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Abstract

There has been an increased interest in low-
resource approaches to automatic grammati-
cal error correction. We introduce Minimally-
Augmented Grammatical Error Correction
(MAGEC) that does not require any error-
labelled data. Our unsupervised approach is
based on a simple but effective synthetic er-
ror generation method based on confusion sets
from inverted spell-checkers. In low-resource
settings, we outperform the current state-of-
the-art results for German and Russian GEC
tasks by a large margin without using any real
error-annotated training data. When combined
with labelled data, our method can serve as an
efficient pre-training technique.

1 Introduction

Most neural approaches to automatic grammati-
cal error correction (GEC) require error-labelled
training data to achieve their best performance.
Unfortunately, such resources are not easily avail-
able, particularly for languages other than English.
This has lead to an increased interest in unsuper-
vised and low-resource GEC (Rozovskaya et al.,
2017; Bryant and Briscoe, 2018; Boyd, 2018; Ro-
zovskaya and Roth, 2019), which recently culmi-
nated in the low-resource track of the Building Ed-
ucational Application (BEA) shared task (Bryant
et al., 2019).1

We present Minimally-Augmented Grammatical
Error Correction (MAGEC), a simple but effective
approach to unsupervised and low-resource GEC
which does not require any authentic error-labelled
training data. A neural sequence-to-sequence
model is trained on clean and synthetically noised
sentences alone. The noise is automatically created
from confusion sets. Additionally, if labelled data

1https://www.cl.cam.ac.uk/research/nl/
bea2019st

is available for fine-tuning (Hinton and Salakhutdi-
nov, 2006), MAGEC can also serve as an efficient
pre-training technique.

The proposed unsupervised synthetic error gen-
eration method does not require a seed corpus with
example errors as most other methods based on sta-
tistical error injection (Felice and Yuan, 2014) or
back-translation models (Rei et al., 2017; Kasewa
et al., 2018; Htut and Tetreault, 2019). It also out-
performs noising techniques that rely on random
word replacements (Xie et al., 2018; Zhao et al.,
2019). Contrary to Ge et al. (2018) or Lichtarge
et al. (2018), our approach can be easily used for
effective pre-training of full encoder-decoder mod-
els as it is model-independent and only requires
clean monolingual data and potentially an available
spell-checker dictionary.2 In comparison to pre-
training with BERT (Devlin et al., 2019), synthetic
errors provide more task-specific training exam-
ples than masking. As an unsupervised approach,
MAGEC is an alternative to recently proposed lan-
guage model (LM) based approaches (Bryant and
Briscoe, 2018; Stahlberg et al., 2019), but it does
not require any amount of annotated sentences for
tuning.

2 Minimally-augmented grammatical
error correction

Our minimally-augmented GEC approach uses syn-
thetic noise as its primary source of training data.
We generate erroneous sentences from monolingual
texts via random word perturbations selected from
automatically created confusion sets. These are
traditionally defined as sets of frequently confused
words (Rozovskaya and Roth, 2010).

We experiment with three unsupervised methods
for generating confusion sets:

2GNU Aspell supports more than 160 languages: http:
//aspell.net/man-html/Supported.html

https://www.cl.cam.ac.uk/research/nl/bea2019st
https://www.cl.cam.ac.uk/research/nl/bea2019st
http://aspell.net/man-html/Supported.html
http://aspell.net/man-html/Supported.html
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Word Confusion set

had hard head hand gad has ha ad hat
night knight naught nought nights bight might nightie
then them the hen ten than thin thee thew

haben habend halben gaben habe habet haken
Nacht Nachts Nascht Macht Naht Acht Nach Jacht Pacht
dann sann dank denn dünn kann wann bannen kannst

имел им ел им-ел имела имели имело мел умел
ночь ночью ночи дочь мочь ноль новь точь
затем за тем за-тем затеем затеям зятем затеями

Table 1: Examples of spell-broken confusion sets for
English, German and Russian.

Edit distance Confusion sets consist of words
with the shortest Levenshtein distance (Leven-
shtein, 1966) to the selected confused word.

Word embeddings Confusion sets contain the
most similar words to the confused word
based on the cosine similarity of their word
embedding vectors (Mikolov et al., 2013).

Spell-breaking Confusion sets are composed of
suggestions from a spell-checker; a sugges-
tion list is extracted for the confused word
regardless of its actual correctness.

These methods can be used to build confusion
sets for any alphabetic language.3 We find that con-
fusion sets constructed via spell-breaking perform
best (Section 4). Most context-free spell-checkers
combine a weighted edit distance and phonetic al-
gorithms to order suggestions, which produces reli-
able confusion sets (Table 1).

We synthesize erroneous sentences as follows:
given a confusion set Ci = {ci1, ci2, ci3, ...}, and the
vocabulary V , we sample word wj ∈ V from the in-
put sentence with a probability approximated with
a normal distribution N (pWER, 0.2), and perform
one of the following operations: (1) substitution
of wj with a random word cjk from its confusion
set with probability psub, (2) deletion of wj with
pdel, (3) insertion of a random word wk ∈ V at
j + 1 with pins, and (4) swapping wj and wj+1

with pswp. When making a substitution, words
within confusion sets are sampled uniformly.

To improve the model’s capability of correcting
spelling errors, inspired by Lichtarge et al. (2018);
Xie et al. (2018), we randomly perturb 10% of
characters using the same edit operations as above.

3For languages with logosylabic writing system like Chi-
nese, the edit distance can be calculated on transcribed
text, while word embeddings can be generated after word-
segmentation.

Lang. Corpus Dev Test Train

EN W&I+LOCNESS 4,384 4,477 34,308
DE Falco+MERLIN 2,503 2,337 18,7544

RU RULEC-GEC 2,500 5,000 4,980

Table 2: Sizes of labelled corpora in no. of sentences.

Character-level noise is introduced on top of the
synthetic errors generated via confusion sets.

A MAGEC model is trained solely on the syn-
thetically noised data and then ensembled with a
language model. Being limited only by the amount
of clean monolingual data, this large-scale unsu-
pervised approach can perform better than training
on small authentic error corpora. A large amount
of training examples increases the chance that syn-
thetic errors resemble real error patterns and results
in better language modelling properties.

If any small amount of error-annotated learner
data is available, it can be used to fine-tune the
pre-trained model and further boost its perfor-
mance. Pre-training of decoders of GEC mod-
els from language models has been introduced by
Junczys-Dowmunt et al. (2018b), we pretrain the
full encoder-decoder models instead, as proposed
by Grundkiewicz et al. (2019).

3 Experiments

Data and evaluation Our approach requires a
large amount of monolingual data that is used for
generating synthetic training pairs. We use the
publicly available News crawl data5 released for
the WMT shared tasks (Bojar et al., 2018). For
English and German, we limit the size of the data
to 100 million sentences; for Russian, we use all
the available 80.5 million sentences.

As primary development and test data, we use
the following learner corpora (Table 2):

• English: the new W&I+LOCNESS corpus
(Bryant et al., 2019; Granger, 1998) released
for the BEA 2019 shared task and representing
a diverse cross-section of English language;

• German: the Falko-MERLIN GEC corpus
(Boyd, 2018) that combines two German
learner corpora of all proficiency levels;

4The original training part of Falco+MERLIN consists of
19,237 sentences, but is contaminated with some test sentences.
We have removed training examples if their target sentences
occur in the development or test set.

5http://data.statmt.org/news-crawl

http://data.statmt.org/news-crawl
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System P R F0.5

Random 32.8 6.7 18.49
Edit distance 39.9 9.5 24.27
Word embeddings 39.7 9.0 23.56
Spell-breaking 43.1 10.6 26.66
+ OOV + Case 44.9 10.9 27.70

→ WER = 0.25 43.3 11.8 27.50
→ Edit-weighted Λ = 2 43.0 12.6 28.99

Table 3: Performance for different confusion sets and
edit weighting techniques on W&I+LOCNESS Dev.

• Russian: the recently introduced RULEC-
GEC dataset (Alsufieva et al., 2012; Ro-
zovskaya and Roth, 2019) containing Russian
texts from foreign and heritage speakers.

Unless explicitly stated, we do not use the train-
ing parts of those datasets. For each language
we follow the originally proposed preprocessing
and evaluation settings. English and German data
are tokenized with Spacy6, while Russian is pre-
processed with Mystem (Segalovich, 2003). We
additionally normalise punctuation in monolingual
data using Moses scripts (Koehn et al., 2007). Dur-
ing training, we limit the vocabulary size to 32,000
subwords computed with SentencePiece using the
unigram method (Kudo and Richardson, 2018).

English models are evaluated with ERRANT
(Bryant et al., 2017) using F0.5; for German and
Russian, the M2Scorer with the MaxMatch metric
(Dahlmeier and Ng, 2012) is used.

Synthetic data Confusion sets are created for
each language for V = 96, 000 most frequent lex-
ical word forms from monolingual data. We use
the Levenshtein distance to generate edit-distance
based confusion sets. The maximum considered
distance is 2. Word embeddings are computed with
word2vec7 from monolingual data. To generate
spell-broken confusion sets we use Enchant8 with
Aspell dictionaries.9 The size of confusion sets is
limited to top 20 words.

Synthetic errors are introduced into monolingual
texts to mimic word error rate (WER) of about
15%, i.e. pWER = 0.15, which resembles error
frequency in common ESL error corpora. When
confusing a word, the probability psub is set to 0.7,
other probabilities are set to 0.1.

6https://spacy.io
7https://github.com/tmikolov/word2vec
8https://abiword.github.io/enchant
9ftp://ftp.gnu.org/gnu/aspell/dict

System Dev P R F0.5

Top BEA19 (Low-res.) 44.95 70.2 48.0 64.24
Top BEA19 (Restricted) 53.00 72.3 60.1 69.47

Spell-checker 10.04 23.7 7.4 16.45
Spell-checker w/ LM 12.00 41.5 6.8 20.52

MAGEC w/o LM 28.99 53.4 26.2 44.22
MAGEC 31.87 49.1 37.5 46.22
MAGEC Ens. 33.32 53.0 34.5 47.89

Fine-tuned (Real) 44.29 61.2 54.1 59.62
Fine-tuned (Real+Synth.) 49.49 66.0 58.8 64.45

(a) English (W&I+LOCNESS)

System Dev P R M2
0.5

Boyd (2018) (Unsup.) — 30.0 14.0 24.37
Boyd (2018) — 52.0 29.8 45.22

Spell-checker 20.97 33.0 9.5 22.06
Spell-checker w/ LM 24.14 43.6 8.6 24.27

MAGEC w/o LM 49.25 58.1 27.2 47.30
MAGEC 52.06 57.9 34.7 51.10
MAGEC Ens. 53.61 58.3 36.9 52.22

Fine-tuned (Real) 68.13 72.2 54.0 67.67
Fine-tuned (Real+Synth.) 70.51 73.0 61.0 70.24

(b) German (Falko-MERLIN)

System Dev P R M2
0.5

Rozovskaya and Roth (2019) — 38.0 7.5 21.0

Spell-checker 18.32 19.2 7.2 14.39
Spell-checker w/ LM 22.01 30.7 7.5 18.99

MAGEC w/o LM 24.82 30.1 20.4 27.47
MAGEC 27.13 32.3 29.5 31.71
MAGEC Ens. 27.87 33.3 29.4 32.41

Fine-tuned (Real) 30.28 35.4 31.1 34.45
Fine-tuned (Real+Synth.) 30.64 36.3 28.7 34.46

(c) Russian (RULEC-GEC)

Table 4: Unsupervised and fine-tuned MAGEC sys-
tems for English, German and Russian, contrasted with
systems from related work and spell-checking base-
lines.

Training settings We adapt the recent state-of-
the-art GEC system by Junczys-Dowmunt et al.
(2018b), an ensemble of sequence-to-sequence
Transformer models (Vaswani et al., 2017) and a
neural language model.10

We use the training setting proposed by the au-
thors11, but introduce stronger regularization: we
increase dropout probabilities of source words to
0.3, add dropout on transformer self-attention and
filter layers of 0.1, and use larger mini-batches with

10Models and outputs are available from https://
github.com/grammatical/magec-wnut2019

11https://github.com/grammatical/
neural-naacl2018

https://spacy.io
https://github.com/tmikolov/word2vec
https://abiword.github.io/enchant
ftp://ftp.gnu.org/gnu/aspell/dict
https://github.com/grammatical/magec-wnut2019
https://github.com/grammatical/magec-wnut2019
https://github.com/grammatical/neural-naacl2018
https://github.com/grammatical/neural-naacl2018
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~2,500 sentences. We do not pre-train the decoder
parameters with a language model and train di-
rectly on the synthetic data. We increase the size
of language model used for ensembling to match
the Transformer-big configuration (Vaswani et al.,
2017) with 16-head self-attention, embeddings size
of 1024 and feed-forward filter size size of 4096.
In experiments with fine-tuning, the training hyper-
parameters remain unchanged.

All models are trained with Marian (Junczys-
Dowmunt et al., 2018a). The training is continued
for at most 5 epochs or until early-stopping is trig-
gered after 5 stalled validation steps. We found that
using 10,000 synthetic sentences as validation sets,
i.e. a fully unsupervised approach, is as effective
as using the development parts of error corpora and
does not decrease the final performance.

4 Results and analysis

Confusion sets On English data, all proposed
confusion set generation methods perform better
than random word substitution (Table 3).Confu-
sion sets based on word embeddings are the least
effective, while spell-broken sets perform best at
26.66 F0.5. We observe further gains of +1.04 from
keeping out-of-vocabulary spell-checker sugges-
tions (OOV) and preserving consistent letter casing
within confusion sets (Case).

The word error rate of error corpora is an use-
ful statistic that can be used to balance preci-
sion/recall ratios (Rozovskaya and Roth, 2010;
Junczys-Dowmunt et al., 2018b; Hotate et al.,
2019). Increasing WER in the synthetic data from
15% to 25% increases recall at the expense of preci-
sion, but no overall improvement is observed. A no-
ticeable recall gain that transfers to a higher F-score
of 28.99 is achieved by increasing the importance
of edited fragments with the edit-weighted MLE
objective from Junczys-Dowmunt et al. (2018b)
with Λ = 2. We use this setting for the rest of our
experiments.

Main results We first compare the GEC systems
with simple baselines using a greedy and context
spell-checking (Table 4); the latter selects the best
correction suggestion based on the sentence per-
plexity from a Transformer language model. All
systems outperform the spell-checker baselines.

On German and Russian test sets, single
MAGEC models without ensembling with a lan-
guage model already achieve better performance
than reported by Boyd (2018) and Rozovskaya and

System CoNLL JFLEG

Bryant and Briscoe (2018) ? 34.09 48.75
Stahlberg et al. (2019) ? 44.43 52.61
Stahlberg et al. (2019) (659K real data) 58.40 58.63

MAGEC Ens. ? 44.23 56.18
MAGEC Fine-tuned (34K real data) 56.54 60.01

Table 5: Comparison with LM-based GEC on the
CoNLL (M2) and JFLEG (GLEU) test sets for unsuper-
vised (?) and supervised systems trained or fine-tuned
on different amounts of labelled data.

0 1
16

1
8

1
4

1
2

1

28.0

32.0

36.0

40.0

44.0

33.3

37.1

39.2
40.7

43.6 44.3

F0.5

Ensemble w/ LM
Ensemble
Average of 4 w/o LM

Figure 1: Improvements from fine-tuning on subsets of
W&I+LOCNESS Train. The smallest 1

16 part of the
dataset contains 2,145 sentences. Averaged F-scores
over 4 runs trained on different subsets of the data.

Roth (2019) for their systems that use authentic
error-annotated data for training (Table 4b and 4c).
Our best unsupervised ensemble systems that com-
bine three Transformer models and a LM12 outper-
form the state-of-the-art results for these languages
by +7.0 and +11.4 F0.5.

Our English models do not compete with the
top systems (Grundkiewicz et al., 2019) from the
BEA shared task trained on publicly available error-
annotated corpora (Table 4a). It is difficult to
compare with the top low-resource system from
the shared task, because it uses additional parallel
data from Wikipedia (Grundkiewicz and Junczys-
Dowmunt, 2014), larger ensemble, and n-best list
re-ranking with right-to-left models, which can be
also implemented in this work.

MAGEC systems are generally on par with the
results achieved by a recent unsupervised contribu-
tion based on finite state transducers by Stahlberg
et al. (2019) on the CoNLL-2014 (Dahlmeier et al.,
2013) and JFLEG test sets (Napoles et al., 2017)
(Table 5).

12The weight of the language model is grid-searched on the
development set.
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Spell.+punc. Other errors
Lang. P R F0.5 P R F0.5

EN 28.8 24.1 27.68 33.5 16.8 27.93
DE 54.8 71.4 57.43 63.6 55.8 61.83
RU 26.7 75.0 30.70 14.6 19.7 15.37

Table 6: Performance of single MAGEC w/ LM models
on two groups of errors on respective development sets.

All unsupervised systems benefit from domain-
adaptation via fine-tuning on authentic labelled
data (Miceli Barone et al., 2017). The more au-
thentic high-quality and in-domain training data
is used, the greater the improvement, but even as
few as ~2,000 sentences are helpful (Fig. 1). We
found that fine-tuning on a 2:1 mixture of synthetic
and oversampled authentic data prevents the model
from over-fitting. This is particularly visible for En-
glish which has the largest fine-tuning set (34K sen-
tences), and the difference of 5.2 F0.5 between fine-
tuning with and without synthetic data is largest.

Spelling and punctuation errors The GEC task
involves detection and correction of all types of er-
ror in written texts, including grammatical, lexical
and orthographical errors. Spelling and punctua-
tion errors are among the most frequent error types
and also the easiest to synthesize.

To counter the argument that – mostly due to
the introduced character-level noise and strong lan-
guage modelling – MAGEC can only correct these
“simple” errors, we evaluate it against test sets that
contain either spelling and punctuation errors or
all other error types; with the complement errors
corrected (Table 6). Our systems indeed perform
best on misspellings and punctuation errors, but
are capable of correcting various error types. The
disparity for Russian can be explained by the fact
that it is a morphologically-rich language and we
suffer from generally lower performance.

5 Conclusions and future work

We have presented Minimally-Augmented Gram-
matical Error Correction (MAGEC), which can
be effectively used in both unsupervised and low-
resource scenarios. The method is model indepen-
dent, requires easily available resources, and can be
used for creating reliable baselines for supervised
techniques or as an efficient pre-training method
for neural GEC models with labelled data. We have
demonstrated the effectiveness of our method and
outperformed state-of-the-art results for German

and Russian benchmarks, trained with labelled data,
by a large margin.

For future work, we plan to evaluate MAGEC
on more languages and experiment with more di-
versified confusion sets created with additional un-
supervised generation methods.
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