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Abstract

We propose a Chinese spell checker – FASPell
based on a new paradigm which consists of
a denoising autoencoder (DAE) and a de-
coder. In comparison with previous state-
of-the-art models, the new paradigm allows
our spell checker to be Faster in computa-
tion, readily Adaptable to both simplified and
traditional Chinese texts produced by either
humans or machines, and to require much
Simpler structure to be as much Powerful in
both error detection and correction. These four
achievements are made possible because the
new paradigm circumvents two bottlenecks.
First, the DAE curtails the amount of Chi-
nese spell checking data needed for super-
vised learning (to <10k sentences) by lever-
aging the power of unsupervisedly pre-trained
masked language model as in BERT, XLNet,
MASS etc. Second, the decoder helps to elim-
inate the use of confusion set that is deficient
in flexibility and sufficiency of utilizing the
salient feature of Chinese character similarity.

1 Introduction

There has been a long line of research on detect-
ing and correcting spelling errors in Chinese texts
since some trailblazing work in the early 1990s
(Shih et al., 1992; Chang, 1995). However, de-
spite the spelling errors being reduced to substitu-
tion errors in most researches1 and efforts of mul-
tiple recent shared tasks (Wu et al., 2013; Yu et al.,
2014; Tseng et al., 2015; Fung et al., 2017), Chi-
nese spell checking remains a difficult task. More-
over, the methods for languages like English can
hardly be directly used for the Chinese language
because there are no delimiters between words,
whose lack of morphological variations makes the
syntactic and semantic interpretations of any Chi-
nese character highly dependent on its context.

1Likewise, this paper only covers substitution errors.

1.1 Related work and bottlenecks
Almost all previous Chinese spell checking mod-
els deploy a common paradigm where a fixed set
of similar characters of each Chinese character
(called confusion set) is used as candidates, and a
filter selects the best candidates as substitutions for
a given sentence. This naive design is subjected to
two major bottlenecks, whose negative impact has
been unsuccessfully mitigated:

• overfitting to under-resourced Chinese
spell checking data. Since Chinese spell
checking data require tedious professional
manual work, they have always been under-
resourced. To prevent the filter from over-
fitting, Wang et al. (2018) propose an auto-
matic method to generate pseudo spell check-
ing data. However, the precision of their spell
checking model ceases to improve when the
generated data reaches 40k sentences. Zhao
et al. (2017) use an extensive amount of ad
hoc linguistic rules to filter candidates, only
to achieve worse performance than ours even
though our model does not leverage any lin-
guistic knowledge.

• inflexibility and insufficiency of confusion
set in utilizing character similarity. The
feature of Chinese character similarity is very
salient as it is related to the main cause of
spelling errors (see subsection 2.2). How-
ever, the idea of confusion set is troublesome
in utilizing it:

1. inflexibility to address the issue that
confusing characters in one scenario
may not be confusing in another. The
difference between simplified and tradi-
tional Chinese shown in Table 1 is an
example. Wang et al. (2018) also sug-
gest that confusing characters for ma-
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chines are different from those for hu-
mans. Therefore, in practice, it is very
likely that the correct candidates for sub-
stitution do not exist in a given confu-
sion set, which harms recall. Also, con-
sidering more similar characters to pre-
serve recall will risk lowering precision.

2. insufficiency in utilizing character simi-
larity. Since a cut-off threshold of quan-
tified character similarity (Liu et al.,
2010; Wang et al., 2018) is used to pro-
duce the confusion set, similar charac-
ters are actually treated indiscriminately
in terms of their similarity. This means
the information of character similarity
is not sufficiently utilized. To compen-
sate this, Zhang et al. (2015) propose a
spell checker that has to consider many
less salient features such as word seg-
mentation, which add more unnecessary
noises to their model.

1.2 Motivation and contributions

The motivation of this paper is to circumvent the
two bottlenecks in subsection 1.1 by changing the
paradigm for Chinese spell checking.

As a major contribution and as exemplified by
our proposed Chinese spell checking model in Fig-
ure 1, the most general form of the new paradigm
consists of a denoising autoencoder2 (DAE) and a
decoder. To prove that it is indeed a novel contri-
bution, we compare it with two similar paradigms
and show their differences as follows:

1. Similar to the old paradigm used in previous
Chinese spell checking models, a model un-
der the DAE-decoder paradigm also produces
candidates (by DAE) and then filters the can-
didates (by the decoder). However, candi-
dates are produced on the fly based on con-
texts. If the DAE is powerful enough, we
should expect that all contextually suitable
candidates are recalled, which prevent the in-
flexibility issue caused by using confusion
set. The DAE will also prevent the overfit-
ting issue because it can be trained unsuper-
visedly using a large number of natural texts.
Moreover, character similarity can be used by
the decoder without losing any information.

2the term denoising autoencoder follows the same sense
used by Yang et al. (2019), which is arguably more general
than the one used by Vincent et al. (2008).

2. The DAE-decoder paradigm is sequence-
to-sequence, which makes it resemble the
encoder-decoder paradigm in tasks like ma-
chine translation, grammar checking, etc.
However, in the encoder-decoder paradigm,
the encoder extracts semantic information,
and the decoder generates texts that embody
the information. In contrast, in the DAE-
decoder paradigm, the DAE provides candi-
dates to reconstruct texts from the corrupted
ones based on contextual feature, and the de-
coder3 selects the best candidates by incorpo-
rating other features.

Besides the new paradigm per se, there are two
additional contributions in our proposed Chinese
spell checking model:

• we propose a more precise quantification
method of character similarity than the ones
proposed by Liu et al. (2010) and Wang et al.
(2018) (see subsection 2.2);

• we propose an empirically effective decoder
to filter candidates under the principle of get-
ting the highest possible precision with mini-
mal harm to recall (see subsection 2.3).

1.3 Achievements
Thanks to our contributions mentioned in subsec-
tion 1.2, our model can be characterized by the fol-
lowing achievements relative to previous state-of-
the-art models, and thus is named FASPell.

• Our model is Fast. It is shown (subsection
3.3) to be faster in filtering than previous
state-of-the-art models either in terms of ab-
solute time consumption or time complexity.

• Our model is Adaptable. To demonstrate this,
we test it on texts from different scenarios
– texts by humans, such as learners of Chi-
nese as a Foreign Language (CFL), and by
machines, such as Optical Character Recog-
nition (OCR). It can also be applied to both
simplified Chinese and traditional Chinese,
despite the challenging issue that some er-
roneous usages of characters in traditional
texts are considered valid usages in simpli-
fied texts (see Table 1). To the best of our
knowledge, all previous state-of-the-art mod-
els only focus on human errors in traditional
Chinese texts.

3The term decoder here is analogous as in Viterbi decoder
in the sense of finding the best path along candidates.



162

Table 1: Examples on the left are considered valid
usages in simplified Chinese (SC). Notes on the right
are about how they are erroneous in traditional Chi-
nese (TC) and suggested corrections. This inconsis-
tency is because multiple traditional characters were
merged into identical characters in the simplification
process. Our model makes corrections for this type of
errors only in traditional texts. In simplified texts, they
are not detected as errors.

SC Examples Notes on TC usage

周末 (weekend)
旅游 (trip)
制造 (make)

周→週 周 only in周到, etc.
游→遊 游 only in游泳, etc.
制→製 制 only in制度, etc.

• Our model is Simple. As shown in Fig-
ure 1, it has only a masked language model
and a filter as opposed to multiple feature-
producing models and filters being used in
previous state-of-the-art proposals. More-
over, only a small training set and a set of
visual and phonological features of charac-
ters are required in our model. No extra data
are necessary, including confusion set. This
makes our model even simpler.

• Our model is Powerful. On benchmark
data sets, it achieves similar F1 performances
(subsection 3.2) to those of previous state-of-
the-art models on both detection and correc-
tion level. It also achieves arguably high pre-
cision (78.5% in detection and 73.4% in cor-
rection) on our OCR data set.

2 FASPell

As shown in Figure 1, our model uses masked lan-
guage model (see subsection 2.1) as the DAE to
produce candidates and confidence-similarity de-
coder (see subsection 2.2 and 2.3) to filter can-
didates. In practice, doing several rounds of the
whole process is also proven to be helpful (sub-
section 3.4).

2.1 Masked language model
Masked language model (MLM) guesses the to-
kens that are masked in a tokenized sentence. It
is intuitive to use MLM as the DAE to detect and
correct Chinese spelling errors because it is in line
with the task of Chinese spell checking. In the
original training process of MLM in BERT (De-
vlin et al., 2018), the errors are the random masks,
which are the special token [MASK] 80% of the

国   际   电   台   苦   名   丰   持   人

国 际 电 台 知 名 主 持 人

听 话 著 音 广 目 者

世 家 节 视 报 台 演 主 手

台 界 讲 播 冠 闻 支 节 持

國 際
0.9994          0.9999          0.9999          0.9999         0.2878          0.9626          0.9994          0.9981         0.9999

0.0002          0.0000          0.0000          0.0000         0.1999          0.0019          0.0002          0.0002         0.0000

0.0000          0.0000          0.0000          0.0000         0.0429          0.0015          0.0000          0.0001         0.0000

0.0000          0.0000          0.0000          0.0000         0.0252          0.0014          0.0000          0.0001         0.0000

Masked Language Model

国   际   电   台   著   名    主   持   人

 

rank=1

rank=2

rank=3

rank=4

✓ ✓

✖ ✖

Confidence-Similarity Decoder

Figure 1: A real example of how an erroneous sentence
which is supposed to have the meaning of "A famous
international radio broadcaster" is successfully spell-
checked with two erroneous characters苦 and丰 being
detected and corrected using FASPell. Note that with
our proposed confidence-similarity decoder, the final
choice for substitution is not necessarily the candidate
ranked the first.

time, a random token in the vocabulary 10% of
the time and the original token 10% of the time. In
cases where a random token is used as the mask,
the model actually learns how to correct an erro-
neous character; in cases where the original tokens
are kept, the model actually learns how to detect if
a character is erroneous or not. For simplicity pur-
poses, FASPell adopts the architecture of MLM as
in BERT (Devlin et al., 2018). Recent variants –
XLNet (Yang et al., 2019), MASS (Song et al.,
2019) have more complex architectures of MLM,
but they are also suitable.

However, just using a pre-trained MLM raises
the issue that the errors introduced by random
masks may be very different from the actual errors
in spell checking data. Therefore, we propose the
following method to fine-tune the MLM on spell
checking training sets:

• For texts that have no errors, we follow the
original training process as in BERT;

• For texts that have errors, we create two types
of training examples by:
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1. given a sentence, we mask the erroneous
tokens with themselves and set their tar-
get labels as their corresponding correct
characters;

2. to prevent overfitting, we also mask to-
kens that are not erroneous with them-
selves and set their target labels as them-
selves, too.

The two types of training examples are bal-
anced to have roughly similar quantity.

Fine-tuning a pre-trained MLM is proven to be
very effective in many downstream tasks (Devlin
et al., 2018; Yang et al., 2019; Song et al., 2019),
so one would argue that this is where the power of
FASPell mainly comes from. However, we would
like to emphasize that the power of FASPell should
not be biasedly attributed to MLM. In fact, we
show in our ablation studies (subsection 3.2) that
MLM itself can only serve as a very weak Chinese
spell checker (its performance can be as poor as
F1 being only 28.9%), and the decoder that uti-
lizes character similarity (see subsection 2.2 and
2.3) is also significantly indispensable to produc-
ing a strong Chinese spell checker.

2.2 Character similarity

Erroneous characters in Chinese texts by humans
are usually either visually (subsection 2.2.1) or
phonologically similar (subsection 2.2.2) to corre-
sponding correct characters, or both (Chang, 1995;
Liu et al., 2010; Yu and Li, 2014). It is also true
that erroneous characters produced by OCR pos-
sess visual similarity (Tong and Evans, 1996).

We base our similarity computation on two
open databases: Kanji Database Project4 and Uni-
han Database5 because they provide shape and
pronunciation representations for all CJK Unified
Ideographs in all CJK languages.

2.2.1 Visual similarity
The Kanji Database Project uses the Unicode
standard – Ideographic Description Sequence
(IDS) to represent the shape of a character.

As illustrated by examples in Figure 2, the IDS
of a character is formally a string, but it is essen-
tially the preorder traversal path of an ordered tree.

4http://kanji-database.sourceforge.
net/

5https://unicode.org/charts/unihan.
html

／＼ 
／＼ 

/" /" 

／＼ 

／＼ ／＼ 

/"/\/"/" 

贫 :

分 贝
八 刀 人冂

⿱⿱⿰丿乁⿹𠃌丿⿵⿰丨𠃌⿰丿乁

⿱

⿱
⿱

⿱

⿱

⿵

⿵

⿰ ⿰⿰⿹

丿 丿 丿乁 乁𠃌 𠃌丨

① ②

③

--------------------------------------------------

Figure 2: The IDS of a character can be given in dif-
ferent granularity levels as shown in the tree forms in
¬-® for the simplified character 贫 (meaning poor).
In FASPell, we only use stroke-level IDS in the form
of a string, like the one above the dashed ruling line.
Unlike using only actual strokes (Wang et al., 2018),
the Unicode standard Ideographic Description Charac-
ters (e.g., the non-leaf nodes in the trees) describe the
layout of a character. They help us to model the sub-
tle nuances in different characters that are composed of
identical strokes (see examples in Table 2). Therefore,
IDS gives us a more precise shape representation of a
character.

In our model, we only adopt the string-form
IDS. We define the visual similarity between two
characters as one minus normalized6 Levenshtein
edit distance between their IDS representations.
The reason for normalization is twofold. Firstly,
we want the similarity to range from 0 to 1 for the
convenience of later filtering. Secondly, if a pair
of more complex characters have the same edit dis-
tance as a pair of less complex characters, we want
the similarity of the more complex characters to be
slightly higher than that of the less complex char-
acters (see examples in Table 2).

We do not use the tree-form IDS for two rea-
sons even as it seems to make more sense intu-
itively. Firstly, even with the most efficient algo-
rithm (Pawlik and Augsten, 2015, 2016) so far, tree
edit distance (TED) has far greater time complex-
ity than edit distance of strings (O(mn(m + n))
vs. O(mn)). Secondly, we did try TED in prelimi-
nary experiments, but there was no significant dif-
ference from using edit distance of strings in terms
of spell checking performance.

6Since the maximal value of Levenshtein edit distance is
the maximum of the lengths of the two strings in question, we
normalize it simply by dividing it by the maximum length.

http://kanji-database.sourceforge.net/
http://kanji-database.sourceforge.net/
https://unicode.org/charts/unihan.html
https://unicode.org/charts/unihan.html
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Table 2: Examples of the computation of character similarities. IDS is used to compute visual similarity (V-sim)
and pronunciation representations in Mandarin Chinese (MC), Cantonese Chinese (CC), Japanese On’yomi (JO),
Korean (K) and Vietnamese (V) are used to compute phonological similarity (P-sim). Note that the normalization
of edit distance gives us the desired fact that less complex character pair (午,牛) has smaller visual similarity than
more complex character pair (田, 由) even though both of their IDS edit distances are 1. Also, note that 午 and
牛 have more similar pronunciations in some languages than in others; the combination of the pronunciations in
multiple languages gives us a more continuous phonological similarity.

IDS MC CC JO K V V-sim P-sim

午 (noon)
牛 (cow)

⿱⿰丿一⿻一丨
⿻⿰丿一⿻一丨

wu3
niu2

ng5
ngau4

go
gyuu

o
wu

ngọ
ngưu

0.857 0.280

田 (field)
由 (from)

⿵⿰丨𠃌⿱⿻一丨一

⿻⿰丨𠃌⿱⿻一丨一
tian2
you2

tin4
jau4

den
yuu

cen
yu

điền
do

0.889 0.090

2.2.2 Phonological similarity
Different Chinese characters sharing identical pro-
nunciation is very common (Yang et al., 2012),
which is the case for any CJK language. Thus, If
we were to use character pronunciations in only
one CJK language, the phonological similarity of
character pairs would be limited to a few discrete
values. However, a more continuous phonologi-
cal similarity is preferred because it can make the
curve used for filtering candidates smoother (see
subsection 2.3).

Therefore, we utilize character pronunciations
of all CJK languages (see examples in Table 2),
which are provided by the Unihan Database. To
compute the phonological similarity of two char-
acters, we first calculate one minus normalized
Levenshtein edit distance between their pronunci-
ation representations in all CJK languages (if ap-
plicable). Then, we take the mean of the results.
Hence, the similarity should range from 0 to 1.

2.3 Confidence-Similarity Decoder

Candidate filters in many previous models are
based on setting various thresholds and weights for
multiple features of candidate characters. Instead
of this naive approach, we propose a method that
is empirically effective under the principle of get-
ting the highest possible precision with minimal
harm to recall. Since the decoder utilizes contex-
tual confidence and character similarity, we refer
to it as the confidence-similarity decoder (CSD).
The mechanism of CSD is explained, and its ef-
fectiveness is justified as follows:

First, consider the simplest case where only one
candidate character is provided for each original
character. For those candidates that are the same
as their original characters, we do not substitute

the original characters. For those that are dif-
ferent, we can draw a confidence-similarity scat-
ter graph. If we compare the candidates with the
ground truths, the graph will resemble the plot
¬ of Figure 3. We can observe that the true-
detection-and-correction candidates are denser to-
ward the upper-right corner; false-detection candi-
dates toward the lower-left corner; true-detection-
and-false-correction candidates in the middle area.
If we draw a curve to filter out false-detection
candidates (plot ­ of Figure 3) and use the rest
as substitutions, we can optimize character-level
precision with minimal harm to character-level
recall for detection; if true-detection-and-false-
correction candidates are also filtered out (plot ®

of Figure 3), we can get the same effect for cor-
rection. In FASPell, we optimize correction per-
formance and manually find the filtering curve us-
ing a training set, assuming its consistency with its
corresponding testing set. But in practice, we have
to find two curves – one for each type of similarity,
and then take the union of the filtering results.

Now, consider the case where there are c > 1
candidates. To reduce it into the previously de-
scribed simplest case, we rank the candidates for
each original character according to their contex-
tual confidence and put candidates that have the
same rank into the same group (i.e., c groups in
total). Thus, we can find a filter as previously de-
scribed for each group of candidates. All c filters
combined further alleviate the harm to recall be-
cause more candidates are taken into account.

In the example of Figure 1, there are c = 4
groups of candidates. We get a correct substitution
丰→主 from the group whose rank = 1, another
one苦→著 from the group whose rank = 2, and
no more from the other two groups.
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Figure 3: All four plots show the same confidence-similarity graph of candidates categorized by being true-
detection-and-true-correction (T-d&T-c), true-detection-and-false-correction (T-d&F-c) and false-detection (F-d).
But, each plot shows a different way of filtering candidates: in plot ¬, no candidates are filtered; in plot ­, the
filtering optimizes detection performance; in plot ®, as adopted in FASPell, the filtering optimizes correction
performance; in plot ¯, as adopted by previous models, candidates are filtered out by setting a threshold for
weighted confidence and similarity (0.8× confidence+0.2× similarity < 0.8 as an example in the plot). Note
that the four plots use the actual first-rank candidates (using visual similarity) for our OCR data (Trnocr) except
that we randomly sampled only 30% of the candidates to make the plots more viewable on paper.

3 Experiments and results

We first describe the data, metrics and model con-
figurations adopted in our experiments in subsec-
tion 3.1. Then, in subsection 3.2, we show the per-
formance on spell checking texts written by hu-
mans to compare FASPell with previous state-of-
the-art models; we also show the performance on
data that are harvested from OCR results to prove
the adaptability of the model. In subsection 3.3,
we compare the speed of FASPell and three state-
of-the-art models. In subsection 3.4, we investi-
gate how hyper-parameters affect the performance
of FASPell.

3.1 Data, metrics and configurations
We adopt the benchmark datasets (all in traditional
Chinese) and sentence-level7 accuracy, precision,

7Note that although we do not use character-level metrics
(Fung et al., 2017) in evaluation, they are actually important
in the justification of the effectiveness of the CSD as in sub-
section 2.3

Table 3: Statistics of datasets.

Dataset # erroneous sent # sent Avg. length

Trn13

Trn14

Trn15

Tst13
Tst14
Tst15

350
3432
2339

996
529
550

700
3435
2339
1000
1062
1100

41.8
49.6
31.3
74.3
50.0
30.6

Trnocr

Tstocr

3575
1000

3575
1000

10.1
10.2

recall and F1 given by SIGHAN13 - 15 shared
tasks on Chinese spell checking (Wu et al., 2013;
Yu et al., 2014; Tseng et al., 2015). We also har-
vested 4575 sentences (4516 are simplified Chi-
nese) from OCR results of Chinese subtitles in
videos. We used the OCR method by Shi et al.
(2017). Detailed data statistics are in Table 3.

We use the pre-trained masked language
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Table 4: Configurations of FASPell. FT means the
training set for fine-tuning; CSD means the training set
for CSD; r means the number of rounds and c means
the number of candidates for each character. U is the
union of all the spell checking data from SIGHAN13 -
15.

FT CSD Test set r c FT steps

U − Tst13
U − Tst14
U − Tst15

Trn13

Trn14

Trn15

Tst13
Tst14
Tst15

1
3
3

4
4
4

10k
10k
10k

(-) Trnocr Tstocr 2 4 (-)

model8 provided by Devlin et al. (2018). Set-
tings of its hyper-parameters and pre-training
are available at https://github.com/
google-research/bert. Other configura-
tions of FASPell used in our major experiments
(subsection 3.2 - 3.3) are given in Table 4. For
ablation experiments, the same configurations are
used except when CSD is removed, we take the
candidates ranked the first as default outputs. Note
that we do not fine-tune the mask language model
for OCR data because we learned in preliminary
experiments that fine-tuning worsens performance
for this type of data9.

3.2 Performance

As shown in Table 6, FASPell achieves state-of-
the-art F1 performance on both detection level and
correction level. It is better in precision than the
model by Wang et al. (2018) and better in recall
than the model by Zhang et al. (2015). In compar-
ison with Zhao et al. (2017), It is better by any met-
ric. It also reaches comparable precision on OCR
data. The lower recall on OCR data is partially be-
cause many OCR errors are harder to correct even
for humans (Wang et al., 2018).

Table 6 also shows that all the components of
FASPell contribute effectively to its good perfor-
mance. FASPell without both fine-tuning and
CSD is essentially the pre-trained mask language
model. Fine-tuning it improves recall because
FASPell can learn about common errors and how
they are corrected. CSD improves its precision
with minimal harm to recall because this is the un-

8https://storage.googleapis.com/bert_
models/2018_11_03/chinese_L-12_H-768_
A-12.zip

9 It is probably because OCR errors are subject to random
noise in source pictures rather than learnable patterns as in
human errors. However, since the paper is not about OCR,
we do not elaborate on this here.

Table 5: Speed comparison (ms/sent). Note that the
speed of FASPell is the average in several rounds.

Test set FASPell Wang et al. (2018)

Tst13
Tst14
Tst15

446
284
177

680
745
566

derlying principle of the design of CSD.

3.3 Filtering Speed10

First, we measure the filtering speed of Chinese
spell checking in terms of absolute time consump-
tion per sentence (see Table 5). We compare the
speed of FASPell with the model by Wang et al.
(2018) in this manner because they have reported
their absolute time consumption11. Table 5 clearly
shows that FASPell is much faster.

Second, to compare FASPell with models
(Zhang et al., 2015; Zhao et al., 2017) whose ab-
solute time consumption has not been reported,
we analyze the time complexity. The time com-
plexity of FASPell is O(scmn + sc log c), where
s is the sentence length, c is the number of can-
didates, mn accounts for computing edit distance
and c log c for ranking candidates. Zhang et al.
(2015) use more features than just edit distance, so
the time complexity of their model has additional
factors. Moreover, since we do not use confusion
set, the number of candidates for each character of
their model is practically larger than ours: x × 10
vs. 4. Thus, FASPell is faster than their model.
Zhao et al. (2017) filter candidates by finding the
single-source shortest path (SSSP) in a directed
graph consisting of all candidates for every token
in a sentence. The algorithm they used has a time
complexity of O(|V |+ |E|) where |V | is the num-
ber of vertices and |E| is the number of edges in
the graph (Eppstein, 1998). Translating it in terms
of s and c, the time complexity of their model is
O(sc+ cs). This implies that their model is expo-
nentially slower than FASPell for long sentences.

10Considering only the filtering speed is because the
Transformer, the Bi-LSTM and language models used by pre-
vious state-of-the-art models or us before filtering are already
well studied in the literature.

11 We have no access to the 4-core Intel Core i5-7500 CPU
used by Wang et al. (2018). To minimize the difference of
speed caused by hardware, we only use 4 cores of a 12-core
Intel(R) Xeon(R) CPU E5-2650 in the experiments.

https://github.com/google-research/bert
https://github.com/google-research/bert
https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip
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Table 6: This table shows spell checking performances on both detection and correction level. Our model –
FASPell achieves similar performance to that of previous state-of-the-art models. Note that fine-tuning and CSD
both contribute effectively to its performance according to the results of ablation experiments. (− FT means
removing fine-tuning; − CSD means removing CSD.)

Test set Models Detection Level Correction Level

Acc. (%) Prec. (%) Rec. (%) F1 (%) Acc. (%) Prec. (%) Rec. (%) F1 (%)

Tst13

Wang et al. (2018)
Yeh et al. (2013)
FASPell
FASPell − FT
FASPell − CSD
FASPell − FT − CSD

(-)
(-)

63.1
40.9
41.0
47.9

54.0
(-)

76.2
75.5
42.3
65.2

69.3
(-)

63.2
40.9
41.1
47.8

60.7
(-)

69.1
53.0
41.6
55.2

(-)
62.5
60.5
39.6
31.3
35.6

(-)
70.3
73.1
73.2
32.2
48.4

(-)
62.5
60.5
39.6
31.3
35.4

52.1
66.2
66.2
51.4
31.8
40.9

Tst14

Zhao et al. (2017)
Wang et al. (2018)
FASPell
FASPell − FT
FASPell − CSD
FASPell − FT − CSD

(-)
(-)

70.0
57.8
49.0
56.3

(-)
51.9
61.0
54.5
31.0
38.4

(-)
66.2
53.5
18.1
42.3
26.8

(-)
58.2
57.0
27.2
35.8
31.6

(-)
(-)

69.3
57.7
44.9
52.1

55.5
(-)

59.4
53.7
25.0
26.0

39.1
(-)

52.0
17.8
34.2
18.0

45.9
56.1
55.4
26.7
28.9
21.3

Tst15

Zhang et al. (2015)
Wang et al. (2018)
FASPell
FASPell − FT
FASPell − CSD
FASPell − FT − CSD

70.1
(-)

74.2
61.5
65.5
63.7

80.3
56.6
67.6
74.1
49.3
59.1

53.3
69.4
60.0
25.5
59.1
35.3

64.0
62.3
63.5
37.9
53.8
44.2

69.2
(-)

73.7
61.3
60.0
57.6

79.7
(-)

66.6
72.5
40.2
38.3

51.5
(-)

59.1
24.9
48.2
22.7

62.5
57.1
62.6
37.1
43.8
28.5

Tstocr
FASPell
FASPell − CSD

18.6
34.5

78.5
65.8

18.6
34.5

30.1
45.3

17.4
18.9

73.4
36.1

17.4
18.9

28.1
24.8

3.4 Exploring hyper-parameters
First, we only change the number of candidates
in Table 4 to see its effect on spell checking per-
formance. As illustrated in Figure 4, when more
candidates are taken into account, additional de-
tections and corrections are recalled while max-
imizing precision. Thus, increase in the number
of candidates always results in the improvement of
F1. The reason we set the number of candidates
c = 4 in Table 4 and no larger is because there is a
trade-off with time consumption.

Second, we do the same thing to the number of
rounds of spell checking in Table 4. We can ob-
serve in Figure 4 that the correction performance
on Tst14 and Tst15 reaches its peak when the
number of rounds is 3. For Tst13 and Tstocr, that
number is 1 and 2, respectively. A larger num-
ber of rounds sometimes helps because FASPell
can achieve high precision in detection in each
round, so undiscovered errors in last round may be
detected and corrected in the next round without
falsely detecting too many non-errors.

4 Conclusion

We propose a Chinese spell checker – FASPell that
reaches state-of-the-art performance. It is based
on DAE-decoder paradigm that requires only a

small amount of spell checking data and gives up
the troublesome notion of confusion set. With
FASPell as an example, each component of the
paradigm is shown to be effective. We make our
code and data publically available at https://
github.com/iqiyi/FASPell.

Future work may include studying if the DAE-
decoder paradigm can be used to detect and cor-
rect grammatical errors or other less frequently
studied types of Chinese spelling errors such as
dialectical colloquialism (Fung et al., 2017) and
insertion/deletion errors.
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Figure 4: The four plots in the first row show how
the number of candidates for each character affects F1
performances. The four in the second row show the
impact of the number of rounds of spell checking.

https://github.com/iqiyi/FASPell
https://github.com/iqiyi/FASPell
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