, the answer of the question to generate
or the context of the answer.

3.3.2 Decoder

The decoder is composed of an RNN with an at-
tention layer and a copy mechanism (Gu et al.,
2016). The RNN of the decoder at time step ¢
receives its hidden state at the previous time step
t — 1 and the previously generated output y;_;.
At t = 0, it receives the last hidden state of the
encoder. This model combines the probability of
generating a word and the probability of copying
that word from the input as shown on the right side
of Figure 2. To compute the generative scores, it
uses the outputs of the decoder, and the context of
the encoder, which is based on the raw attention
scores. To compute the copy scores, it uses the
outputs of the RNN and the raw attention scores
of the encoder. Zhao et al. (2018) observed that
the repetition of words in the input sequence tends
to create repetitions in the output sequence too.
Thus, they proposed a maxout pointer mechanism
instead of the regular pointer mechanism (Vinyals
et al., 2015). This new pointer mechanism limits
the magnitude of the scores of the repeated words
to their maximum value. To do that, first, the atten-
tion scores are computed over the input sequence
and then, the score of a word at time step ¢ is cal-
culated as the maximum of all scores pointing to
the same word in the input sequence. The final
probability distribution is calculated by applying
the softmax function on the concatenation of copy
scores and generative scores and summing up the
probabilities pointing to the same words.

4 Experiments

In our experiments, we study our proposed system
on SQuAD dataset v1.1. (Rajpurkar et al., 2016),
prove the validity of our hypothesis and compare
it with the current state of the art.

4.1 Dataset

In order to train our interrogative-word classifier,
we use the training set of SQuAD v1.1 (Rajpurkar

166

et al., 2016). This dataset is composed of 87599
instances, however, the number of interrogative
words is not balanced as seen in 1. To train the
interrogative-word classifier, we downsample the
training set to have a balanced dataset.

Class | Original | After Downsampling
What | 50385 4000
Which | 6111 4000
Where 3731 3731
When 5437 4000
Who 9162 4000
Why 1224 1224
How 9408 4000
Others | 9408 4000

Table 1: SQuAD training set statistics. Full training set
and downsampled training set.

For a fair comparison with previous models, we
train the QG model on the training set of SQUAD
and split by half the dev set into dev and test ran-
domly as Zhou et al. (2017).

4.2 Implementation

The interrogative-word classifier is made using the
PyTorch implementation of BERT-base-uncased
made by HuggingFace'. It was trained for three
epochs using cross entropy loss as the objective
function. The entity types are obtained using
spaCy2. If spaCy cannot return an entity for a
given answer, we label it as None. The dimen-
sion of the entity type embedding is 5. The input
dimension of the classifier is 773 (768 from BERT
base hidden size and 5 from the entity type em-
bedding size) and the output dimension is 8 since
we predict the interrogative words: what, which,
where, when, who, why, how, and others. The
feed-forward network consists of a single layer.
For optimization, we used Adam optimizer with
weight decay and learning rate of 5e-5. The QG
model is based on the model proposed by (Zhao
et al., 2018) with small modifications using Py-
Torch. The encoder uses a BiILSTM and the de-
coder uses an LSTM. During training, the QG
model uses the golden interrogative words to en-
force the decoder to always copy the interrogative
word. On the other hand, during inference, it uses

"https://github.com/huggingface/
pytorch-transformers
https://spacy.io/

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
https://spacy.io/

the interrogative word predictions from the classi-
fier.

4.3 Evaluation

We perform an automatic evaluation using the
metrics: BLUE-1, BLUE-2, BLUE-3, BLUE-
4 (Papineni et al., 2002), METEOR (Lavie and
Denkowski, 2009) and ROUGE-L (Lin, 2004). In
addition, we perform a qualitative analysis where
we compare the generated questions of the base-
line (Zhao et al., 2018), our proposed model, the
upper bound performance of our model, and the
golden question.

5 Results

5.1 Comparison with Previous Models

Our interrogative-word classifier achieves an ac-
curacy of 73.8% on the test set of SQuAD. Us-
ing this model for the pipelined system, we com-
pare the performance of the QG model with re-
spect to the previous state-of-the-art models. Ta-
ble 2 shows the evaluation results of our model
and the current state-of-the-art models, which are
briefly described below.

e Zhou et al. (2017) is one of the first authors
who proposed a sequence-to-sequence model
with attention and copy mechanism. They
also proposed the use of POS and NER tags
as lexical features for the encoder.

Zhao et al. (2018) proposed the model in
which we based our QG module.

Kim et al. (2019) proposed QG architecture
that treats the passage and the target answer
separately.

e Liu et al. (2019) proposed a sequence-to-
sequence model with a clue word predic-
tor using a Graph Convolutional Networks to
identify if each word in the input passage is
a potential clue that should be copied into the
generated question.

Our model outperforms all other models in
all the metrics. This improvement is consistent,
around 2%. This is due to the improvement in
the recall of the interrogative words. All these
measures are based on the overlap between the
golden question and the generated question, so us-
ing the right interrogative word, we can improve

167

these scores. In addition, generating the right in-
terrogative word also helps to create better ques-
tions since the output of the RNN of the decoder
at time step ¢ also depends on the previously gen-
erated word.

5.2 Upper Bound Performance of IWAQG

We analyze the upper bound improvement that our
QG model can have according to different levels
of accuracy of the interrogative-word classifier. In
order to do that, instead of using our interrogative-
word classifier, we use the golden labels of the
test set and generated noise to simulate a classi-
fier with different accuracy levels. Table 3 and
Figure 3 show a linear relationship between the
accuracy of the classifier and the IWAQG. This
demonstrates the effectiveness of our pipelined ap-
proach regardless of the interrogative-word classi-
fier model.

50 //
— BLEU-1
— BLEU-2
— BLEU-3
= BLEU-4
— METEOR
ROUGE-L

40

o

30

/
20/—/_

70%

Performance of the IWAQG

60% 73.8% 80% 90% 100%

Accuracy of the Interrogative-Word Classifier

Figure 3: Performance of the QG model with respect to
the accuracy of the interrogative-word classifier.

In addition, we analyze the recall of the inter-
rogative words generated by our pipelined system.
As shown in the Table 4, the total recall of using
only the QG module is 68.29%, while the recall
of our proposed system, IWAQG, is 74.10%, an
improvement of almost 6%. Furthermore, if we
assume a perfect interrogative-word classifier, the
recall would be 99.72%, a dramatic improvement
which proves the validity of our hypothesis.

5.3 Effectiveness of the input of interrogative
words into the QG model

In this section, we show the effectiveness of insert-
ing explicitly the predicted interrogative word into
the passage. We argue that this simple way of con-
necting the two models exploits the characteristics
of the copy mechanism successfully. As we can

Model BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE-L
Zhou et al. (2017) - - - 13.29 - -
Zhao et al. (2018)* 45.69 29.58 22.16 16.85 20.62 44.99
Kim et al. (2019) - - - 16.17 - -
Liu et al. (2019) 46.58 30.90 22.82 17.55 21.24 44.53
IWAQG 47.69 32.24 24.01 18.53 22.33 46.94
Table 2: Comparison of our model with the baselines. “*” is our QG module.
Accuracy BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE-L
Only QG* 45.63 30.43 22.51 17.30 21.06 45.42
60% 45.80 30.61 22.57 17.30 21.47 44.70
70% 47.05 31.62 23.46 18.05 22.00 45.88
IWAQG (73.8%) 47.69 32.24 24.01 18.53 22.33 46.94
80% 48.11 32.36 24.00 18.42 22.43 47.22
90% 49.33 33.43 2491 19.20 22.98 48.41
Upper Bound (100%) | 50.51 34.28 25.60 19.75 23.45 49.65

Table 3: Performance of the QG model with respect to the accuracy of the interrogative-word classifier. “*” is our
implementation of the QG module without our interrogative-word classifier (Zhao et al., 2018).

see in Figure 4, the attention score of the gener-
ated interrogative word, who, is relatively high for
the predicted interrogative word and lower for the
other words. This means that it is very likely that
the interrogative word inserted into the passage is
copied as intended.

produces
requirements

who
the
owner
a

list
of

who
produces

a

list

of
requirements
for

a

project

?

Figure 4: Attention matrix between the generated ques-
tion (Y-axis) and the given passage (X-axis).

5.4 Qualitative Analysis

In this section, we present a sample of the gen-
erated questions of our model, the upper bound
model (interrogative-word classifier accuracy is
100%), the baseline (Zhao et al., 2018), and the
golden questions to show how our model improves
the recall of the interrogative words with respect to
the baseline. In general, our model has a better re-
call of interrogative words than the baseline which
leads us to a better quality of questions. However,

since we are still far from a perfect interrogative-
word classifier, we also show that questions that
our current model cannot generate correctly could
be generated well if we had a better classifier.

As we can see in Table 5, in the first three ex-
amples the interrogative words generated by the
baseline are wrong, while our model is right. In
addition, due to the wrong selection of interroga-
tive words, in the second example, the topic of the
question generated by the baseline is also wrong.
On the other hand, since our model selects the
right interrogative word, it can create the right
question. Each generated word depends on the
previously generated word because of the gener-
ative LSTM model, so it is very important to se-
lect correctly the first word, i.e. the interrogative
word. However, the performance of our proposed
interrogative-word classifier is not perfect, if it had
a 100% accuracy, then, we could improve the qual-
ity of the generated questions like in the last two
examples.

5.5 Ablation Study

We tried to combine different features shown in
Table 6 for the interrogative-word classifier. In
this section, we analyze their impact on the per-
formance of the model.

The first model is only using the [CLS] BERT
token embedding (Devlin et al., 2018) that repre-
sents the input passage. In this model, the input

168

Model What | Which | Where When Who Why How Others Total
Only QG* | 82.24% | 0.29% | 51.90% | 60.82% | 68.34% | 12.66% | 60.62% | 2.13% | 68.29%
IWAQG 87.66% | 1.46% | 66.24% | 49.41% | 76.41% | 50.63% | 70.26% | 14.89% | 74.10%
Upper Bound | 99.87% | 99.71% | 100.00% | 99.71% | 99.84% | 98.73% | 99.67% | 89.36% | 99.72%

Table 4: Recall of interrogative words of the QG model. “*” is our implementation of the QG module without our

interrogative-word classifier (Zhao et al., 2018).

is the passage where the answer appears but, the
model does not know where the answer is. The
second model is the previous one with the entity
type of the answer as an additional feature. The
performance of this model is a bit better than the
first one but it is not enough to be utilized effec-
tively for our pipeline. In the third model, the
input is the passage. This model uses the av-
erage of the answer token embeddings generated
by BERT along with the [CLS] token embed-
ding. As we can see, the performance noticeably
increased, which indicates that answer informa-
tion is the key to predict the interrogative word
needed. In the fourth model, we added the spe-
cial token [ANS] at the beginning and at the end
of the answer span to let BERT knows where the
answer is in the passage. So the input to the feed-
forward network is only the [CLS] token embed-
ding. This model clearly outperforms the previ-
ous one, which shows that BERT can exploit the
answer information better if it is tagged with the
[ANS] token. The fifth model is the same as the
previous one but with the addition of the entity-
type embedding of the answer. The combination
of the three features (answer, answer entity type,
and passage) yields to the best performance.

Classifier Accuracy
CLS 56.0%
CLS + NER 56.6%
CLS + AE 70.3%
CLS + AT 73.3%
CLS + AT + NER | 73.8%

Table 6: Ablation Study of our interrogative-word clas-
sifier.

In addition, we provide the recall and precision
per class for our final interrogative-word classifier
(CLS + AT in Table 7). As we can see, the overall
recall is high, and it is also higher than just using
the QG module (Table 4), which proves our hy-
pothesis that modeling the interrogative-word pre-
diction task as an independent classification prob-
lem yields to a higher recall than generating them

with the full question. However, the recall of
which is very low. This is due to the intrinsic diffi-
culty of predicting this interrogative words. Ques-
tions like “what country” and “which country” can
be correct depending on the context, but the mean-
ing is very similar. Our model has also problem
with why due to the lack of training instances for
this class. Lastly, the recall of ‘when is also low
because many questions of this type can be formu-
lated with other interrogative words, e.g.: instead
of “When did WWII start?”, we can ask “In which
year did WWII start?”.

Class | Recall | Precision
What | 87.7% 76.0%
Which | 1.4% 38.0%
Where | 65.9% 55.8%
When | 49.2% 69.8%
Who | 76.9% 66.7%
Why | 50.1% 74.1%
How | 70.5% 79.0%
Others | 10.5% 57.0%

Table 7: Recall and precision of interrogative words of
our interrogative-word classifier.

6 Conclusion and Future Work

In this work, we proposed an Interrogative-Word-
Aware Question Generation (IWAQG), a pipelined
model composed of an interrogative-word classi-
fier and a question generator to tackle the ques-
tion generation task. First, we predict the inter-
rogative word. Then, the Question Generation
(QG) model generates the question using the pre-
dicted interrogative word. Thanks to this inde-
pendent interrogative-word classifier and the copy
mechanism of the question generation model, we
are able to improve the recall of the interrogative
words in the generated questions. This improve-
ment also leads to a better quality of the gener-
ated questions. We prove our hypotheses through
quantitative and qualitative experiments, showing
that our pipelined system outperforms the previous
state-of-the-art models. Lastly, we also prove that

169

id Only QG* IWAQG Upper Bound Golden Answer
who produces a
list of require-
what produces who produces a who produces a d
. ments for a
a list of require- list of require- list of require- . ..
1 project, giving The owner
ments for a ments for a ments for a .
roject? project? project? an_overall view
project: ' ' of the project’s
goals?
how many tun- what type of
y what type of tun- what type of tun- P
nels were con- tunnels are con-
nels constructed nels constructed deep-level
2 structed through structed through
; through newcas- through newcas- . tunnels
newcastle city . . newcastle ’s city
tle city centre? tle city centre ?
centre? center?
who received a what received a what received a what received a
3 battering during battering during battering during battering during The church
the siege of new- the siege of new- the siege of new- the siege of new- tower
castle? castle ? castle ? castle?
what system is what system is how is newcastle . , .
. how is newport’s via the
newcastle inter- newcastle inter- international air- . .
4 airport connected Metro Light
national airport national airport port connected to . .
to the city? Rail system
connected to? connected to? ?
who was the what country which country . .
which country is
country most was the most was the most
5 the most depen- Japan
dependent on dependent on dependent O ienton arab oil?
arab oil? arab oil? arab oil? ’

Table 5: Qualitative Analysis. Comparison between the baseline, our proposed model, the upper bound of our
model, the golden question and the answer of the question. “*” is our implementation of the QG module without

our interrogative-word classifier (Zhao et al., 2018).

our methodology is remarkably effective, show-
ing a theoretical upper bound of the potential im-
provement using a more accurate interrogative-
word classifier.

In the future, we would like to improve the
interrogative-word classifier, since it would clearly
improve the performance of the whole system
as we showed. We also expect that the use of
the Transformer architecture(Vaswani et al., 2017)
could improve the QG model. In addition, we plan
to test our approach on other datasets to prove its
generalization capability. Finally, an interesting
application of this work could be to utilize QG to
improve Question Answering systems.

Acknowledgements

This research was supported by Next-Generation
Information Computing Development Program

170

through the National Research Foundation of Ko-
rea (NRF) funded by the Ministry of Science and
ICT (2017M3C4A7065962).

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. In Association for Computational
Linguistics (ACL).

Nan Duan, Duyu Tang, Peng Chen, and Ming Zhou.
2017. Question generation for question answering.
In EMNLP.

Yichen Gong and Samuel Bowman. 2018. Ruminat-
ing reader: Reasoning with gated multi-hop atten-
tion. In Proceedings of the Workshop on Machine

https://doi.org/10.18653/v1/W18-2601
https://doi.org/10.18653/v1/W18-2601
https://doi.org/10.18653/v1/W18-2601

Reading for Question Answering, pages 1-11, Mel-
bourne, Australia. Association for Computational
Linguistics.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers).

Michael Heilman and Noah A. Smith. 2010. Good
question! statistical ranking for question genera-
tion. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 609-617, Los Angeles, California. Associa-
tion for Computational Linguistics.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers).

Yanghoon Kim, Hwanhee Lee, Joongbo Shin, and Ky-
omin Jung. 2019. Improving neural question gen-
eration using answer separation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6602—-6609.

Igor Labutov, Sumit Basu, and Lucy Vanderwende.
2015. Deep questions without deep understanding.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing, pages 889-898.

Alon Lavie and Michael J. Denkowski. 2009. The
meteor metric for automatic evaluation of machine
translation. Machine Translation, 23(2-3):105-115.

Patrick Lewis, Ludovic Denoyer, and Sebastian Riedel.
2019. Unsupervised question answering by cloze
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers).

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74-81, Barcelona, Spain.
Association for Computational Linguistics.

Bang Liu, Mingjun Zhao, Di Niu, Kunfeng Lai,
Yancheng He, Haojie Wei, and Yu Xu. 2019. Learn-
ing to generate questions by learningwhat not to gen-
erate. In The World Wide Web Conference, WWW
’19, pages 1106-1118, New York, NY, USA. ACM.

Karen Mazidi and Rodney Nielsen. 2014. Linguistic
considerations in automatic question generation. In
52nd Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2014 - Proceedings of the
Conference, volume 2.

171

Liangming Pan, Wengiang Lei,
and Min-Yen Kan. 2019.
in neural question generation.
arXiv:1905.08949.

Tat-Seng Chua,
Recent advances
arXiv preprint

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL °02, pages 311-318,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing.

Sandeep Subramanian, Tong Wang, Xingdi Yuan,
Saizheng Zhang, Adam Trischler, and Yoshua Ben-
gio. 2018. Neural models for key phrase extrac-
tion and question generation. In Proceedings of
the Workshop on Machine Reading for Question An-
swering, pages 78-88.

Xingwu Sun, Jing Liu, Yajuan Lyu, Wei He, Yan-
jun Ma, and Shi Wang. 2018. Answer-focused and
position-aware neural question generation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3930—
3939, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998-6008.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems, pages 2692—-2700.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa
Ke. 2018. Paragraph-level neural question gener-
ation with maxout pointer and gated self-attention
networks. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 3901-3910.

Qingyu Zhou, Nan Yang, Furu Wei, Chuangi Tan,
Hangbo Bao, and Ming Zhou. 2017. Neural ques-
tion generation from text: A preliminary study. In
NLPCC.

https://doi.org/10.18653/v1/p16-1154
https://doi.org/10.18653/v1/p16-1154
https://www.aclweb.org/anthology/N10-1086
https://www.aclweb.org/anthology/N10-1086
https://www.aclweb.org/anthology/N10-1086
https://doi.org/10.18653/v1/p17-1147
https://doi.org/10.18653/v1/p17-1147
https://doi.org/10.18653/v1/p17-1147
https://doi.org/10.3115/v1/P15-1086
https://doi.org/10.1007/s10590-009-9059-4
https://doi.org/10.1007/s10590-009-9059-4
https://doi.org/10.1007/s10590-009-9059-4
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.1145/3308558.3313737
https://doi.org/10.1145/3308558.3313737
https://doi.org/10.1145/3308558.3313737
https://doi.org/10.3115/v1/P14-2053
https://doi.org/10.3115/v1/P14-2053
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/D18-1427
https://doi.org/10.18653/v1/D18-1427

