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Abstract

We propose a system that improves perfor-
mance on single document summarization
task using the CNN/DailyMail and News-
room datasets. It follows the popular encoder-
decoder paradigm, but with an extra focus on
the encoder. The intuition is that the probabil-
ity of correctly decoding an information sig-
nificantly lies in the pattern and correctness of
the encoder. Hence we introduce, encode –
encode – decode. A framework that encodes
the source text first with a transformer, then a
sequence-to-sequence (seq2seq) model. We
find that the transformer and seq2seq model
complement themselves adequately, making
for a richer encoded vector representation. We
also find that paying more attention to the vo-
cabulary of target words during abstraction im-
proves performance. We experiment our hy-
pothesis and framework on the task of ex-
tractive and abstractive single document sum-
marization and evaluate using the standard
CNN/DailyMail dataset and the recently re-
leased Newsroom dataset.

1 Introduction

Document summarization has been an active area
of research, especially on the CNN/DailyMail
dataset. Even with recent progress (Gehrmann
et al., 2018; Chen and Bansal, 2018), there is
still some work to be done in the field. Al-
though extractive summarization seem
to be less challenging because new words are not
generated, identifying salient parts of the docu-
ment without any guide in the form of a query, is
a substantial problem to tackle.

Earlier approaches for extractive summariza-
tion use manual-feature engineering implemented
with graphs (Parveen and Strube, 2015; Erkan and
Radev, 2004), integer linear programming (ILP)
(Boudin et al., 2015; Nayeem and Chali, 2017).

More recent approaches are data-driven and im-
plement a variety of neural networks (Jadhav and
Rajan, 2018; Narayan et al., 2017) majorly with an
encoder-decoder framework (Narayan et al., 2018;
Cheng and Lapata, 2016).

Similar to the work of Nallapati et al. (2017), we
consider the extractive summarization task as a se-
quence classification problem. A major challenge
with this approach, is the fact that the training data
is not sequentially labelled. Hence creating one
from the abstractive ground-truth summary, is cru-
cial. We improve on Nallapati et al. (2017)’s ap-
proach to generate this labelled data, and evalua-
tion shows that our extractive labels are more ac-
curate. Another hurdle in this task, is the imbal-
ance in the created data, that is, most of the doc-
ument’s sentences are labelled 0 (excluded from
the summary) than 1, because just a few sentences
actually make up a summary. Hence the neural ex-
tractor tends to be biased and suffer from a lot of
false-negative labels. We also present a simple ap-
proach to reduce this bias. Most importantly, our
neural extractor uses the recent bidirectional trans-
former encoder (Vaswani et al., 2017) with details
provided in Section 3.1.

More interesting than extractive summaries,
abstractive summaries correlate better with
summaries that a human would present.
Abstractive summarization does not
simply reproduce salient parts of the document
verbatim, but rewrites them in a concise form,
usually introducing novel words along the way
by utilizing some key abstraction techniques such
as paraphrasing (Gupta et al., 2018), compres-
sion (Filippova et al., 2015) or sentence fusion
(Barzilay and McKeown, 2005). However, it is
met with major challenges like grammatical cor-
rectness and repetition of words especially when
generating long-worded sentences. Nonetheless
remarkable progress have been achieved with the
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use of seq2seq models (Gehrmann et al., 2018;
See et al., 2017; Chopra et al., 2016; Rush et al.,
2015) and a reward instead of loss function via
deep-reinforcement learning (Chen and Bansal,
2018; Paulus et al., 2017; Ranzato et al., 2015).

We see abstractive summarization in same light
as several other authors (Chen and Bansal, 2018;
Hsu et al., 2018; Liu et al., 2018) – extract salient
sentences and then abstract; thus sharing similar
advantages as the popular divide-and-conquer al-
gorithm. More-so, it mitigates the problem of in-
formation redundancy, since the mini-source, ie
extracted document, contains distinct salient sen-
tences. Our abstractive model is a blend of the
transformer and seq2seq model. We notice im-
provements using this framework in the abstrac-
tive setting. This is because, to generate coher-
ent and grammatically correct sentences, we need
to be able to learn long-term dependency rela-
tions. The transformer complements the seq2seq
model in this regard with its multi-head self at-
tention. Also the individual attention heads in the
transformer model mimics behavior related to the
syntactic and semantic structure of the sentence
(Vaswani et al., 2017, 2018). Hence, the trans-
former produces a richer meaningful vector repre-
sentation of the input, from which we can encode
a fixed state vector for decoding.

The main contributions of this work are:

• We present a simple algorithm for building a
sentence-labelled corpus for extractive sum-
marization training that produces more accu-
rate results.

• We propose a novel framework for the task
of extractive single document summarization
that improves the current state-of-the-art on
two specific datasets.

• We introduce the encode - encode - decode
paradigm using two complementary models,
transformer and seq2seq for generating ab-
stractive summaries that improves current top
performance on two specific datasets.

2 Task Definition

Given a document D = (S1, ..., Sn) with n
sentences comprising of a set of words DW =
{d1, ..., dw}, the task is to produce an extractive
(SE) or abstractive (SA) summary that contains
salient information in D, where SE ⊆ DW and
SA = {w1, ..., ws} | ∃wi 6∈ DW .

Figure 1: Extractive Model Architecture

3 Method

We describe our summarization model in two
modules – Extraction and Abstraction. The ab-
straction module simply learns to paraphrase and
compress the output of the extracted document
sentences.

3.1 Extraction

As illustrated in Figure 1, our model classifies
each sentence in a document as being summary-
worthy or not. However, in order to enhance this
sequence classification process, we encode the in-
put document with a TRANSFORMER. A logistic
classifier then learns to label each sentence in the
transformed document.

3.1.1 TRANSFORMER Encoder
The input to the Transformer is the document rep-
resentation, which is a concatenation of the vec-
tor representation of its sentences. Each sentence
representation is obtained by averaging the vector
representation of its constituent words.

Si = 1/m
m∑
i=1

wi (1)

Dj = S1‖S2‖. . . ‖Sn (2)
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The transformer encoder is composed of 6
stacked identical layers. Each layer contains
2 sub-layers with multi-head self attention and
position-wise fully connected feed-forward net-
work respectively. Full details with implementa-
tion are provided in (Vaswani et al., 2017, 2018).
The bidirectional Transformer often referred to as
the Transformer encoder learns a rich representa-
tion of the document that captures long-range syn-
tactic and semantic dependency between the sen-
tences.

3.1.2 Sentence Extraction
The final layer of our extraction model is a soft-
max layer which performs the classification. We
learn the probability of including a sentence in the
summary,

yip = softmax(WS‘
i + b) (3)

where W and b are trainable parameters and S‘
i is

the transformed representation of the ith sentence
in document Dj , by minimizing the cross-entropy
loss

(4)L = −(ytlog(yp) + (1− yt)log(1− yp))

between the predicted probabilities, yp and true
sentence-labels, yt during training.

3.1.3 Extractive Training
Filtering Currently, no extractive summariza-
tion dataset exists. Hence it is customary to create
one from the abstractive ground-truth summaries
(Chen and Bansal, 2018; Nallapati et al., 2017).
We observe however, that some summaries are
more abstractive than others. Since the extractive
labels are usually gotten by doing some n-gram
overlap matching, the greater the abstractiveness
of the ground-truth the more inaccurate the tuned
extractive labels are. We filter out such samples 1

as illustrated in Table 1. In our work, we consider
a reference summary Rj as overly abstractive if
it has zero bigram overlap with the corresponding
document Dj , excluding stop words.

#bigram(Dj , Rj) == 0 (5)

See et al. (2017) and Paulus et al. (2017) trun-
cate source documents to 400 tokens and target

1Filtering is used only for the training set, to ensure that
evaluation comparisons on the test set with existing models
are fair

summaries to 100 tokens. We totally exclude doc-
uments with more than 30 sentences and trun-
cate or pad as necessary to 20 sentences per doc-
ument. From the over 280,000 and 1.3M train-
ing pairs in the CNN/DM and Newsroom training
dataset respectively, our filtering yields approxi-
mately 150,000 and 250,000 abstractive summa-
rization sub-dataset. We report evaluation scores
using the training sets as-is versus our filtered
training sets, to show that filtering the training
samples does improve results.

Document: world-renowned chef, author
and emmy winning television personality an-
thony bourdain visits quebec in the next
episode of “ anthony bourdain : parts un-
known, ” airing sunday, may 5, at 9 p.m. et.
follow the show on twitter and facebook.
Summary: 11 things to know about quebec.
o canada! our home and delicious land.’

Table 1: Example of an overly abstractive summary
with zero bigram overlap with the document from a
CNN/DM training sample.

Tuning We use a very simple approach to cre-
ate extractive labels for our neural extractor. We
hypothesize that each reference summary sen-
tence originates from at least one document sen-
tence. The goal is to identify the most-likely doc-
ument sentence. Different from Nallapati et al.
(2017)’s approach to greedily add sentences to
the summary that maximizes the ROUGE score,
our approach is more similar to Chen and Bansal
(2018)’s model that calculates the individual refer-
ence sentence-level score as per its similarity with
each sentence in the corresponding document.
However, our sentence-level similarity score is
based on its bigram overlap:

(6)score(Rt
j) = amaxi(bigram(Di

j , R
t
j))

for each tth sentence in the reference summary,
Rj , per ith sentence in document Dj , in contrast
to Chen and Bansal (2018)’s that uses ROUGE-
Lrecall score. Additionally, for every time both
words in the set of bigrams-overlap are stopwords,
we decrement the similarity score by 1, for exam-
ple, (on, the) is an invalid bigram-overlap while
(the, President) is valid. We do this, to capture
more important similarities instead of trivial ones.

For statistical purposes, we evaluate our extrac-
tive trainer for tuning the document’s sentences to
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0’s and 1’s against (Nallapati et al., 2017)’s which
is our foundation.

Extractive Trainer R-1 R-2 R-L
Ours 49.5 27.8 45.8

Ours + filter 51.4 31.7 50.3
(Nallapati et al., 2017) 48.4 27.5 44.4

Table 2: ROUGE-F1 (%) scores of manually crafted
extractive trainers for producing sentence-level extrac-
tive labels for CNN/DM.

We apply our tuned dataset to the neural extrac-
tive summarizer explained in Sections 3.1.1 and
3.1.2 and report results in Tables 3 and 4.

Imbalanced Extractive Labels Because a sum-
mary is a snippet of the document, the major-
ity of the labels are rightly 0 (excluded from the
summary). Hence a high classification accuracy
does not necessarily translate to a highly salient
summary. Therefore, we consider the F1 score,
which is a weighted average of the precision and
recall, and apply an early stopping criteria when
minimizing the loss, if the F1 score does not in-
crease after a set number of training epochs. Addi-
tionally during training, we synthetically balance
the labels, by forcing some random sentences to
be labelled as 1 and subsequently masking their
weights.

Number of sentences to extract The number of
extracted sentences is not trivial, as this signifi-
cantly affects the summary length and hence eval-
uation scores. Chen and Bansal (2018) introduced
a stop criterion in their reinforcement learning pro-
cess. We implemented a basic subjective approach
based on the dataset. Since the gold summaries are
typically 3 or 4 sentences long, we extract the top
3 sentences by default, but proceed to additionally
extract a 4th sentence if the confidence score from
the softmax function is greater than 0.55.

3.2 Abstraction
The input to our abstraction module is a subset of
the document’s sentences which comprises of the
output of the extraction phase from Section 3.1.2.
For each document Dj , initially comprising of n
sentences, we abstract its extracted sentences,

SE
j = {S1

j , S
2
j , ..., S

m
j } (7)

where m < n and SE
j ⊆ Dj , by learning to

jointly paraphrase (Gupta et al., 2018) and com-
press (Filippova et al., 2015). We add one more

encoding layer to the standard encoder-aligner-
decoder (Bahdanau et al., 2014; Luong et al.,
2015), ie, encode-encode-align-decode. The in-
tuition is to seemingly improve the performance
of the decoder by providing an interpretable and
richly encoded sequence. For this, we interleave
two efficient models – transformer (Vaswani et al.,
2017) and sequence-to-sequence (Sutskever et al.,
2014), specifically GRU-RNN (Chung et al., 2014;
Cho et al., 2014). Details are presented in subse-
quent subsections.

3.2.1 Encoder – TRANSFORMER

The transformer encoder has same implementation
from Vaswani et al. (2017) as explained in Section
3.1.1, except the inputs are sentence-level vector
representations not document. Also, the sentence
representations in this module are not averaged
constituent word representations as in the extrac-
tion module but concatenated. That is, for each ith

sentence in equation 7, its vector representation, is
the concatenation of its constituent word embed-
dings

Si
j = w1‖w2‖. . . ‖wn (8)

The output of equation 8 serves as the input vec-
tor representation to the transformer encoder. We
use the transformer-encoder during abstraction as
sort of a pre-training module of the input sentence.

3.2.2 Encoder – GRU-RNN

We use a single layer uni-directional GRU-RNN

whose input is the output of the transformer. The
GRU-RNN encoder (Chung et al., 2014; Cho et al.,
2014) produces fixed-state vector representation
of the transformed input sequence using the fol-
lowing equations:

z = σ(stU
z + xt−1W

z) (9)

r = σ(stU
r + xt−1W

r) (10)

h = tanh(stU
h + (xt−1 � r)W h) (11)

xt = (1− z)� h+ z � xt−1 (12)

where r and z are the reset and update gates re-
spectively,W and U are the network’s parameters,
xt is the hidden state vector at timestep t, st is the
input vector and � represents the Hadamard prod-
uct.
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Extractive Model R-1 R-2 R-L
LEAD (See et al., 2017) 40.3 17.7 36.5

LEAD (Narayan et al., 2018) 39.6 17.7 36.2
LEAD (ours) 40.1 17.6 36.0

(Nallapati et al., 2017) 39.6 16.2 35.3
REFRESH (Narayan et al., 2018) 40.0 18.2 36.6
FAST (Chen and Bansal, 2018) 41.4 18.7 37.7
NEUSUM (Zhou et al., 2018) 41.6 19.0 37.0

Content Selector (Gehrmann et al., 2018) 42.0 15.9 37.3
TRANS-ext 41.0 18.4 36.9

TRANS-ext + filter 42.8 21.1 38.4

Table 3: ROUGE-F1 (%) scores (with 95% confidence interval) of various extractive models on the CNN/DM
test set. The first section shows LEAD-3 model scores. The second section shows scores for baseline models. The
third section shows our model’s scores

Extractive Model R-1 R-2 R-L
LEAD* (Grusky et al., 2018) 30.49 21.27 28.42

TextRank* (Barrios et al., 2016) 22.77 9.79 18.98
TRANS-ext 37.21 25.17 32.41

TRANS-ext + filter 41.52 30.62 36.96

Table 4: ROUGE-F1 (%) scores (with 95% confidence interval) of various extractive models on the Newsroom
released test set. * marks results taken from Grusky et al. (2018)

3.3 Decoder – GRU-RNN

The fixed-state vector representation produced by
the GRU-RNN encoder is used as initial state for
the decoder. At each time step, the decoder re-
ceives the previously generated word, yt−1 and
hidden state st−1 at time step t−1. The output
word, yt at each time step, is a softmax probability
of the vector in equation 11 over the set of vocab-
ulary words, V .

4 Experiments

We used pre-trained 300-dimensional gloV e2

word-embeddings (Pennington et al., 2014).
The transformer encoder was setup with the
transformer base hyperparameter setting from
the tensor2tensor library (Vaswani et al., 2018)3,
but the hidden size and dropout were reset to 300
and 0.0 respectively. We also use 300 hidden
units for the GRU-RNN encoder. The tensor2tensor
library comes with pre-processed/tokenized ver-
sions of the dataset, we however perform these op-
erations independently. For abstraction, our tar-
get vocabulary is a set of approximately 50,000
and 80,000 words for CNN/DM and Newsroom

2https://nlp.stanford.edu/projects/
glove/

3https://github.com/tensorflow/
tensor2tensor

corpus respectively. It contains words in our
target training and test sets that occur at least
twice. Experiments showed that using this sub-
set of vocabulary words as opposed to over
320,000 vocabulary words contained in gloV e
improves both training time and performance of
the model. During the abstractive training, we
match summary sentence with its corresponding
extracted document sentence using equation 6 and
learn to minimize the seq2seq loss implemented
in tensorflow API4 with AdamOptimizer
(Kingma and Ba, 2014). We employ early stop-
ping when the validation loss does not decrease
after 5 epochs. We apply gradient clipping at 5.0
(Pascanu et al., 2013). We use greedy-decoding
during training and validation and set the maxi-
mum number of iterations to 5 times the target sen-
tence length. Beam-search decoding is used dur-
ing inference.

4.1 Datasets
We evaluate our models on the non-anonymized
version of the CNN-DM corpus (Hermann et al.,
2015; Nallapati et al., 2016) and the recent News-
room dataset (Grusky et al., 2018) released by
Connected Experiences Lab5. The Newsroom

4https://www.tensorflow.org/api_docs/
python/tf/contrib/seq2seq/sequence_loss

5https://summari.es

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/tensorflow/tensor2tensor
https://github.com/tensorflow/tensor2tensor
https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/sequence_loss
https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/sequence_loss
https://summari.es
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Abstractive Model R-1 R-2 R-L
RL+Intra-Att (Paulus et al., 2017) 41.16 15.75 39.08

KIGN+Pred (Li et al., 2018) 38.95 17.12 35.68
FAST (Chen and Bansal, 2018) 40.88 17.80 38.54

Bottom-Up (Gehrmann et al., 2018) 41.22 18.68 38.34
TRANS-ext + abs 41.05 17.87 36.73

TRANS-ext + filter +abs 41.89 18.90 38.92

Table 5: ROUGE-F1 (%) scores (with 95% confidence interval) of various abstractive models on the CNN/DM
test set.

Abstractive Model R-1 R-2 R-L
Abs-N* (Rush et al., 2015) 5.88 0.39 5.32
Pointer* (See et al., 2017) 26.02 13.25 22.43

TRANS-ext + abs 33.81 15.37 28.92
TRANS-ext + filter + abs 35.74 16.52 30.17

Table 6: ROUGE-F1 (%) scores (with 95% confidence interval) of various abstractive models on the Newsroom
released test set. * marks results taken from Grusky et al. (2018)

corpus contains over 1.3M news articles together
with various metadata information such as the ti-
tle, summary, coverage and compression ratio.
CNN/DM summaries are twice as long as News-
room summaries with average word lengths of 66
and 26 respectively.

4.2 Evaluation
Following previous works (See et al., 2017; Nal-
lapati et al., 2017; Chen and Bansal, 2018), we
evaluate both datasets on standard ROUGE-1,
ROUGE-2 and ROUGE-L (Lin, 2004). It cal-
culates the appropriate n-gram word-overlap be-
tween the reference and system summaries.

4.3 Results Analysis
We used the official pyrouge script6 with op-
tion7. Table 3 and 5 presents extractive and ab-
stractive results on the CNN/DM dataset respec-
tively, while Tables 4 and 6 for the Newsroom
dataset. For clarity, we present results separately
for each model and dataset.

Our baseline non-filtered extractive (TRANS-
ext) model is highly competitive with top mod-
els. Our TRANS-ext + filter produces an average
of about +1 and +9 points across reported ROUGE
variants on the CNN/DM and Newsroom datasets
respectively, showing that our model does a bet-
ter job at identifying the most salient parts of the
document than existing state-of-the-art extractive

6https://github.com/andersjo/pyrouge/
tree/master/tools/ROUGE-1.5.5

7-n 2 -w 1.2 -m -a -c 95

models. We observe the large margin in the News-
room dataset results, as existing baselines are just
the LEAD-3 and TEXTRANK of (Barrios et al.,
2016). The Newsroom dataset was recently re-
leased and is yet to be thoroughly explored, how-
ever it is a larger dataset and contains more diverse
summaries as analyzed by Grusky et al. (2018).

We also experimented with the empirical out-
come of using imbalanced extractive labels which
usually leads to bias towards the majority class.
Interestingly, our extractive model has +20%
F Score increase when trained with balanced la-
bels. Switching the transformer encoder with a
seq2seq encoder, resulted in a drop of about 2
ROUGE points, showing that the transformer en-
coder does learn features that adds meaning to the
vector representation of our input sequence.

Our baseline non-filtered abstractive (TRANS-
ext + abs) model is also highly competitive with
top models, with a drop of -0.81 ROUGE-2 points
against Gehrmann et al. (2018)’s model which is
the current state-of-the art. Our TRANS-ext + fil-
ter + abs produces an average of about +0.5 and
+7 points across reported ROUGE variants on the
CNN/DM and Newsroom datasets respectively,
showing empirically that our model is an improve-
ment of existing abstractive summarization mod-
els.

On the abstractiveness of our summaries, af-
ter aligning with the ground-truth as explained
in Section 3.2 about 60% of our extracted docu-
ment sentences were paraphrased and compressed.

https://github.com/andersjo/pyrouge/tree/master/tools/ROUGE-1.5.5
https://github.com/andersjo/pyrouge/tree/master/tools/ROUGE-1.5.5
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O: the two clubs, who occupy the top two spots
in spain’s top flight, are set to face each other at
the nou camp on sunday.
G: real madrid face barcelona in the nou camp
R: real madrid will travel to the nou camp to face
barcelona on sunday.
O: dangelo conner, from new york, filmed him-
self messing around with the powerful weapon in
a friend’s apartment, first waving it around, then
sending volts coursing through a coke can .
G: dangelo conner from new york was fooling
around with his gun
R: dangelo conner, from new york ,was fooling
around with stun gun.
O: jamie peacock broke his try drought with a
double for leeds in their win over salford on sun-
day.
G: jamie adam scored to win over salford for
leeds
R: jamie peacock scored two tries for leeds in
their win over salford.
O: britain’s lewis hamilton made the perfect start
to his world title defense by winning the opening
race of the f1 season in australia sunday to lead a
mercedes one-two in melbourne .
G: lewis hamilton wins first race of season in
australia
R: lewis hamilton wins opening race of 2015 f1
season in australia .

Table 7: Examples of some of our generated para-
phrases from the CNN/DM dataset, where O, G, R
represents Originating document sentence, our model’s
Generated paraphrase and Reference sentences from
the ground-truth summary respectively.

We highlight examples of some of the generated
paraphrases in Table 7. Table 7 show that our
paraphrases are well formed, abstractive (e.g pow-
erful weapon – gun, messing around – fooling
around), capable of performing syntactic manip-
ulations (e.g for leeds in their win over sadford
– win over salford for leeds) and compression as
seen in all the examples.

5 Related Work

Summarization has remained an interesting and
important NLP task for years due to its diverse
applications - news headline generation, weather
forecasting, emails filtering, medical cases, rec-
ommendation systems, machine reading compre-

hension MRC and so forth (Khargharia et al.,
2018).

Early summarization models were mostly ex-
tractive and manual-feature engineered (Knight
and Marcu, 2000; Jing and McKeown, 2000; Dorr
et al., 2003; Berg-Kirkpatrick et al., 2011). With
the introduction of neural networks (Sutskever
et al., 2014) and availability of large training data,
deep learning became a viable approach (Rush
et al., 2015; Chopra et al., 2016).

Extraction has been handled on different lev-
els of granularity – word (Cheng and Lapata,
2016), phrases (Bui et al., 2016; Gehrmann et al.,
2018), sentence (Cheng and Lapata, 2016; Nalla-
pati et al., 2016, 2017) each with its challenges.
Word and phrase level extraction although more
concise usually suffers from grammatical incor-
rectness, while sentence-level extraction are too
lengthy and sometimes contain redundant infor-
mation. Hence Berg-Kirkpatrick et al. (2011); Fil-
ippova et al. (2015); Durrett et al. (2016) learn to
extract and compress at sentence-level.

Identifying the likely most salient part of the
text as summary-worthy is very crucial. Some
authors have employed integer linear program-
ming (Martins and Smith, 2009; Gillick and Favre,
2009; Boudin et al., 2015), graph concepts (Erkan
and Radev, 2004; Parveen et al., 2015; Parveen
and Strube, 2015), ranking with reinforcement
learning (Narayan et al., 2018) and mostly related
to our work – binary classification (Shen et al.,
2007; Nallapati et al., 2017; Chen and Bansal,
2018)

Our binary classification architecture differs
significantly from existing models because it uses
a transformer as the building block instead of a
bidirectional GRU-RNN (Nallapati et al., 2017),
or bidirectional LSTM-RNN (Chen and Bansal,
2018). To the best of our knowledge, our utiliza-
tion of the transformer encoder model as a build-
ing block for binary classification is novel, al-
though the transformer has been successfully used
for language understanding (Devlin et al., 2018),
machine translation (MT) (Vaswani et al., 2017)
and paraphrase generation (Zhao et al., 2018).

For generation of abstractive summaries, before
the ubiquitous use of neural nets, manually crafted
rules and graph techniques were utilized with con-
siderable success. Barzilay and McKeown (2005);
Cheung and Penn (2014) fused two sentences into
one using their dependency parsed trees. Re-
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cently, sequence-to-sequence models (Sutskever
et al., 2014) with attention (Bahdanau et al., 2014;
Chopra et al., 2016), copy mechanism (Vinyals
et al., 2015; Gu et al., 2016), pointer-generator
(See et al., 2017), graph-based attention (Tan et al.,
2017) have been explored. Since the system gener-
ated summaries are usually evaluated on ROUGE,
its been beneficial to directly optimize this met-
ric during training via a suitable policy using rein-
forcement learning (Paulus et al., 2017; Celikyil-
maz et al., 2018).

Similar to Rush et al. (2015); Chen and Bansal
(2018) we abstract by simplifying our extracted
sentences. We jointly learn to paraphrase and
compress, but different from existing models
purely based on RNN, we implement a blend of
two proven efficient models – transformer encoder
and GRU-RNN. Zhao et al. (2018) paraphrased
with a transformer-decoder, we find that using the
GRU-RNN decoder but with a two-level stack of
hybrid encoders (transformer and GRU-RNN) gives
better performance. To the best of our knowledge,
this architectural blend is novel.

6 Conclusion

We proposed two frameworks for extractive and
abstractive summarization and demonstrated that
they each improve results over existing state-of-
the art. Our models are simple to train, and
the intuition/hypothesis behind the formulation are
straightforward and logical. The scientific correct-
ness is provable, as parts of our model architecture
have been used in other NLG-related tasks such as
MT with state-of-the art results.

Acknowledgments

We would like to thank the anonymous review-
ers for their useful comments. The research re-
ported in this paper was conducted at the Univer-
sity of Lethbridge and supported by Alberta Inno-
vates and Alberta Education.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Federico Barrios, Federico López, Luis Argerich, and
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