
Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 231–236
Hong Kong, Nov 4, 2019. c©2019 Association for Computational Linguistics

231

Identifying Linguistic Areas for Geolocation

Tommaso Fornaciari, Dirk Hovy
Bocconi University, Milan, Italy

{fornaciari|dirk.hovy}@unibocconi.it

Abstract

Geolocating social media posts relies on the
assumption that language carries sufficient ge-
ographic information. However, locations are
usually given as continuous latitude/longitude
tuples, so we first need to define discrete geo-
graphic regions that can serve as labels. Most
studies use some form of clustering to dis-
cretize the continuous coordinates (Han et al.,
2016). However, the resulting regions do not
always correspond to existing linguistic areas.
Consequently, accuracy at 100 miles tends to
be good, but degrades for finer-grained dis-
tinctions, when different linguistic regions get
lumped together. We describe a new algo-
rithm, Point-to-City (P2C), an iterative k-d
tree-based method for clustering geographic
coordinates and associating them with towns.
We create three sets of labels at different levels
of granularity, and compare performance of a
state-of-the-art geolocation model trained and
tested with P2C labels to one with regular k-d
tree labels. Even though P2C results in sub-
stantially more labels than the baseline, model
accuracy increases significantly over using tra-
ditional labels at the fine-grained level, while
staying comparable at 100 miles. The results
suggest that identifying meaningful linguistic
areas is crucial for improving geolocation at a
fine-grained level.

1 Introduction
Predicting the location of a Social Media post
involves first and foremost ways to identify the
words that indicate geographic location. Secondly,
and perhaps even more fundamentally, though, we
also need to determine an effective notion of what
a “location” is, i.e., what do our labels represent:
a state, a city, a neighborhood, a street? In many
NLP tasks, labels are ambiguous and open to inter-
pretation (Plank et al., 2014). In geolocation, the
information initially given is an unambiguous lati-
tude/longitude pair, but this format captures a level

of detail (precise down to a centimeter) that is both
unnecessary and unrealistic for most practical ap-
plications. Collapsing coordinates to geographic
categories is therefore a common step in geoloca-
tion. However, this discretization step is open to
interpretation: what method should we choose?

Previous work includes three different ap-
proaches to discretizing continuous values into lo-
cation labels (see also Section 2):

1.) Geodesic grids are the most straightforward,
but do not “lead to a natural representation of
the administrative, population-based or language
boundaries in the region” (Han et al., 2012).

2.) Clustering coordinates prevents the iden-
tification of (nearly) empty locations and keeps
points which are geographically close together
in one location. Unfortunately, in crowded re-
gions, clusters might be too close to each other,
and therefore divide cultural/linguistic areas into
meaningless groups.

3.) Predefined administrative regions, like
cities, can provide homogeneous interpretable ar-
eas. However, mapping coordinates to the clos-
est city can be ambiguous. Previous work typi-
cally considered cities with a population of at least
100K (Han et al., 2012, 2014). This approach has
the opposite problem of clustering: different lin-
guistic areas might be contained within a single
administrative region.

Here, we propose Point-To-City (P2C), a new
method mapping continuous coordinates to loca-
tions. It combines the strengths of the last two ap-
proaches, keeping coordinates which appear close
to each other in the same location, while also rep-
resenting them in terms of meaningful administra-
tive regions, with adjustable granularity. We show
that these two criteria also result in superior pre-
diction performance for geolocation.

Relying on k-d trees (Maneewongvatana and
Mount, 1999), P2C iteratively clusters points
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within a specified maximum distance d, and maps
them to the coordinates of the closest town with a
minimum population size.

We evaluate P2C on two data sets commonly
used for geolocation. We create three different
conditions by using three different values for d as
maximum distance between points, and compare
the results to those obtained using k-d tree labels
(as used in the W-NUT shared task (Han et al.,
2016)). For all four labeling schemes, we train an
attention-based convolutional neural network, and
evaluate mean and median distance between target
and predicted point, and accuracy within 161 km
(Acc@161). We also show the standard accuracy
score relative to the specific labels, usually much
worse than Acc@161, and often not reported in
the literature.

Our results show that P2C reliably produces
Acc@161 performance which is comparable with
state-of-the-art models. For exact accuracy, how-
ever, P2C labels always result in substantially bet-
ter performance than previous methods, in spite
of the larger set of classes. This suggests that
P2C captures more meaningful location distinc-
tions (backed up by a qualitative analysis), and that
previous labels capture only broader, linguistically
mixed areas. More generally, our results show that
language reflects social and geographical distinc-
tions in the world, and that more meaningful real-
world labels help language-based prediction mod-
els to perform their task more efficiently.

Contributions The contributions of this paper
are the following: 1.) we propose P2C, a k-d tree
based procedure to cluster geographic points as-
sociated with existing towns within a certain dis-
tance between town and cluster centroid. 2.) we
show that P2C produces more meaningful, inter-
pretable cultural and linguistic locations 3.) we
show that P2C labels substantially improve model
performance in exact, fine-grained classification

2 Related work

Geolocation prediction can, in principle, be mod-
eled both as regression and as classification prob-
lem. In practice, however, given the difficulty of
predicting continuous coordinate values, regres-
sion is often carried out in conjunction with the
classification (Eisenstein et al., 2010; Lourentzou
et al., 2017; Fornaciari and Hovy, 2019b). In gen-
eral, however, the task is considered a classifi-
cation problem, which requires solutions for the

identification of geographic regions as labels.
Geodesic grids were used for the geolocation of

posts on Flickr, Twitter and Wikipedia (Serdyukov
et al., 2009; Wing and Baldridge, 2011).

Hulden et al. (2015) noticed that “using smaller
grid sizes leads to an immediate sparse data prob-
lem since very few features/words are [selectively]
observed in each cell”.

In order to enhance the expressiveness of the ge-
ographic cells, Wing and Baldridge (2014), con-
structed both flat and hierarchical grids relying on
k-d tree, and testing their methods at different lev-
els of granularity. The same labels were used in
the study of Rahimi et al. (2018).

Han et al. (2012, 2014), who released
TWITTER-WORLD, use the information provided
by the Geoname dataset1 in order to identify a set
of cities around the world with at least 100K in-
habitants. Then they refer their geo-tagged texts
to those cities, creating easily interpretable ge-
ographic places. Cha et al. (2015) proposed a
voting-based grid selection scheme, with the clas-
sification referred to regions/states in US.

Most works use deep learning techniques for
classification (Miura et al., 2016). Often, they
include multi-view models, considering differ-
ent sources (Miura et al., 2017; Lau et al.,
2017; Ebrahimi et al., 2018; Fornaciari and Hovy,
2019a). In particular, Lau et al. (2017) imple-
mented a multi-channel convolutional network,
structurally similar to our model. Rahimi et al.
(2018) proposes a Graph-Convolutional neural
network, though the text features are represented
by a bag-of-words, while we rely on word embed-
dings.

The ability of the labels to reflect real anthropo-
logical areas, however, affects primarily the mod-
els which rely on linguistic data. This is the
case of the studies of Han et al. (2012) and Han
et al. (2014) who based their predictions on the
so-called Location-Indicative Words (LIW). Re-
cently, neural models have been built with the
same purpose (Rahimi et al., 2017; Tang et al.,
2019).

3 Methods
Data sets We apply our method to two widely
used data sets for geolocation: TWITTER-US
(Roller et al., 2012), and TWITTER-WORLD (Han
et al., 2012). They are all collections of En-

1http://www.geonames.org

https://www.flickr.com/
 http://www.geonames.org
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glish tweets aggregated by author and labeled
with geographic coordinates. TWITTER-US and
TWITTER-WORLD contain 450K and 1.39M texts,
respectively. They are each divided into their own
training, development, and test sets. Readers are
referred to the respective papers for additional de-
tails. We round the coordinates to the second dec-
imal number. A distance of 0.01 degrees corre-
sponds to less than 1.1 km on the longitude axis
(the distance is not constant on the latitude axis).
Smaller distinctions are not relevant for any com-
mon NLP task.

Data set d labels mean median

TW.-US .1 1554 7.07 3.81
.25 914 9.10 5.64
.5 418 15.54 12.21

W-NUT 256 – –

TW.-WORLD .1 3047 0.45 0.00
.25 2818 1.77 0.00
.5 2350 3.28 2.39

W-NUT 930 – –

Table 1: Number of labels and mean/median distance
in km between instances and the cluster town center.
For W-NUT, distance can not be computed, as cen-
troids are not close to meaningful places

Point-To-City (P2C) For the classification, we
need to identify labels corresponding to existing
cultural/linguistic areas, so that the geographic in-
formation conveyed through language can be fully
exploited.To this end, P2C iteratively creates clus-
ters of points, and afterwards associates the final
clusters with specific towns.

The parameter d controls the maximum spheri-
cal distance we allow between points assigned to
the same cluster at the initialization step. We run
P2C considering three values: 0.1, 0.25, and 0.5
coordinate decimal points, which correspond to
11.12 km (6.91 miles), 27.80 km (17.27 miles),
and 55.60 km (34.55 miles) on the longitude axis.
We use these values to explore the feasibility
of finer (and more challenging) predictions than
those usually accepted in the literature.

One of the most popular metrics in previous
studies (see Section 2 and 4) is the accuracy of
the predictions within 161 km, or 100 mi, from
the target point. In contrast, we are interested in
the accuracy relative to the precise prediction of
the labels, and we want labels representing points
aggregated according to a distance much smaller
than 161 km/100 mi: even the highest value we

choose for d, 0.5, is about one third the distance of
accuracy at 161 km (Acc@161). However, since
P2C iteratively creates clusters of clusters, it is
possible that the original points belonging to dif-
ferent clusters are further apart than the thresh-
old of d. For this reason, we selected values of d
which are about three to fifteen times smaller than
161 km/100 mi.

Given d and a set of coordinate points/instances
in the data set, P2C iterates over the following
steps until convergence:

1. for each point, apply k-d trees to find clusters
of points where each pair has a reciprocal dis-
tance less than d;

2. remove redundant clusters by ordering their
elements (e.g., (A,B) vs. (B,A));

3. remove subsets of larger clusters (e.g. (A,B)
vs. (A,B,C));

4. compute clusters’ centroids as the average
coordinates of all points belonging to the
cluster;

5. assign the points which fall into more than
one cluster to the one with the nearest cen-
troid;

6. substitute each instance’s coordinates with
the centroid coordinates of the corresponding
cluster.

The algorithm converges when the final number of
points cannot be further reduced, since they all are
farther apart from each other than the maximum
distance d. After assigning each instance its new
coordinates, we follow Han et al. (2012, 2014) in
using the GeoNames data set to associate clus-
ters with cities, by substituting the instance coordi-
nates with those of the closest town center. In our
case, however, rather than collecting cities with a
population of at least 100K, we consider all towns
with a population of at least 15K.

This last step further reduces the set of points
associated with our instances. Table 1 shows the
resulting number of labels, and the mean distance
in km between the new instance coordinates and
the respective town center.

This choice of 15K inhabitants is coherent with
the settings of d: we aim to account for lin-
guistic/social environments more specific than the
broad and compound communities of densely pop-
ulated cities. This is helpful for high resolution

https://www.geonames.org
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method model # labels Acc Acc@161 mean median

TWITTER-US

Han et al. (2014) NB + IGR 378 26% 45% - 260
Wing and Baldridge (2014) HierLR k-d “fewer classes” - 48% 687 191
Rahimi et al. (2017) MLP + k-d tree 256 - 55% 581 91

Att-CNN + k-d tree 256 26.17% 55.27% 580.7 93.02
Att-CNN + P2C .1 1554 44.04%∗ 59.76%∗ 544.35∗ 47.19∗

Att-CNN + P2C .25 914 49.08%∗ 60.4%∗ 537.0∗ 39.71∗

Att-CNN + P2C .5 418 54.73%∗ 58.56% 537.79∗ 0∗

TWITTER-WORLD

Han et al. (2014) NB + IGR 3135 13% 26% - 913
Wing and Baldridge (2014) HierLR k-d “fewer classes” - 31% 1670 509
Rahimi et al. (2017) MLP + k-d tree 930 - 36% 1417 373

Att-CNN + k-d tree 930 18.35% 33.85% 1506.33 469.48
Att-CNN + P2C .1 3047 22.57%∗ 39.41%∗ 1372.3∗ 328.42∗

Att-CNN + P2C .25 2818 26.68%∗ 39.94%∗ 1269.13∗ 299.04∗

Att-CNN + P2C .5 2350 32.64%∗ 41.8%∗ 1257.36∗ 292.09∗

Table 2: Performance of prior work and of the proposed model with W-NUT and P2C labels. ∗ : p ≤ 0.01.

geolocation both in the case of crowded regions
and of areas with low density of inhabitants. How-
ever, we found that in spite of qualified informa-
tion, such as the annual Worlds Cities report of
the United Nations, it is actually difficult to set
an optimal threshold. In fact, not even that doc-
ument provides a detailed profile of small towns at
a global level. Therefore we rely on the format of
the information offered by Geonames.

The code for computing P2C is available at
github.com/Bocconi-NLPLab.

Feature selection The two corpora have very
different vocabulary sizes. Despite fewer in-
stances, TWITTER-US contains a much richer vo-
cabulary than TWITTER-WORLD: 14 vs. 6.5 mil-
lions words. This size is computationally infeasi-
ble. In order to maximize discrimination, we filter
the vocabulary with several steps.

In order not to waste the possible geographic in-
formation carried by the huge amount of low fre-
quency terms, we use replacement tokens as fol-
lows: We again take only the training data into
account. First, we discard the hapax legomena,
that is the words with frequency 1, as there is no
evidence that these words could be found else-
where. Then, we discard words with frequency
greater than 1, if they appear in more than one
place. We replace low frequency terms which ap-
pear uniquely in on place with a replacement token
specific for that place, i.e., label. Finally, we sub-
stitute these words with their replacement token in
the whole corpus, including development and test

set. Since the word distribution follows the Zipf
curve (Powers, 1998) we are able to exploit the
geographic information of millions of words using
only a small number of replacement tokens. The
use of this information is fair, as it relies on the in-
formation present in the training set only. In terms
of performance, however, the effect of the replace-
ment tokens is theoretically not different from that
resulting from the direct inclusion of the single
words in the vocabulary.The benefit is in terms of
noise reduction, for the selective removal of geo-
graphically ambiguous words, and computational
affordability.

Following Han et al. (2012), we further filter
the vocabulary via Information Gain Ratio (IGR),
selecting the terms with the highest values until
we reach a computationally feasible vocabulary
size: here, 750K and 460K for TWITTER-US and
TWITTER-WORLD.

Attention-based CNN For classification, we
use an attention-based convolutional neural
model. We first train our own word embeddings
for each corpus, and feed the texts into two con-
volutional channels (with window size 4 and 8)
and max-pooling, followed by an overall attention
mechanism, and finally a fully-connected layer
with softmax activation for prediction.

For evaluation, as discussed in Section 3, we
use the common metrics considered in literature:
acc@161, that is the accuracy within 161 km
(100 mi) from the target point, and mean and me-
dian distance between the predicted and the target

https://www.un.org/en/events/citiesday/assets/pdf/the_worlds_cities_in_2018_data_booklet.pdf
http://www.github.com/Bocconi-NLPLab
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points. We are also interested in the exact accu-
racy. This metric is often not shown in literature,
but is important for the geolocation in real case
scenarios. We evaluate significance via bootstrap
sampling, following Søgaard et al. (2014).

(a) W-NUT labels

(b) P2C labels

Figure 1: Example of cumulative point accuracy with
the two label sets for gold label Washington DC (flag).
Circles are predictions, diameter represents percentage
of predictions on that point.

4 Results
The model performance is shown in table 2. When
applied to the W-NUT labels, our model repli-
cates the results of Rahimi et al. (2017): in
TWITTER-US the values correspond perfectly, in
TWITTER-WORLD the Att-CNN performance is
slightly lower. Compared to the W-NUT labels,
the P2C labels are much more granular in every
condition and, in spite of their apparent greater
difficulty, they help to reach better performance in
all metrics, with very high levels of significance.
Such differences are surprisingly wide with re-
spect to the accuracy: in TWITTER-US, for P2C
with d = .5, the performance is more than doubled
compared to the same model with the W-NUT k-d

tree labels (54% vs. 26%).
Figure 1 shows the coordinates of the W-NUT

(1a) and of the P2C cluster centroids (1b). The di-
ameter of the circles represent the rate correct pre-
diction for those points. As can be seen, P2C iden-
tifies a unique linguistic region around Washing-
ton, while different W-NUT labels cover more or
less the same area. P2C labels also allow a much
better concentration of predictions in the same ad-
ministrative/linguistic area.

5 Conclusion
P2C is a method for geographic labeling that dy-
namically clusters points and links them to spe-
cific towns. The aims are 1) to gather the points
belonging to the same linguistic areas; 2) to asso-
ciate such areas with distinct, existing administra-
tive regions; 3) to improve the models’ effective-
ness, training them with texts showing consistent
linguistic patterns. Compared to the W-NUT k-d
tree labels, P2C leads to remarkably higher per-
formance in all metrics, and in particular in the
accuracy, even in spite of the higher number of la-
bels identified. This suggests that techniques like
P2C might be particularly useful when high per-
formance at high levels of granularity is required.
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