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Abstract

We share a French-English parallel corpus of
Foursquare restaurant reviews, and define a
new task to encourage research on Neural Ma-
chine Translation robustness and domain adap-
tation, in a real-world scenario where better-
quality MT would be greatly beneficial. We
discuss the challenges of such user-generated
content, and train good baseline models that
build upon the latest techniques for MT robust-
ness. We also perform an extensive evaluation
(automatic and human) that shows significant
improvements over existing online systems. Fi-
nally, we propose task-specific metrics based
on sentiment analysis or translation accuracy
of domain-specific polysemous words.

1 Introduction

Very detailed information about social venues such
as restaurants is available from user-generated re-
views in applications like Google Maps, TripAd-
visor or Foursquare1 (4SQ). Most of these reviews
are written in the local language and are not di-
rectly exploitable by foreign visitors: an analysis of
the 4SQ database shows that, in Paris, only 49% of
the restaurants have at least one review in English,
and the situation can be much worse for other cities
and languages (e.g., only 1% of Seoul restaurants
for a French-only speaker).

Machine Translation of such user-generated
content can improve the situation and make the
data available for direct display or for down-
stream NLP tasks (e.g., cross-lingual information
retrieval, sentiment analysis, spam or fake review
detection), provided its quality is sufficient.

We asked professionals to translate 11.5k French
4SQ reviews (18k sentences) to English. We be-
lieve that this resource’ will be valuable to the

"https://foursquare.com/

’https://europe.naverlabs.com/

research/natural-language-processing/
machine-translation-of-restaurant-reviews/
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community for training and evaluating MT systems
addressing challenges posed by user-generated
content, which we discuss in detail in this paper.

We conduct extensive experiments and combine
techniques that address these challenges (e.g., fac-
tored case, noise generation, domain adaptation
with tags) on top of a strong Transformer baseline.
In addition to BLEU evaluation and human evalua-
tion, we use targeted metrics that measure how well
polysemous words are translated, or how well sen-
timents expressed in the original review can still be
recovered from its translation.

2 Related work

Translating restaurant reviews written by casual
customers presents several challenges for NMT, in
particular robustness to non-standard language and
adaptation to a specific style or domain (see Sec-
tion 3.2 for details).

Concerning robustness to noisy user generated
content, Michel and Neubig (2018) stress differ-
ences with traditional domain adaptation prob-
lems, and propose a typology of errors, many of
which we also detected in the 4SQ data. They also
released a dataset (MTNT), whose sources were
selected from a social media (Reddit) on the ba-
sis of being especially noisy (see Appendix for a
comparison with 45Q). These sources were then
translated by humans to produce a parallel corpus
that can be used to engineer more robust NMT sys-
tems and to evaluate them. This corpus was the
basis of the WMT 2019 MT Robustness Task (Li
et al., 2019), in which Berard et al. (2019) ranked
first. We use the same set of robustness and do-
main adaptation techniques, which we study more
in depth and apply to our review translation task.

Sperber et al. (2017), Belinkov and Bisk (2018)
and Karpukhin et al. (2019) propose to improve
robustness by training models on data-augmented
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corpora, containing noisy sources obtained by ran-
dom word or character deletions, insertions, substi-
tutions or swaps. Recently, Vaibhav et al. (2019)
proposed to use a similar technique along with
noise generation through replacement of a clean
source by one obtained by back-translation.

We employ several well-known domain adapta-
tion techniques: back-translation of large monolin-
gual corpora close to the domain (Sennrich et al.,
2016b; Edunov et al., 2018), fine-tuning with in-
domain parallel data (Luong and Manning, 2015;
Freitag and Al-Onaizan, 2016; Servan et al., 2016),
domain tags for knowledge transfer between do-
mains (Kobus et al., 2017; Berard et al., 2019).

Addressing the technical issues of robustness
and adaptation of an NMT system is decisive for
real-world deployment, but evaluation is also crit-
ical. This aspect is stressed by Levin et al. (2017)
(NMT of curated hotel descriptions), who point out
that automatic metrics like BLEU tend to neglect
semantic differences that have a small textual foot-
print, but may be seriously misleading in practice,
for instance by interpreting available parking as if
it meant free parking. To mitigate this, we conduct
additional evaluations of our models: human eval-
uation, translation accuracy of polysemous words,
and indirect evaluation with sentiment analysis.

3 Task description

We present a new task of restaurant review trans-
lation, which combines domain adaptation and ro-
bustness challenges.

3.1 Corpus description

We sampled 11.5k French reviews from 4SQ,
mostly in the food category,® split them into sen-
tences (18k), and grouped them into train, valid
and test sets (see Table 1). The French reviews
contain on average 1.5 sentences and 17.9 words.
Then, we hired eight professional translators to
translate them to English. Two of them cre-
ated the training set by post-editing (PE) the out-
puts of baseline NMT systems.* The other six
translated the valid and test sets from scratch.
They were asked to translate (or post-edit) the re-
views sentence-by-sentence (to avoid any align-
ment problem), but they could see the full con-

*https://developer.foursquare.com/docs/
resources/categories

*ConvS2S or Transformer Big trained on the “UGC” cor-
pus described in Section 6, without domain adaptation or ro-
bustness tricks.

169

Corpus ‘ Sentences Reviews Words (FR)
4SQ-PE 12080 8004 141958
4SQ-HT 2784 1625 29075
4SQ-valid 1243 765 13976
4SQ-test 1838 1157 21525

Table 1: 4SQ corpora. 4SQ-PE is the training set. 4SQ-
HT is not used in this work.

text. We manually filtered the test set to remove
translations that were not satisfactory. The full re-
views and additional metadata (e.g., location and
type of the restaurant) are also available as part of
this resource, to encourage research on contextual
machine translation. 4SQ-HT was translated from
scratch by the same translators who post-edited
4SQ-PE. While we did not use it in this work, it
can be used as extra training or development data.
We also release a human translation of the French-
language test set (668 sentences) of the Aspect-
Based Sentiment Analysis task at SemEval 2016
(Pontiki et al., 2016).

3.2 Challenges

Translating restaurant reviews presents two main
challenges compared to common tasks in MT.
First, the reviews are written in a casual style, close
to spoken language. Some liberty is taken w.r.t.
spelling, grammar, and punctuation. Slang is also
very frequent. MT should be robust to these vari-
ations. Second, they generally are reactions, by
clients of a restaurant, about its food quality, ser-
vice or atmosphere, with specific words relating to
these aspects or sentiments. These require some
degree of domain adaptation. The following table
illustrates these issues, with outputs from an online
MT system. Examples of full reviews from 4SQ-
PE along with metadata are shown in Appendix.

éqdgvusa... (source)
(1) and when I saw that ... (reference)
€ qd g seen his ... (online MT)

c’est trooop bon !
it’s toooo good!
it’s good trooop!

@

le cadre est nul
the setting is lousy
the frame is null

3

le garcon a pété un cable
the waiter went crazy
the boy farted a cable

“

pizza nickel, tres bonnes pattes
great pizza, very good pasta
nickel pizza, very good legs

)


https://developer.foursquare.com/docs/resources/categories
https://developer.foursquare.com/docs/resources/categories

Examples 1 and 2 fall into the robustness cat-
egory: 1 is an extreme form of SMS-like, quasi-
phonetic, language (et quand j’ai vu ¢ca); 2 is a lit-
eral transcription of a long-vowel phonetic stress
(trop — trooop). Example 3 falls into the domain
category: in a restaurant context, cadre typically
refers to the setting. Examples 4 and 5 involve both
robustness and domain adaptation: péré un cable is
a non-compositional slang expression and garcon
is not a boy in this domain; nickel is slang for great,
trés is missing an accent, and pdtes is misspelled as
pattes, which is another French word.

Regarding robustness, we found many of the
same errors listed by Michel and Neubig (2018)
as noise in social media text: SMS language (é
qd g vu sa), typos and phonetic spelling (pattes),
repeated letters (trooop, merciiii), slang (nickel,
bof, mdr), missing or wrong accents (fres), emoti-
cons (“:-)’) and emojis (®), missing punctua-
tion, wrong or non-standard capitalization (lower-
case proper names, capitalized words for empha-
sis). Regarding domain aspects, there are polyse-
mous words with typical specific meaning carte —
map, menu; cadre — frame, executive, setting), id-
iomatic expressions (a tomber par terre — to die
for), and venue-related named entities (La Boite a
Sardines).

4 Robustness to noise

We propose solutions for dealing with non-
standard case, emoticons, emojis and other issues.

4.1 Rare character placeholder

We segment our training data into subwords with
BPE (Sennrich et al., 2016¢), implemented in Sen-
tencePiece (Kudo and Richardson, 2018). BPE can
deal with rare or unseen words by splitting them
into more frequent subwords but cannot deal with
unseen characters.” While this is not a problem in
most tasks, 4SQ contains a lot of emojis, and some-
times symbols in other scripts (e.g., Arabic). Uni-
code now defines around 3k emojis, most of which
are likely to be out-of-vocabulary.

We replace rare characters on both sides of the
training corpus by a placeholder (<x>); a model
trained on this data is typically able to copy the
placeholder at the correct position. Then, at in-
ference time, we replace the output tokens <x>
by the rare source-side characters, in the same or-

3Unless actually doing BPE at the byte level, as suggested
by Radford et al. (2019).
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Uppercase Lowercase

Input UNE HONTE ! une honte !
Pre-proc UNE HONTE _! wune _honte _!
MToutput A HONE Y ! A _dis gra ce !
Post-proc A HONEY'! A disgrace!

Table 2: Capital letters break NMT. BPE segmentation
and translation of capitalized or lowercase input.

der. This approach is similar to that of Jean et al.
(2015), who used the attention mechanism to re-
place output UNK symbols with the aligned word in
the source. Berard et al. (2019) used the same tech-
nique to deal with emojis in the WMT robustness
task.

4.2 Capital letters

As shown in Table 2, capital letters are another
source of confusion. HONTE and honte are con-
sidered as two different words. The former is
out-of-vocabulary and is split very aggressively by
BPE. This causes the MT model to hallucinate.

Lowercasing A solution is to lowercase the in-
put, both at training and at test time. However,
when doing so, some information may be lost (e.g.,
named entities, acronyms, emphasis) which may
result in lower translation quality.

Factored translation Levin et al. (2017) do fac-
tored machine translation (Sennrich and Haddow,
2016; Garcia-Martinez et al., 2016) where a word
and its case are split in two different features. For
instance, HONTE becomes honte + upper.

We implement this with two embedding matri-
ces, one for words and one for case, and repre-
sent a token as the sum of the embeddings of its
factors. For the target side, we follow Garcia-
Martinez et al. (2016) and have two softmax op-
erations. We first predict the word in its lowercase
form and then predict its case.® The embeddings
of the case and word are then summed and used as
input for the next decoder step.

Inline casing Berard et al. (2019) propose an-
other approach, inline casing, which does not re-
quire any change in the model. We insert the case
as a regular token into the sequence right after the
word. Special tokens <U>, <L> and <T> (upper,
lower and title) are used for this purpose and ap-
pended to the vocabulary. Contrary to the previous

SLike the “dependency model” of Garcia-Martinez et al.
(2016), we use the current state of the decoder and the embed-
ding of the output word to predict its case.



solution, there is only one embedding matrix and
one softmax.

In practice, words are assumed to be lowercase
by default and the <L> tokens are dropped to keep
the factored sequences as short as possible. “Best
fries EVER” becomes “best <T> _f ries _ever
<U>". Like Berard et al. (2019), we force Senten-
cePiece to split mixed-case words like MacDon-
alds into single-case subwords (Mac and Donalds).

Synthetic case noise Another solution that we
experiment with (see Section 6) is to inject noise
on the source side of the training data by changing
random source words to upper (5% chance), title
(10%) or lower case (20%).

4.3 Natural noise

One way to make an NMT system more robust is to
train it with some of the most common errors that
can be found in the in-domain data. Like Berard
et al. (2019), we detect the errors that occur nat-
urally in the in-domain data and then apply them
to our training corpus, while respecting their natu-
ral distribution. We call this “natural noise gen-
eration” in opposition to what is done in (Sper-
ber et al., 2017; Belinkov and Bisk, 2018; Vaibhav
et al., 2019) or in Section 4.2, where the noise is
more synthetic.

Detecting errors We compile a general-purpose
French lexicon as a transducer,” implemented to be
traversed with extended edit distance flags, similar
to Mihov and Schulz (2004). Whenever a word is
not found in the lexicon (which means that it is a
potential spelling mistake), we look for a French
word in the lexicon within a maximum edit dis-
tance of 2, with the following set of edit operations:

M
@

deletion (e.g., apelle instead of appelle)

insertion (e.g.,
apercevoir)

appercevoir instead of

3

constrained substitution on diacritics (e.g.,
mange instead of mangé)

(4) swap counted as one operation: (e.g.,
mnager instead of manger)
(5) substitution (e.g., menger instead of

manger)

(6)  repetitions (e.g., Merciiiii

of max 10 repetitions)

We apply the transducer to the French monolin-
gual Foursquare data (close to 1M sentences) to
detect and count noisy variants of known French
words. This step produces a dictionary mapping

"In Tamgu: https://github.com/naver/tamgu
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the correct spelling to the list of observed errors
and their respective frequencies.

In addition to automatically extracted spelling
errors, we extract a set of common abbreviations
from (Seddah et al., 2012) and we manually iden-
tify a list of common errors in French:

(7)  Wrong verb endings (e.g., il a manger in-
stead of il a mangé)
(8)  Wrong spacing around punctuation symbols
(e.g., Les.plats ... instead of Les plats...)
(9)  Upper case/mixed case words (e.g., manQue
de place instead of manque de place)
(10)  SMS language (e.g., bcp instead of beau-

coup)

Phonetic spelling (e.g., sa instead of ¢a)

an

Generating errors With this dictionary, de-
scribing the real error distribution in 4SQ text, we
take our large out-of-domain training corpus, and
randomly replace source-side words with one of
their variants (rules 1 to 6), while respecting the
frequency of this variant in the real data. We also
manually define regular expressions to randomly
apply rules 7to 11 (e.g., "er "—"é& ").

We obtain a noisy parallel corpus (which we use
instead of the “clean” training data), where about
30% of all source sentences have been modified, as
shown below:

Error type  Examples of sentences with injected noise
(1) (6) (9) L'Union eUropéene espere que la réunion
de suiviii entre le Président [...]
(2) (3) (10) Le Comité notte avec bep d’interet k les
projets d’articles [...]
(4) (7) (8) Réunoin sur.la comptabiliter nationale [...]

S Domain Adaptation

To adapt our models to the restaurant review do-
main we apply the following types of techniques:
back-translation of in-domain English data, fine-
tuning with small amounts of in-domain parallel
data, and domain tags.

5.1 Back-translation

Back-translation (BT) is a popular technique for
domain adaptation when large amounts of in-
domain monolingual data are available (Sennrich
et al., 2016b; Edunov et al., 2018). While our
in-domain parallel corpus is small (12k pairs),
Foursquare contains millions of English-language
reviews. Thus, we train an NMT model® in the re-
verse direction (EN—FR) and translate all the 4SQ

8Like the “UGC” model with rare character handling and
inline case described in Section 6.3.


https://github.com/naver/tamgu

English reviews to French.? This gives a large syn-
thetic parallel corpus.

This in-domain data is concatenated to the out-
of-domain parallel data and used for training.

Edunov et al. (2018) show that doing back-
translation with sampling instead of beam search
brings large improvements due to increased diver-
sity. Following this work, we test several settings:

Corpus tag ~ SRC: La carte est trop petite.
TED The map is too small.
Multi-UN The card is too small.
PE The menu is too small.
Figure 1: Example of ambiguous source sentence,

where using corpus tags help the model pick a more ad-
equate translation.

Name Description Corpus ‘ Lines ‘ Words (FR) ‘ Words (EN)
BT-B  Back-translation with beam search. WMT | 29.47M 1 003M 883.5M
BT-S  Back-translation with sampling. uGC 51.39M 1 125M 1 04IM
BT-S x 3 Three different FR samplings for each EN Table 3: Size of the WMT and UGC training corpora
sentence. This brings the size of the back- (after filtering).
translated 4SQ closer to the out-of-domain
corpus.
BT No oversampling, but we sample a new ver-

sion of the corpus for each training epoch.

We use a temperature!” of 7' = ﬁ to avoid the
extremely noisy output obtained with 7" = 1 and
strike a balance between quality and diversity.

5.2 Fine-tuning

When small amounts of in-domain parallel data are
available, fine-tuning (FT) is often the preferred
solution for domain adaptation (Luong and Man-
ning, 2015; Freitag and Al-Onaizan, 2016). It con-
sists in training a model on out-of-domain data,
and then continuing its training for a few epochs
on the in-domain data only.

5.3 Corpus tags

Kobus et al. (2017) propose a technique for multi-
domain NMT, which consists in inserting a to-
ken in each source sequence specifying its domain.
The system can learn the particularities of multiple
domains (e.g., polysemous words that have a dif-
ferent meaning depending on the domain), which
we can control at test time by manually setting the
tag. Sennrich et al. (2016a) also use tags to control
politeness in the model’s output.

As our corpus (see Section 6.1) is not clearly di-
vided into domains, we apply the same technique
as Kobus et al. (2017) but use corpus tags (each
sub-corpus has its own tag: TED, Paracrawl, etc.)
which we add to each source sequence. Like in
(Berard et al., 2019), the 4SQ post-edited and back-
translated data also get their own tags (PE and BT).

This represents ~15M sentences. This corpus is not
available publicly, but the Yelp dataset (https://www.
yelp.com/dataset) could be used instead.

IOWith p(wz) — exp(z;/T)

V]
o ean(ai/T)
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Figure 1 gives an example where using the PE cor-
pus tag at test time helps the model pick a more
adequate translation.

6 Experiments

6.1 Training data

After some initial work with the WMT 2014 data,
we built a new training corpus named UGC (User
Generated Content), closer to our domain, by
combining: Multi UN, OpenSubtitles, Wikipedia,
Books, Tatoeba, TED talks, ParaCrawl!! and
Gourmet'? (See Table 3). Notably, UGC does not
include Common Crawl (which contains a lot of
misaligned sentences and caused hallucinations),
but it includes OpenSubtitles (Lison and Tiede-
mann, 2016) (spoken-language, possibly closer to
4SQ). We observed an improvement of more than 1
BLEU on news-test 2014 when switching to UGC,
and almost 6 BLEU on 4SQ-valid.

6.2 Pre-processing

We use langid.py (Lui and Baldwin, 2012) to fil-
ter sentence pairs from UGC. We also remove du-
plicate sentence pairs, and lines longer than 175
words or with a length ratio greater than 1.5 (see
Table 3). Then we apply SentencePiece and our
rare character handling strategy (Section 4.1). We
use a joined BPE model of size 32k, trained on the
concatenation of both sides of the corpus, and set
SentencePiece’s vocabulary threshold to 100. Fi-
nally, unless stated otherwise, we always use the
inline casing approach (see Section 4.2).

"' Corpora available at http://opus.nlpl.eu/
123k translations of dishes and other food terminology
http://wuw.gourmetpedia.eu/
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6.3 Model and settings

For all experiments, we use the Transformer Big
(Vaswani et al., 2017) as implemented in Fairseq,
with the hyperparameters of Ott et al. (2018).
Training is done on 8 GPUs, with accumulated gra-
dients over 10 batches (Ott et al., 2018), and a max
batch size of 3500 tokens (per GPU). We train for
20 epochs, while saving a checkpoint every 2500
updates (=~ % epoch on UGC) and average the 5
best checkpoints according to their perplexity on a
validation set (a held-out subset of UGC).

For fine-tuning, we use a fixed learning rate, and
a total batch size of 3500 tokens (training on a
single GPU without delayed updates). To avoid
overfitting on 4SQ-PE, we do early stopping ac-
cording to perplexity on 4SQ-valid.!* For each
fine-tuned model we test all 16 combinations of
dropout in {0.1,0.2,0.3,0.4} and learning rate in
{1,2,5,10} x 10~°. We keep the model with the
best perplexity on 4SQ-valid.'*

6.4 Evaluation methodology

During our work, we used BLEU (Papineni et al.,
2002) on news-valid (concatenation of news-test
2012 and 2013) to ensure that our models stayed
good on a more general domain, and on 45Q-valid
to measure performance on the 4SQ domain.

For sake of brevity, we only give the final BLEU
scores on news-test 2014 and 4SQ-test. Scores on
4SQ-valid, and MTNT-test (for comparison with
Michel and Neubig, 2018; Berard et al., 2019) are
given in Appendix. We evaluate “detokenized”
MT outputs'> against raw (non-tokenized) refer-
ences using SacreBLEU (Post, 2018).16

In addition to BLEU, we do an indirect eval-
uation on an Aspect-Based Sentiment Analysis
(ABSA) task, a human evaluation, and a task-
related evaluation based on polysemous words.

6.5 BLEU evaluation

Capital letters Table 4 compares the case han-
dling techniques presented in Section 4.2. To
better evaluate the robustness of our models to
changes of case, we built 3 synthetic test sets from
45Q-test, with the same target, but all source words
in upper, lower or title case.

"3The best perplexity was achieved after 1 to 3 epochs.

!“The best dropout rate was always 0.1, and the best learn-
ing rate was either 2 x 107° or 5 x 107",

SOutputs of our models are provided with the 4SQ corpus.

16SacreBLEU signature: BLEU+case.mixed+numrefs. |
+smooth.exp+tok.13a+version.1.2.10

Model BLEU | Case insensitive BLEU

45SQ | Upper | Lower | Title
Cased 31.78 | 16.02 | 3242 | 26.67
LC to cased 3091 | 33.09 | 33.09 | 33.09
Factored case | 31.62 | 32.31 | 32.96 | 29.86
Inline case 31.55 | 31.08 | 32.63 | 29.61
Noised case 3199 | 32.64 | 33.73 | 33.63

Table 4: Robustness to capital letters (see Section 4.2).
45Q’s source side has been set to upper, lower or title
case. The first column is case sensitive BLEU. “LC to
cased” always gets the same scores because it is invari-
ant to source case.
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Model ‘ news ‘ noised news ‘ 4SQ
UGC (Inline case) | 40.68 35.59 31.55
+ natural noise 40.43 40.35 31.69

Table 5: Baseline model with or without natural noise
(see Section 4.3). Noised news is the same type of noise,
artificially applied to news-test.

Inline and factored case perform equally well,
significantly better than the default (cased) model,
especially on all-uppercase inputs. Lowercasing
the source is a good option, but gives a slightly
lower score on regular 4SQ-test.!” Finally, syn-
thetic case noise added to the source gives surpris-
ingly good results. It could also be combined with
factored or inline case.

Natural noise Table 5 compares the baseline
“inline case” model with the same model aug-
mented with natural noise (Section 4.3). Per-
formance is the same on 4SQ-test, but signifi-
cantly better on news-test artificially augmented
with 4SQ-like noise.

Domain adaptation Table 6 shows the results
of the back-translation (BT) techniques. Surpris-
ingly, BT with beam search (BT-B) deteriorates
BLEU scores on 4SQ-test, while BT with sampling
gives a consistent improvement. BLEU scores on
news-test are not significantly impacted, suggest-
ing that BT can be used for domain adaptation
without hurting quality on other domains.

Table 7 compares the domain adaptation tech-
niques presented in Section 5. We observe that:

1. Concatenating the small 4SQ-PE corpus to
the 50M general domain corpus does not help
much, unless using tags.

"The “LC to cased” and “Noised case” models are not able
to preserve capital letters for emphasis (as in Table 2), and the
“Cased” model often breaks on such examples.



Model news | 4SQ
UGC (Inline case) | 40.68 | 31.55
UGC ¢ BT-B 40.56 | 30.17
UGC @ BT-S 40.64 | 32.64
UGC ¢ BT 40.84 | 32.69
UGC @ BT-S x 3 | 40.63 | 32.84

Table 6: Comparison of different back-translation
schemes (see Section 5.1). @ denotes the concatena-
tion of several training corpora.

Model Tag | news | 4SQ
UGC (Inline case) — | 40.68 | 31.55
UGC ¢ 4SQ-PE — | 40.80 | 32.05
UGC + FT - | 39.78 | 35.02

- | 40.71 | 32.12
UGC @ 4SQ-PE + tags pE | 38.97 | 34.36

— | 40.67 | 33.47
UGC & BT + tags BT | 39.02 | 33.00

Table 7: Domain adaptation with 4SQ-PE fine-tuning
(FT) or corpus tags. The “tag” column represents the
corpus tag used at test time (if any).

4SQ-PE + tags is not as good as fine-tuning
with 4SQ-PE. However, fine-tuned models get
slightly worse results on news.

Back-translation combined with tags gives a
large boost.!® The BT tag should not be used
at test time, as it degrades results.

Surprisingly, using no tag at test time works
fine, even though all training sentences had
tags.!”

As shown in Table 8, these techniques can be
combined to achieve the best results. The nat-
ural noise does not have a significant effect on
BLEU scores. Back-translation combined with
fine-tuning gives the best performance on 4SQ
(+4.5 BLEU vs UGC). However, using tags instead
of fine-tuning strikes a better balance between gen-
eral domain and in-domain performance.

6.6 Targeted evaluation

In this section we propose two metrics that tar-
get specific aspects of translation adequacy: trans-
lation accuracy of domain-specific polysemous
words and Aspect-Based Sentiment Analysis per-
formance on MT outputs.

BCaswell et al. (2019); Berard et al. (2019) observed the
same thing.

“We tried keeping a small percentage of UGC with no tag,
or with an ANY tag, but this made no difference.
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Model news | 4SQ
WMT 39.37 | 26.26
UGC (Inline case) 40.68 | 31.55
Google Translate (Feb 2019) | 36.31 | 29.63
DeepL (Feb 2019) ? 32.82
UGC & BT + FT 39.55 | 35.95
UGC & BT @ PE + tags 40.99 | 35.72
Nat noise @ BT + FT 3991 | 36.35
Nat noise & BT & PE + tags | 40.72 | 35.60

Table 8: Combination of several robustness or domain
adaptation techniques. At test time, we don’t use any tag
on news, and use the PE tag on 4SQ (when applicable).
BT: back-translation. PE: 4SQ-PE. FT: fine-tuning with
4SQ-PE. &: concatenation.

French word ‘ Meanings

Cadre setting, frame, executive
Cuisine food, kitchen
Carte menu, card, map

Table 9: French polysemous words found in 4SQ, and
translation candidates in English. The most frequent
meanings in 4SQ are underlined.

Translation of polysemous words We propose
to count polysemous words specific to our domain,
similarly to (Lala and Specia, 2018), to measure
the degree of domain adaptation. TER between the
translation hypotheses and the post-edited refer-
ences in 4SQ-PE reveals the most common substi-
tutions (e.g., “card” is often replaced with “menu”,
suggesting that “card” is a common mistranslation
of the polysemous word “carte”). We filter this list
manually to only keep words that are polysemous
and that have a high frequency in the test set. Ta-
ble 9 gives the 3 most frequent ones.?”

Table 10 shows the accuracy of our models when
translating these words. We see that the domain-
adapted model is better at translating domain-
specific polysemous words.

Indirect evaluation with sentiment analysis
We also measure adequacy by how well the trans-
lation preserves the polarity of the sentence re-
garding various aspects. To evaluate this, we per-
form an indirect evaluation on the SemEval 2016
Aspect-Based Sentiment Analysis (ABSA) task
(Pontiki et al., 2016). We use our internal ABSA
systems trained on English or French SemEval

2Rarer ones are: adresse (place, address), café (coftee,
café), entrée (starter, entrance), formule (menu, formula),
long (slow, long), moyen (average, medium), correct (decent,
right), brasserie (brasserie, brewery) and coin (local, corner).



Model cadre cuisine carte | Total Pairs Win | Tie | Loss
Total (source) 23 32 29 | 100%  Tags ~ Tags + noise 82 | 453 | 63
WMT 13 17 14 52%  Tags > Baseline 187 | 337 | 74
UGC (Inline case) 22 27 18 80%  Tags > GT 226 | 302 | 70
UGC @ PE + tags 23 31 29 99%  Tags + noise > Baseline | 178 | 232 | 97
Table 10: Number of correct translations for difficult Tags + noise > GT 218 | 315 65
polysemous words in 4SQ-test by different models. The Baseline > GT 173 | 302 | 123

first row is the number of source sentences that contain
this word. Other domain-adapted models (e.g., “UGC
+ FT” or “UGC & BT”) also get ~ 99% accuracy.

ABSA Model Aspect | Polarity
ABSA French 64.7 83.2
ABSA English 59.5 72.1
ABSA English on MT outputs
WMT 54.5 66.1
UGC (Inline case) 58.1 70.7
UGC @ BT @ PE + tags 60.2 72.0
Nat noise @ BT @ PE + tags | 60.8 73.3

Table 11: Indirect evaluation with Aspect-Based Senti-
ment Analysis (accuracy in %). ABSA French: ABSA
model trained on French data and applied to the Se-
mEval 2016 French test set; ABSA English: trained on
English data and applied to human translations of the
test set; ABSA English on MT outputs: applied to MT
outputs instead of human translations.

2016 data. The evaluation is done on the SemEval
2016 French test set: either the original version
(ABSA French), or its translation (ABSA English).
As shown in Table 11, translations obtained with
domain-adapted models lead to significantly better
scores on the ABSA task than the generic models.

6.7 Human Evaluation

We conduct a human evaluation to confirm the ob-
servations with BLEU and to overcome some of
the limitations of this metric.

We select 4 MT models for evaluation (see Ta-
ble 12) and show their 4 outputs at once, sentence-
by-sentence, to human judges, who are asked to
rank them given the French source sentence in con-
text (with the full review). For each pair of models,
we count the number of wins, ties and losses, and
apply the Wilcoxon signed-rank test.

We took the first 300 test sentences to create 6
tasks of 50 sentences each. Then we asked bilin-
gual colleagues to rank the output of 4 models by
their translation quality. They were asked to do
one or more of these tasks. The judge did not
know about the list of models, nor the model that
produced any given translation. We got 12 an-
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Table 12: In-house human evaluation (“>>" means bet-
ter with p < 0.05). The 4 models Baseline, GT, Tags
and Tags + noise correspond respectively to rows 2
(UGC with inline case), 3 (Google Translate), 6 (Com-
bination of BT, PE and tags) and 8 (Same as 6 with
natural noise) in Table 8.

swers. The inter-judge Kappa coefficient ranged
from 0.29 to 0.63, with an average of 0.47, which
is a good value given the difficulty of the task. Ta-
ble 12 gives the results of the evaluation, which
confirm our observations with BLEU.

We also did a larger-scale monolingual eval-
uation using Amazon Mechanical Turk (see Ap-
pendix), which lead to similar conclusions.

7 Conclusion

We presented a new parallel corpus of user re-
views of restaurants, which we think will be valu-
able to the community. We proposed combinations
of multiple techniques for robustness and domain
adaptation, which address particular challenges of
this new task. We also performed an extensive
evaluation to measure the improvements brought
by these techniques.

According to BLEU, the best single technique
for domain adaptation is fine-tuning. Corpus tags
also achieve good results, without degrading per-
formance on a general domain. Back-translation
helps, but only with sampling or tags. The robust-
ness techniques (natural noise, factored case, rare
character placeholder) do not improve BLEU.

While our models are promising, they still show
serious errors when applied to user-generated con-
tent: missing negations, hallucinations, unrecog-
nized named entities, insensitivity to context.”!
This suggests that this task is far from solved.

We hope that this corpus, our natural noise dic-
tionary, model outputs and human rankings will
help better understand and address these prob-
lems. We also plan to investigate these problems
on lower resource languages, where we expect the
task to be even harder.

?1See additional examples in Appendix.
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