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Abstract
Variational Autoencoders (VAEs) are known
to suffer from learning uninformative latent
representation of the input due to issues such
as approximated posterior collapse, or en-
tanglement of the latent space. We impose
an explicit constraint on the Kullback-Leibler
(KL) divergence term inside the VAE objec-
tive function. While the explicit constraint nat-
urally avoids posterior collapse, we use it to
further understand the significance of the KL
term in controlling the information transmitted
through the VAE channel. Within this frame-
work, we explore different properties of the
estimated posterior distribution, and highlight
the trade-off between the amount of informa-
tion encoded in a latent code during training,
and the generative capacity of the model. 1

1 Introduction
Despite the recent success of deep genera-
tive models such as Variational Autoencoders
(VAEs) (Kingma and Welling, 2014) and Gener-
ative Adversarial Networks (GANs) (Goodfellow
et al., 2014) in different areas of Machine Learn-
ing, they have failed to produce similar generative
quality in NLP. In this paper we focus on VAEs
and their mathematical underpinning to explain
their behaviors in the context of text generation.

The vanilla VAE applied to text (Bowman et al.,
2016) consists of an encoder (inference) and de-
coder (generative) networks: Given an input x,
the encoder network parameterizes q�(z|x) and in-
fers about latent continuous representations of x,
while the decoder network parameterizes p✓(x|z)
and generates x from the continuous code z. The
two models are jointly trained by maximizing the
Evidence Lower Bound (ELBO), L(✓,�;x, z):
⌦
log p✓(x|z)

↵
q�(z|x)

�DKL
�
q�(z|x)||p(z)

�
(1)

1The code is available on https://github.com/
VictorProkhorov/KL_Text_VAE

where the first term is the reconstruction term, and
the second term is the Kullback-Leibler (KL) di-
vergence between the posterior distribution of la-
tent variable z and its prior p(z) (i.e., N (0, I)).
The KL term can be interpreted as a regularizer
which prevents the inference network from copy-
ing x into z, and for the case of a Gaussian prior
and posterior has a closed-form solution.

With powerful autoregressive decoders, such as
LSTMs, the internal decoder’s cells are likely to
suffice for representing the sentence, leading to
a sub-optimal solution where the decoder ignores
the inferred latent code z. This allows the en-
coder to become independent of x, an issue known
as posterior collapse (q�(z|x) ⇡ p(z)) where the
inference network produces uninformative latent
variables. Several solutions have been proposed
to address the posterior collapse issue: (i) Modi-
fying the architecture of the model by weakening
decoders (Bowman et al., 2016; Miao et al., 2015;
Yang et al., 2017; Semeniuta et al., 2017), or in-
troducing additional connections between the en-
coder and decoder to enforce the dependence be-
tween x and z (Zhao et al., 2017; Goyal et al.,
2017; Dieng et al., 2018); (ii) Using more flexi-
ble or multimodal priors (Tomczak and Welling,
2017; Xu and Durrett, 2018); (iii) Alternating the
training by focusing on the inference network in
the earlier stages (He et al., 2019), or augment-
ing amortized optimization of VAEs with instance-
based optimization of stochastic variational infer-
ence (Kim et al., 2018; Marino et al., 2018).

All of the aforementioned approaches impose
one or more of the following limitations: restrain-
ing the choice of decoder, modifying the training
algorithm, or requiring a substantial alternation of
the objective function. As exceptions to these,
�-VAE (Razavi et al., 2019) and �-VAE (Hig-
gins et al., 2017) aim to avoid the posterior col-
lapse by explicitly controlling the regularizer term
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in eqn. 1. While �-VAE aims to impose a lower
bound on the divergence term, �-VAE (§2.2) con-
trols the impact of regularization via an additional
hyperparameter (i.e., �DKL

�
q�(z|x)||p(z)

�
). A

special case of �-VAE is annealing (Bowman
et al., 2016), where � increases from 0 to 1 dur-
ing training.

In this study, we propose to use an extension of
�-VAE (Burgess et al., 2018) which permits us
to explicitly control the magnitude of the KL term
while avoiding the posterior collapse issue even in
the existence of a powerful decoder. We use this
framework to examine different properties of the
estimated posterior and the generative behaviour
of VAEs and discuss them in the context of text
generation via various qualitative and quantitative
experiments.

2 Kullback-Leibler Divergence in VAE

We take the encoder-decoder of VAEs as the
sender-receiver in a communication network.
Given an input message x, a sender generates a
compressed encoding of x denoted by z, while the
receiver aims to fully decode z back into x. The
quality of this communication can be explained in
terms of rate (R) which measures the compression
level of z as compared to the original message
x, and distortion (D) which quantities the over-
all performance of the communication in encod-
ing a message at sender and successfully decoding
it at the receiver. Additionally, the capacity of the
encoder channel can be measured in terms of the
amount of mutual information between x and z,
denoted by I(x; z) (Cover and Thomas, 2012).

2.1 Reconstruction vs. KL

The reconstruction loss can naturally measure dis-
tortion (D := �

⌦
log p✓(x|z)

↵
), while the KL

term quantifies the amount of compression (rate;
R := DKL[q�(z|x)||p(z)]) by measuring the di-
vergence between a channel that transmits zero bit
of information about x, denoted by p(z), and the
encoder channel of VAEs, q�(z|x). Alemi et al.
(2018) introduced the H � D  I(x; z)  R

bounds2, where H is the empirical data entropy (a
constant). These bounds on mutual information al-
low us to analyze the trade-off between the recon-
struction and KL terms in eqn. (1). For instance,

2This is dependent on the choice of encoder. For other
bounds on mutual information see Poole et al. (2018); Hoff-
man and Johnson (2016).

since I(x; z) is non-negative (using Jensen’s in-
equality), the posterior collapse can be explained
as the situation where I(x; z) = 0, where en-
coder transmits no information about x, causing
R = 0, D = H . Increasing I(x; z) can be encour-
aged by increasing both bounds: increasing the
upper-bound (KL term) can be seen as the mean
to control the maximum capacity of the encoder
channel, while reducing the distortion (reconstruc-
tion loss) will tighten the bound by pushing the
lower bound to its limits (H�D ! H). A similar
effect on the lower-bound can be encouraged by
using stronger decoders which could potentially
decrease the reconstruction loss. Hence, having a
framework that permits the use of strong decoders
while avoiding the posterior collapse is desirable.
Similarly, channel capacity can be decreased.

2.2 Explicit KL Control via �-VAE

Given the above interpretation, we now turn to a
slightly different formulation of ELBO based on
�-VAE (Higgins et al., 2017). This allows con-
trol of the trade-off between the reconstruction
and KL terms, as well as to set explicit KL value.
While �-VAE offers regularizing the ELBO via an
additional coefficient � 2 IR+, a simple exten-
sion (Burgess et al., 2018) of its objective func-
tion incorporates an additional hyperparameter C
to explicitly control the magnitude of the KL term,
⌦
log p✓(x|z)

↵
q�(z|x)

� �|DKL

�
q�(z|x)||p(z)

�
� C| (2)

where C2IR+ and |.| denotes the absolute value.
While we could apply constraint optimization to
impose the explicit constraint of KL=C, we found
that the above objective function satisfies the con-
straint (§3). Alternatively, it has been shown (Pels-
maeker and Aziz, 2019) the similar effect could
be reached by replacing the second term in eqn. 2
with max

�
C,DKL

�
q�(z|x)||p(z)

��
at the risk of

breaking the ELBO when KL<C (Kingma et al.,
2016).

3 Experiments

We conduct various experiments to illustrate the
properties that are encouraged via different KL
magnitudes. In particular, we revisit the interde-
pendence between rate and distortion, and shed
light on the impact of KL on the sharpness of the
approximated posteriors. Then, through a set of
qualitative and quantitative experiments for text
generation, we demonstrate how certain genera-
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Figure 1: Rate-Distortion and LogDetCov for C =
{10, 20, ..., 100} on Yahoo and Yelp corpora.

tive behaviours could be imposed on VAEs via a
range of maximum channel capacities. Finally, we
run some experiments to find if any form of syn-
tactic information is encoded in the latent space.
For all experiments, we use the objective function
of eqn. 2 with � = 1. We do not use larger �s be-
cause the constraint KL = C is always satisfied. 3

Corpora We use 5 different corpora cover-
ing different domains and size through this sec-
tion: Yelp and Yahoo Yang et al. (2017) both
have (100k,10k,10k) sentences in (train, dev,
test) sets and 20k words in vocabulary, Chil-
dren’s Book Test (CBT; Weston et al. (2016))
has (192k,10k,12k) sentences and 12k vocab,
Wikipedia (WIKI; Marvin and Linzen (2018)) has
(2m,270k,270k) sentences and 20k vocab, and
WebText (Radford et al., 2019) has (1m,23k,24k)
sentences and 22k vocab. 4

Models We examine three VAE architectures,
covering a range of decoding strengths to exam-
ine if the objective function in eqn. 2 is immune
to posterior collapse regardless of the choice of

3� can be seen as a Lagrange multiplier and any � value
that allows for constraint satisfaction (R = C) is fine.

4 Corpora and preprocessing scripts will be released.

encoder-decoder architectures: �C-VAELSTM with
(LSTM encoder, LSTM decoder), �C-VAEGRU
with (GRU encoder, GRU decoder) (Cho et al.,
2014), and �C-VAECNN with (LSTM encoder,
CNN decoder) (Dauphin et al., 2016). The di-
mension of word embeddings is 256 and the di-
mension of the latent variable is 64. The encoder
and the decoder, for both VAELSTM and VAEGRU,
have hidden size of 512 dimensions. VAECNN has
exactly the same encoder as VAELSTM, while the
decoder follows similar architecture to GLU with
a bottleneck structure (with two blocks) (Dauphin
et al., 2016) and has 512 channels externally and
128 internally for the convolutions with the fil-
ter size of 20. All models were trained for
10 epochs and optimised the objective function
(eqn. 2) with Adam (Kingma and Ba, 2015) with
following learning rates: 10�5 ⇥ 85 for VAEGRU
and VAELSTM, and 10�4 for VAECNN. To couple
the encoder with the decoder we concatenate the
latent variable to word embeddings at each time
step without initialisation of hidden state.

3.1 Rate and Distortion

To analyse the dependence between the values of
explicit rate (C) and distortion, we trained our
models with different values of C, ranging from
10 to 100. Figure 1 reports the results for �C-
VAEGRU, �C-VAELSTM, and �C-VAECNN models
on Yahoo and Yelp corpora. In all our experiments
we found that C�1 KLC+1, demonstrating
that the objective function effectively imposed the
desired constraint on KL term. Hence, setting any
C > 0 can in practice avoid the collapse issue.

The general trend is that by increasing the value
of C one can get a better reconstruction (lower dis-
tortion) while the amount of gain varies depend-
ing on the VAE’s architecture and corpus. 5 Addi-
tionally, we measured rate and distortion on CBT,
WIKI, and WebText corpora using �C-VAELSTM
and observed the same trend with the increase of
C, see Table 1. This observation is consistent with
the bound on I(x; z) we discussed earlier (§2.1)
such that with an increase of KL we increase an
upper bound on I(x; z) which in turn allows to
have smaller values of reconstruction loss. Addi-
tionally, as reported in Table 1, encouraging higher
rates (via larger C) encourages more active units

5We attribute the difference in performance across our
models to the non-optimal selection of training hyperparam-
eters, and corpus specific factors such as sentence length.
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Bucket 1 Bucket 2 Bucket 3 All

C D R LogDetCov ||µ||22 AU BL2/RG2 BL4/RG4 BL2/RG2 BL4/RG4 BL2/RG2 BL4/RG4 BL2/RG2 BL4/RG4
C

BT

3 62 3 -0.39 0.05 8 7.49/2.63 1.28/0.13 8.95/3.48 1.49/0.10 10.37/4.81 1.68/0.12 9.46/3.54 1.57/0.12
15 53 15 -0.38 0.05 29 21.68/12.92 8.99/3.07 14.82/7.01 4.25/0.81 14.68/6.73 3.31/0.36 15.87/8.86 4.60/1.43
100 32 99 -43.82 1.27 64 50.00/43.23 38.74/30.16 26.78/18.49 15.99/9.23 19.24/9.90 7.65/2.24 27.65/24.33 16.09/14.24

W
IK

I 3 81 3 -0.35 0.00 5 4.61/3.64 1.47/1.03 5.93/2.67 1.09/0.19 7.39/3.00 1.17/0.12 6.78/3.08 1.33/0.42
15 70 15 -0.57 0.01 12 13.73/8.46 7.12/3.86 10.07/4.45 3.93/1.32 9.93/3.27 1.95/0.29 10.08/5.35 3.42/1.79
100 17 100 -4.97 0.15 64 65.67/63.17 60.02/55.92 37.25/32.76 30.88/26.33 18.73/11.41 11.22/6.20 31.84/35.37 24.17/29.08

W
eb

Te
xt 3 77 3 -0.21 0.01 4 9.51/5.27 2.96/1.14 9.59/4.59 1.68/0.22 12.59/6.37 3.96/1.01 11.88/5.54 3.35/0.70

15 67 15 -0.51 0.01 16 21.69/12.41 9.86/3.69 15.48/7.44 5.35/1.51 15.63/7.29 5.59/1.59 15.84/7.85 5.69/1.76
100 22 100 -7.85 0.41 64 84.85/82.48 81.89/78.79 61.65/58.33 56.35/53.05 35.07/27.33 27.31/20.99 45.84/45.30 38.71/39.66

Table 1: �C-VAELSTM performance with C = {3, 15, 100} on the test sets of CBT, WIKI, and WebText. Each
bucket groups sentences of certain length. Bucket 1: length  10; Bucket 2: 10 < length  20; Bucket 3: 20
< length  30, and All contains all sentences. BL2/RG2 denotes BLEU-2/ROUGE-2, BL4/RG4 denotes BLEU-
2/ROUGE-2 BLEU-4/ROUGE-4, AU denotes active units, D denotes distortion, and R denotes rate.

(AU; Burda et al. (2015)) in the latent code z. 6

As an additional verification, we also group the
test sentences into buckets based on their length
and report BLEU-2/4 and ROUGE-2/4 metrics to
measure the quality of reconstruction step in Table
1. As expected, we observe that increasing rate has
a consistently positive impact on improving BLEU
and ROUGE scores.

3.2 Aggregated Posterior
To understand how the approximated posteriors
are being affected by the magnitude of the KL,
we adopted an approach from Zhao et al. (2017)
and looked at the divergence between the aggre-
gated posterior, q�(z) =

P
x⇠q(x) q�(z|x), and

prior p(z). Since during generation we generate
samples from the prior, ideally we would like the
aggregated posterior to be as close as possible to
the prior.

We obtained unbiased samples of z first by sam-
pling an x from data and then z ⇠ q�(z|x), and
measured the log determinant of covariance of
the samples (log det(Cov[q�(z)])). As reported
in Figure 1, we observed that log det(Cov[q�(z)])
degrades as C grows, indicating sharper approxi-
mate posteriors. We then consider the difference
of p(z) and q(z) in their means and variances, by
computing the KL divergence from the moment-
matching Gaussian fit of q(z) to p(z): This returns
smaller values for �C=5-VAEGRU (Yelp: 0, Yahoo:
0), and larger values for �C=100-VAEGRU (Yelp:
8, Yahoo: 5), which illustrates that the overlap be-
tween q�(z) and p(z) shrinks further as C grows.

6To see if the conclusions hold with different number of
parameters, we doubled the number of parameters in �C -
VAEGRU and �C -VAELSTM and observed the similar pattern
with a slight change in performance.

The above observation is better pronounced in
Table 1, where we also report the mean (||µ||22)
of unbiased samples of z, highlighting the diver-
gence from the mean of the prior distribution as
rate increases. Therefore, for the case of lower
C, the latent variables observed during training
are closer to the generated sample from the prior
which makes the decoder more suitable for gener-
ation purpose. We will examine this hypothesis in
the following section.

3.3 Text Generation

To empirically examine how channel capacity
translates into generative capacity of the model,
we experimented with the �C-VAELSTM models
from Table 1. To generate a novel sentence, after
a model was trained, a latent variable z is sampled
from the prior distribution and then transformed
into a sequence of words by the decoder p(x|z).

During decoding for generation we try three de-
coding schemes: (i) Greedy: which selects the
most probable word at each step, (ii) Top-k (Fan
et al., 2018): which at each step samples from the
K most probable words, and (iii) Nucleus Sam-
pling (NS) (Holtzman et al., 2019): which at each
step samples from a flexible subset of most proba-
ble words chosen based on their cumulative mass
(set by a threshold p, where p = 1 means sampling
from the full distribution). While similar to Top-
k, the benefit of NS scheme is that the vocabulary
size at each time step of decoding varies, a prop-
erty that encourages diversity and avoids degener-
ate text patterns of greedy or beam search decod-
ing (Holtzman et al., 2019). We experiment with
NS (p = {0.5, 0.9}) and Top-k (k = {5, 15}).
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Greedy Top-15 NS(p=0.9)

C=3

1: oh, i m not going to be a good man. 1: come - look on my mind, said he. 1: and what is one of those trees creatures?
2: oh, it s a good thing, said the story girl. 2: how could i tell you, that it s a great deal? 2: here s a nice heart among those waters!
3: oh, how can you do it, dear? 3: said i. my sister, what a fool! 3: good-bye, said reddy fox, hardly fright-

ened was out of his life.
4: oh, how can you do it, dear? 4: and how was the way, you? 4: now, for a neighbor, who knows him.
5: oh, how can you do it, miss? 5: said the other little breezes, but i do n t . 5: oh, prince ivan, dear me!
6: and what is the matter with you? 6: and where s the news of the world? 6: cried her mother, who is hidden or power.
7: and what is the matter with you? 7: 〈unk〉 of 〈unk〉, said i. ay, 〈unk〉! 7: but this was his plight, and the smith

knew.

C=15

1: old mother west wind and her eyes were
in the same place, but she had never seen
her.

1: eric found out this little while, but there
in which the old man did not see it so.

1: aunt tommy took a sudden notion of re-
lief and yellow-dog between him sharply
until he tried to go to.

2: old mother west wind and his wife had
gone and went to bed to the palace.

2: old mother west wind and his wife gave
her to take a great 〈unk〉, she said.

2: his lord marquis of laughter expressed
that soft hope and miss cornelia was not
comforted.

3: little joe otter and there were a 〈unk〉 of
them to be seen.

3: little joe otter got back to school all the
〈unk〉 together.

3: meanwhile the hounds were both around
and then by a thing was not yet.

4: little joe otter s eyes are just as big as her. 4: little joyce s eyes grew well at once,
there.

4: in a tone, he began to enter after dinner.

5: a few minutes did not answer the 〈unk〉. 5: pretty a woman, but there had vanished. 5: once a word became, just got his way.
6: a little while they went on. 6: from the third day, she went. 6: for a few moments, began to find.
7: a little while they went. 7: three months were as usual. 7: meantime the thrushes were 〈unk〉.

C=100

1: it will it, all her 〈unk〉, not even her with
her?

1: it will her you, at last, bad and never in
her eyes.

1: it s; they liked the red, but i kept her and
growing.

2: it will get him to mrs. matilda and noth-
ing to eat her long clothes.

2: other time, i went into a moment – she
went in home and.

2: it 〈unk〉 not to her, in school, and never
his bitter now.

3: the thing she put to his love, when it were
〈unk〉 and too.

3: going quite well to his mother, and re-
member it the night in night!

3: was it now of the beginning, and dr.
hamilton was her away and.

4: one day, to the green forest now and a
long time ago, sighed.

4: one and it rained for his feet, for she was
their eyes like ever.

4: of course she flew for a long distance;
and they came a longing now.

5: one and it became clear of him on that
direction by the night ago.

5: the thing knew the tracks of 〈unk〉 and he
never got an 〈unk〉 before him.

5: one door what made the pain called for
her first ear for losing up.

6: every word of his horse was and the rest
as the others were ready for him.

6: of course he heard a sound of her as much
over the 〈unk〉 that night can.

6: one and he got by looking quite like her
part till the marriage know ended.

7: a time and was half the 〈unk〉 as before
the first 〈unk〉 things were ready as.

7: every, who had an interest in that till his
legs got splendid tongue than himself.

7: without the thought that danced in the
ground which made these delicate child s
teeth so.

Table 2: Homotopy (CBT corpus) - The three blocks correspond to C = {3, 15, 100} values used for training
�C-VAELSTM. The columns correspond to the three decoding schemes: greedy, top-k (with k=15), and the nucleus
sampling (NS; with p=0.9). Initial two latent variables z were sampled from a the prior distribution i.e. z ⇠ p(z)
and the other five latent variables were obtained by interpolation. The sequences that highlighted in gray are the one
that decoded into the same sentences condition on different latent variable. Note: Even though the learned latent
representation should be quite different for different models (trained with different C) in order to be consistent all
the generated sequences presented in the table were decoded from the same seven latent variables.

3.3.1 Qualitative Analysis
We follow the settings of homotopy experi-
ment (Bowman et al., 2016) where first a set of la-
tent variables was obtained by performing a linear
interpolation between z1 ⇠ p(z) and z2 ⇠ p(z).
Then each z in the set was converted into a se-
quence of words by the decoder p(x|z). Besides
the initial motivation of Bowman et al. (2016) to
examine how neighbouring latent codes look like,
our additional incentive is to analyse how sensi-
tive the decoder is to small variations in the latent
variable when trained with different channel ca-
pacities, C = {3, 15, 100}.

Table 2 shows the generated sentences via dif-
ferent decoding schemes for each channel capac-

ity. For space reason, we only report the gener-
ated sentences for greedy, Top-k = 15, and NS
p = 0.9. To make the generated sequences compa-
rable across different decoding schemes or C val-
ues, we use the same samples of z for decoding.

Sensitivity of Decoder To examine the sensitiv-
ity7 of the decoder to variations of the latent vari-
able, we consider the sentences generate with the
greedy decoding scheme (the first column in Ta-
ble 2). The other two schemes are not suitable
for this analysis as they include sampling proce-

7Note: we vary z in one (randomly selected) direction (in-
terpolating between z1 and z2). Alternatively, the sensitivity
analysis can be done by varying z along the gradient direction
of log p(x|z).
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Greedy NS(p=0.9)

C |V| FCE %unk len. SB |V| FCE %unk len. SB

CBT
3 335 86.6(0.4) 9.7 15.3 4.2 9.8k 70.4(0.0) 2.1 15.6 0.0
15 335 52.3(0.3) 12.7 15.2 0.3 9.8k 70.7(0.2) 2.4 15.4 0.0
100 335 47.3(0.1) 21.3 17.5 0.0 9.8k 75.1(0.1) 2.2 17.6 0.0

Test 328 - 30.7 15.3 - 6.1k - 3.6 15.3 -

WIKI
3 1.5k 134.6(0.8) 27.3 19.9 7.6 20k 89.8(0.1) 5.8 19.4 0.0
15 1.5k 69.2(0.1) 18.9 19.8 0.2 20k 89.3(0.1) 5.6 19.8 0.0
100 1.5k 58.9(0.1) 34.8 20.7 0.0 20k 96.5(0.1) 4.5 20.7 0.0

Test 1.5k - 32.7 19.6 - 20k - 5.2 19.6 -

WebText
3 2.3k 115.8(0.7) 18.8 17.5 2.0 21.9k 86.4(0.1) 7.1 15.6 0.0
15 2.3k 74.4(0.1) 15.5 15.8 0.1 21.9k 85.8(0.1) 6.9 15.9 0.0
100 2.3k 62.5(0.1) 27.3 18.0 0.0 21.9k 93.7(0.1) 4.8 18.0 0.0

Test 2.2k - 30.1 16.1 - 17.1k - 6.8 16.1 -

Table 3: Forward Cross Entropy (FCE). Columns represent stats for Greedy and NS decoding schemes for �C-
VAELSTM models trained with C = {3, 15, 100} on CBT, WIKI or WebText. Each entry in the table is a mean
of negative log likelihood of an LM. The values in the brackets are the standard deviations. |V| is the vocabulary
size; Test stands for test set; %unk is the percentage of 〈unk〉 symbols in a corpora; len. is the average length of
a sentence in the generated corpus; SB is the self-BLEU:4 score calculated on the 10K sentences in the generated
corpus.

dure. This means that if we decode the same la-
tent variable twice we will get two different sen-
tences. We observed that with lower channel ca-
pacity (C = 3) the decoder tends to generate iden-
tical sentences for the interpolated latent variables
(we highlight these sentences in gray), exhibit-
ing decoder’s lower sensitivity to z’s variations.
However, with the increase of channel capacity
(C = 15, 100) the decoder becomes more sensi-
tive. This observation is further supported by the
increasing pattern of active units in Table 1: Given
that AU increases with increase of C one would
expect that activation pattern of a latent variable
becomes more complex as it comprises more in-
formation. Therefore small change in the pattern
would have a greater effect on the decoder.

Coherence of Sequences We observe that the
model trained with large values of C compromises
sequences’ coherence during the sampling. This is
especially evident when we compare C = 3 with
C = 100. Analysis of Top-15 and NS (p=0.9)
generated samples reveals that the lack of coher-
ence is not due to the greedy decoding scheme per
se, and can be attributed to the model in general.
To understand this behavior further, we need two
additional results from Table 1: LogDetCov and
||µ||22. One can notice that as C increases LogDet-
Cov decreases and ||µ||22 increases. This indicates
that the aggregated posterior becomes further apart
from the prior, hence the latent codes seen during

the training diverge more from the codes sampled
from the prior during generation. We speculate
this contributes to the coherence of the generated
samples, as the decoder is not equipped to decode
prior samples properly at higher Cs.

3.3.2 Quantitative Analysis

Quantitative analysis of generated text without
gold reference sequences (e.g. in Machine Trans-
lation or Summarization) has been a long-standing
challenge. Recently, there have been efforts to-
wards this direction, with proposal such as self-
BLEU (Zhu et al.), forward cross entropy (Cı́fka
et al., 2018, FCE) and Fréchet InferSent Distance
(Cı́fka et al., 2018, FID). We opted for FCE as a
complementary metric to our qualitative analysis.
To calculate FCE, first a collection of synthetic
sentences are generated by sampling z ⇠ p(z)
and decoding the samples into sentences. The syn-
thetic sequences are then used to train a language
model (an LSTM with the parametrisation of our
decoder). The FCE score is estimated by reporting
the negative log likelihood (NLL) of the trained
LM on the set of human generated sentences.

We generated synthetic corpora using trained
models from Table 1 with different C and decod-
ing schemes and using the same exact z samples
for all corpora. Since the generated corpora using
different C values would have different coverage
of words in the test set (i.e., Out-of-Vocabulary
ratios), we used a fixed vocabulary to minimize
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the effect of different vocabularies in our analysis.
Our dictionary contains words that are common in
all of the three corpora, while the rest of the words
that don’t exist in this dictionary are replaced with
〈unk〉 symbol. Similarly, we used this fixed dic-
tionary to preprocess the test sets. Also, to reduce
bias to a particular set of sampled z’s we measure
the FCE score three times, each time we sampled a
new training corpus from a �C-VAELSTM decoder
and trained an LM from scratch. In Table 3 we
report the average FCE (NLL) for the generated
corpora.

In the qualitative analysis we observed that the
text generated by the �C-VAELSTM trained with
large values of C = 100 exhibits lower quality
(i.e., in terms of coherence). This observation is
supported by the FCE score of NS(p=0.9) decod-
ing scheme (3), since the performance drops when
the LM is trained on the corpus generated with
C = 100. The generated corpora with C = 3
and C = 15 achieve similar FCE score. How-
ever, these patterns are reversed for Greedy decod-
ing scheme8, where the general tendency of FCE
scores suggests that for larger values of C the �C-
VAELSTM seems to generate text which better ap-
proximates the natural sentences in the test set. To
understand this further, we report additional statis-
tics in Table 3: percentage of 〈unk〉 symbols, self-
BLEU and average sentence length in the corpus.

The average sentence length, in the generated
corpora is very similar for both decoding schemes,
removing the possibility that the pathological pat-
tern on FCE scores was caused by difference in
sentence length. However, we observe that for
Greedy decoding more than 30% of the test set
consists of 〈unk〉. Intuitively, seeing more evi-
dence of this symbol during training would im-
prove our estimate for the 〈unk〉. As reported in
the table, the %unk increases on almost all corpora
as C grows, which is then translated into getting
a better FCE score at test. Therefore, we believe
that FCE at high %unk is not a reliable quantitative
metric to assess the quality of the generated syn-
tactic corpora. Furthermore, for Greedy decoding,
self-BLEU decreases when C increases. This sug-
gests that generated sentences for higher value of
C are more diverse. Hence, the LM trained on
more diverse corpora can generalise better, which
in turn affects the FCE.

8For the other decoding schemes: Top-{5,15} and
NS(p=0.5) the pattern is the same as for the Greedy. For space
reason we only report the FCE for Greedy.

In contrast, the effect the 〈unk〉 symbol has on
the corpora generated with the NS(p=0.9) decod-
ing scheme is minimal for two reasons: First, the
vocabulary size for the generated corpora, for all
values of C is close to the original corpus (the
corpus we used to train the �C-VAELSTM). Sec-
ond, the vocabularies of the corpora generated
with three values of C is very close to each other.
As a result, minimum replacement of the words
with the 〈unk〉 symbol is required, making the ex-
periment to be more reflective of the quality of
the generated text. Similarly, self-BLEU for the
NS(p=0.9) is the same for all values of C. This
suggests that the diversity of sentences has mini-
mal, if any, effect on the FCE.

3.4 Syntactic Test

In this section, we explore if any form of syn-
tactic information is captured by the encoder and
represented in the latent codes despite the lack of
any explicit syntactic signal during the training of
the �C-VAELSTM. To train the models we used
the same WIKI data set as in Marvin and Linzen
(2018), but we filtered out all the sentences that
are longer than 50 space-separated tokens.9

We use the data set of Marvin and Linzen
(2018) which consists of pairs of grammatical and
ungrammatical sentences to test various syntac-
tic phenomenon. For example, a pair in subject-
verb agreement category would be: (The author

laughs, The author laugh). We encode both the
grammatical and ungrammatical sentences into the
latent codes z

+ and z
�, respectively. Then we

condition the decoder on the z
+ and try to deter-

mine whether the decoder assigns higher probabil-
ity to the grammatical sentence (denoted by x

+):
p(x�|z+) < p(x+|z+) (denoted by p1 in Table 4).
We repeat the same experiment but this time try to
determine whether the decoder, when conditioned
on the ungrammatical code (z�), still prefers to
assign higher probability to the grammatical sen-
tence: p(x�|z�) < p(x+|z�) (denoted by p2 in
Table 4). Table 4 shows the p1 and p2 for the �C-
VAELSTM model trained with C = {3, 100}. Both
the p1 and p2 are similar to the accuracy and corre-
spond to how many times a grammatical sentence
was assigned a higher probability.

As reported for C=3, p1 and p2 match in al-
most all cases. This is to some degree expected

9We applied the filtering to decrease the training time of
our models.
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C = 3 C = 100

Syntactic Categories p1 p2 p1 p2 p̄1 p̄2

SUBJECT-VERB AGREEMENT
Simple 0.81 0.81 1.0 0.23 0.68 0.47
In a sentential complement 0.79 0.79 0.98 0.14 0.69 0.48
Short VP coordination 0.74 0.73 0.96 0.08 0.78 0.43
Long VP coordination 0.61 0.61 0.97 0.06 0.55 0.47
Across a prepositional phrase 0.78 0.78 0.97 0.07 0.62 0.49
Across a subject relative clause 0.77 0.77 0.93 0.08 0.68 0.41
Across an object relative clause 0.69 0.69 0.92 0.11 0.61 0.45
Across an object relative (no that) 0.58 0.58 0.94 0.09 0.61 0.44
In an object relative clause 0.74 0.74 0.99 0.01 0.60 0.45
In an object relative (no that) 0.74 0.74 0.99 0.02 0.61 0.46

REFLEXIVE ANAPHORA
Simple 0.79 0.78 0.99 0.07 0.70 0.39
In a sentential complement 0.74 0.73 1.00 0.00 0.70 0.38
Across a relative clause 0.63 0.62 0.99 0.03 0.69 0.35

NEGATIVE POLARITY ITEMS
Simple 0.42 0.33 1.00 0.00 0.76 0.20
Across a relative clause 0.37 0.36 1.00 0.00 0.98 0.02

Table 4: p1: p(x�|z+) < p(x+|z+) and p2: p(x�|z�) < p(x+|z�); p̄1: p(x�|z̄+) < p(x+|z̄+) and p̄2:
p(x�|z̄�) < p(x+|z̄�); �C=3-VAELSTM (D:103, R:3); �C=100-VAELSTM (D:39, R:101).

since lower channel capacity encourages a more
dominating decoder which in our case was trained
on grammatical sentences from the WIKI. On the
other hand, this illustrates that despite avoiding the
KL-collapse issue, the dependence of the decoder
on the latent code is so negligible that the decoder
hardly distinguishes the grammatical and ungram-
matical inputs. This changes for C = 100, as in
almost all the cases the decoder becomes strongly
dependent on the latent code and can differentiate
between what it has seen as input and the closely
similar sentence it hasn’t received as the input:
The decoder assigns larger probability to the un-
grammatical sentence when conditioned on the z�

and, similarly, larger probability to the grammati-
cal sentence when conditioned on the z

+.
However, the above observations neither con-

firm nor reject existence of grammar signal in the
latent codes. We run a second set of experiments
where we aim to discard sentence specific infor-
mation from the latent codes by averaging the
codes10 inside each syntactic category. The av-
eraged codes are denoted by z̄

+ and z̄
�, and the

corresponding accuracies are reported by p̄1 and
p̄2 in Table 4. Our hypothesis is that the only in-
variant factor during averaging the codes inside a
category is the grammatical property of its corre-

10Each syntactic category is further divided into sub-
categories, for instance simple subject-verb agreement We
average z’s within each sub-categories.

sponding sentences.
As expected, due to the weak dependence of de-

coder on latent code, the performance of the model
under C = 3 is almost identical (not included for
space limits) when comparing p1 vs. p̄1, and p2
vs. p̄2. However, for C = 100 the performance
of the model deteriorates. While we leave further
exploration of this behavior to our future work, we
speculate this could be an indication of two things:
the increase of complexity in the latent code which
encourages a higher variance around the mean, or
the absence of syntactic signal in the latent codes.

4 Discussion and Conclusion

In this paper we analysed the interdependence of
the KL term in Evidence Lower Bound (ELBO)
and the properties of the approximated posterior
for text generation. To perform the analysis we
used an information theoretic framework based on
a variant of �-VAE objective, which permits ex-
plicit control of the KL term, and treats KL as a
mechanism to control the amount of information
transmitted between the encoder and decoder.

The immediate impact of the explicit constraint
is avoiding the collapse issue (DKL = 0) by set-
ting a non-zero positive constraint (C � 0) on the
KL term (|DKL

�
q�(z|x)||p(z)

�
� C|). We exper-

imented with a range of constraints (C) on the KL
term and various powerful and weak decoder ar-
chitectures (LSTM, GRU, and CNN), and empiri-
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cally confirmed that in all cases the constraint was
satisfied.

We showed that the higher value of KL encour-
ages not only divergence from the prior distribu-
tion, but also a sharper and more concentrated ap-
proximated posteriors. It encourages the decoder
to be more sensitive to the variations on the latent
code, and makes the model with higher KL less
suitable for generation as the latent variables ob-
served during training are farther away from the
prior samples used during generation. To anal-
yse its impact on generation we conducted a set
of qualitative and quantitative experiments.

In the qualitative analysis we showed that small
and large values of KL term impose different prop-
erties on the generated text: the decoder trained
under smaller KL term tends to generate repetitive
but mainly plausible sentences, while for larger
KL the generated sentences were diverse but inco-
herent. This behaviour was observed across three
different decoding schemes and complemented by
a quantitative analysis where we measured the per-
formance of an LSTM LM trained on different
VAE-generated synthetic corpora via different KL
magnitudes, and tested on human generated sen-
tences.

Finally, in an attempt to understand the abil-
ity of the latent code in VAEs to represent some
form of syntactic information, we tested the abil-
ity of the model to distinguish between grammati-
cal and ungrammatical sentences. We verified that
at lower (and still non-zero) KL the decoder tends
to pay less attention to the latent code, but our find-
ings regarding the presence of a syntactic signal in
the latent code were inconclusive. We leave it as
a possible avenue to explore in our future work.
Also, we plan to develop practical algorithms for
the automatic selection of the C’s value, and verify
our findings under multi-modal priors and com-
plex posteriors.
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der A Alemi, and George Tucker. 2018. On vari-
ational lower bounds of mutual information. In
NeurIPS Workshop on Bayesian Deep Learning.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI

Blog.

Ali Razavi, Aaron van den Oord, Ben Poole, and Oriol
Vinyals. 2019. Preventing posterior collapse with
delta-VAEs. In ICLR.

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt
Barth. 2017. A hybrid convolutional variational au-
toencoder for text generation. In EMNLP.

Jakub M. Tomczak and Max Welling. 2017. VAE with
a vampprior. CoRR, abs/1705.07120.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2016. Towards ai-complete ques-
tion answering: A set of prerequisite toy tasks. In
ICLR.

Jiacheng Xu and Greg Durrett. 2018. Spherical latent
spaces for stable variational autoencoders. CoRR,
abs/1808.10805.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and
Taylor Berg-Kirkpatrick. 2017. Improved varia-
tional autoencoders for text modeling using dilated
convolutions. CoRR, abs/1702.08139.

Shengjia Zhao, Jiaming Song, and Stefano Ermon.
2017. Infovae: Information maximizing variational
autoencoders. CoRR, abs/1706.02262.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo,
Weinan Zhang, Jun Wang, and Yong Yu. Texygen:
A benchmarking platform for text generation mod-
els. In SIGIR.


