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Abstract

We study methods for learning sentence em-
beddings with syntactic structure. We focus
on methods of learning syntactic sentence-
embeddings by using a multilingual parallel-
corpus augmented by Universal Parts-of-
Speech tags. We evaluate the quality of the
learned embeddings by examining sentence-
level nearest neighbours and functional dis-
similarity in the embedding space. We also
evaluate the ability of the method to learn syn-
tactic sentence-embeddings for low-resource
languages and demonstrate strong evidence for
transfer learning. Our results show that syntac-
tic sentence-embeddings can be learned while
using less training data, fewer model parame-
ters, and resulting in better evaluation metrics
than state-of-the-art language models.

1 Introduction

Recent success in language modelling and repre-
sentation learning have largely focused on learn-
ing the semantic structures of language (Devlin
et al., 2018). Syntactic information, such as part-
of-speech (POS) sequences, is an essential part
of language and can be important for tasks such
as authorship identification, writing-style analysis,
translation, etc. Methods that learn syntactic rep-
resentations have received relatively less attention,
with focus mostly on evaluating the semantic in-
formation contained in representations produced
by language models.

Multilingual embeddings have been shown to
achieve top performance in many downstream
tasks (Conneau et al., 2017; Artetxe and Schwenk,
2018). By training over large corpora, these mod-
els have shown to generalize to similar but unseen
contexts. However, words contain multiple types
of information: semantic, syntactic, and morpho-
logic. Therefore, it is possible that syntactically
different passages have similar embeddings due
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to their semantic properties. On tasks like the
ones mentioned above, discriminating using pat-
terns that include semantic information may result
in poor generalization, specially when datasets are
not sufficiently representative.

In this work, we study methods that learn
sentence-level embeddings that explicitly capture
syntactic information. We focus on variations
of sequence-to-sequence models (Sutskever et al.,
2014), trained using a multilingual corpus with
universal part-of-speech (UPOS) tags for the tar-
get languages only. By using target-language
UPOS tags in the training process, we are able
to learn sentence-level embeddings for source lan-
guages that lack UPOS tagging data. This prop-
erty can be leveraged to learn syntactic embed-
dings for low-resource languages.

Our main contributions are: to study whether
sentence-level syntactic embeddings can be
learned efficiently, to evaluate the structure of
the learned embedding space, and to explore the
potential of learning syntactic embeddings for
low-resource languages.

We evaluate the syntactic structure of
sentence-level embeddings by performing
nearest-neighbour (NN) search in the embedding
space. We show that these embeddings exhibit
properties that correlate with similarities between
UPOS sequences of the original sentences.
We also evaluate the embeddings produced by
language models such as BERT (Devlin et al.,
2018) and show that they contain some syntactic
information.

We further explore our method in the few-shot
setting for low-resource source languages without
large, high quality treebank datasets. We show its
transfer-learning capabilities on artificial and real
low-resource languages.

Lastly, we show that training on multilingual
parallel corpora significantly improves the learned
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syntactic embeddings. This is similar to exist-
ing results for models trained (or pre-trained) on
multiple languages (Schwenk, 2018; Artetxe and
Schwenk, 2018) for downstream tasks (Lample
and Conneau, 2019).

2 Related Work

Training semantic embeddings based on multilin-
gual data was studied by MUSE (Conneau et al.,
2017) and LASER (Artetxe and Schwenk, 2018) at
the word and sentence levels respectively. Multi-
task training for disentangling semantic and syn-
tactic information was studied in (Chen et al.,
2019). This work also used a nearest neigh-
bour method to evaluate the syntactic properties
of models, though their focus was on disentangle-
ment rather than embedding quality.

The syntactic content of language models was
studied by examining syntax trees (Hewitt and
Manning, 2019), subject-object agreement (Gold-
berg, 2019), and evaluation on syntactically al-
tered datasets (Linzen et al., 2016; Marvin and
Linzen, 2018). These works did not examine mul-
tilingual models.

Distant supervision (Fang and Cohn, 2016;
Plank and Agic, 2018) has been used to learn POS
taggers for low-resource languages using cross-
lingual corpora. The goal of these works is to learn
word-level POS tags, rather than sentence-level
syntactic embeddings. Furthermore, our method
does not require explicit POS sequences for the
low-resource language, which results in a simpler
training process than distant supervision.

3 Method

3.1 Architecture

We iterated upon the model architecture pro-
posed in LASER (Artetxe and Schwenk, 2018).
The model consists of a two-layer Bi-directional
LSTM (BIiLSTM) encoder and a single-layer
LSTM decoder. The encoder is language agnos-
tic as no language context is provided as input. In
contrast to LASER, we use the concatenation of
last hidden and cell states of the encoder to initial-
ize the decoder through a linear projection.

At each time-step, the decoder takes an embed-
ding of the previous POS target concatenated with
an embedding representing the language context,
as well as a max-pooling over encoder outputs.
Figure 1 shows the architecture of the proposed
model.
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Table 1: Hyperparameters

Parameter Value
Number of encoder layers 2
Encoder forward cell size 128
Encoder backward cell size 128
Number of decoder layers 1
Decoder cell size 512
Input BPE vocab size 40000
BPE embedding size 100
UPOS embedding size 100
Language embedding size 20
Dropout rate 0.2
Learning rate le-4
Batch size 32

The input embeddings for the encoder were cre-
ated using a jointly learned Byte-Pair-Encoding
(BPE) vocabulary (Sennrich et al., 2016) for all
languages by using sentencepiece’

3.2 Training

Training was performed using an aligned paral-
lel corpus. Given a source-target aligned sentence
pair (as in machine translation), we:

1. Convert the sentence in the source language
into BPE

Look up embeddings for BPE as the input to
the encoder

Convert the sentence in a target language into
UPOS tags, in the tagset of the target lan-
guage.

Use the UPOS tags in step 3 as the targets for
a cross-entropy loss.

Hence, the task is to predict the UPOS sequence
computed from the translated input sentence.

The UPOS targets were obtained using Stand-
fordNLP (Qi et al., 2018) 2. Dropout with a drop
probability of 0.2 was applied to the encoder. The
Adam optimizer (Kingma and Ba, 2015) was used
with a constant learning rate of 0.0001. Table 1
shows a full list of the hyperparameters used in
the training procedure.

3.3 Dataset

To create our training dataset, we followed an ap-
proach similar to LASER. The dataset contains 6

"https://github.com/google/sentencepiece
*https://stanfordnlp.github.io/stanfordnlp/index.html
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Figure 1: Proposed architecture.

languages: English, Spanish, German, Dutch, Ko-
rean and Chinese Mandarin. These languages use
3 different scripts, 2 different language orderings,
and belong to 4 language families.

English, Spanish, German, and Dutch use a
Latin-based script. However, Spanish is a Roman-
tic language while the others are Germanic lan-
guages. Chinese Mandarin and Korean are in-
cluded because they use non-latin based scripts
and originate from language families distinct from
the other languages. Although the grammatical
rules vary between the selected languages, they
share a number of key characteristics such as
the Subject-Verb-Object ordering, except Korean
(which mainly follows the Subject-Object-Verb or-
der). We hope to extend our work to other lan-
guages with different scripts and sentence struc-
tures, such as Arabic, Japanese, Hindi, etc. in the
future.

The dataset was created by using translations
provided by Tatoeba® and OpenSubtitles* (Lison
and Tiedemann, 2016). They were chosen for their
high availability in multiple languages.

Statistics of the final training dataset are shown
in Table 2. Rows and columns correspond to
source and target languages respectively.

3.3.1 Tatoeba

Tatoeba is a freely available crowd-annotated
dataset for language learning. We selected all sen-
tences in English, Spanish, German, Dutch, and
Korean. We pruned the dataset to contain only
sentences with at least one translation to any of
the other languages. The final training set contains
1.36M translation sentence pairs from this source.

3https://tatoeba.org/eng/
*http://opus.nlpl.eu/OpenSubtitles-v2018.php
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3.3.2 OpenSubtitles

We augmented our training data by using the 2018
OpenSubtitles dataset. OpenSubtitles is a publicly
available dataset based on movie subtitles (Lison
and Tiedemann, 2016). We created our training
dataset from selected aligned subtitles by taking
the unique translations among the first million sen-
tences, for each aligned parallel corpus. We fur-
ther processed the data by pruning to remove sam-
ples with less than 3 words, multiple sentences,
or incomplete sentences. The resulting dataset
contains 1.9M translation sentence pairs from this
source.

4 Experiments

We aim to address the following questions:

1. Can syntactic structures be embedded? For

multiple languages?

. Can parallel corpora be used to learn syntac-
tic structure for low-resource languages?

. Does multilingual pre-training improve syn-
tactic embeddings?

We address question 1 in Secs. 4.1 and 4.2 by
evaluating the quality of syntactic and semantic
embeddings in several ways. Questions 2 and 3
are addressed in Sec. 4.3 by studying the transfer-
learning performance of syntactic embeddings.

4.1 Quality of Syntactic Embeddings

We studied the quality of the learned syntactic
embeddings by using a nearest-neighbour (NN)
method.

First, we calculated the UPOS sequence of all
sentences in the Tatoeba dataset by using a tagger.
Sentences were then assigned to distinct groups
according to their UPOS sequence, i.e., all sen-
tences belonging to the same group had the same



Table 2: Training Dataset Statistics

English German Spanish Chinese Korean Dutch
English - 521.87k 19451k 41.33k  31.81k 190.86k
German 520.64k - 217.96k 5.67k 021k 12.20k
Spanish  193.01k 217.46k - 159.67k 28.68k  144.82k
Chinese 40.79k  5.62k 159.73k - 0.05k  0.32k
Korean 31.05k  1.37k 28.89k  0.07k - 56.93k
Dutch 215.18k 25.75k  155.35k 0.66k 56.92k -

UPOS sequence.

For all languages except Korean, a held-out test
set was created by randomly sampling groups that
contained at least 6 sentences. For Korean, all
groups containing at least 6 sentences were kept
as the test set since the dataset is small.

During evaluation, we applied max-pooling to
the outputs of the encoder to obtain the syntactic
embeddings of the held-out sentences”.

For each syntactic embedding, we find its top
nearest neighbour (1-NN) and top-5 nearest neigh-
bours (5-NN) in the embedding space for the held-
out sentences, based on their UPOS group.

Given n sentences S {s0,...,Sn—1} and
their embeddings F = {eq,...,e,—_1}, for each
s; there is a set of k gold nearest neighbours
G(i, k) = {90,---,9k-1}, G(i, k) C S such that
d(si,g) < d(s;,s)forallg € G(i,k)ands €
S\ G(i, k), where d(-, -) is the cosine distance.

Given embedding e;, we calculate cosine dis-
tances {d(e;,e;) fore; € E,e; # e;} and sort
them into non-decreasing order d;, < dj; < --- <
d;,_,. We consider the ordering to be unique as
the probability of embedding cosine distances be-
ing equal is very small.

The set of embedded k-nearest neighbours of s;
is defined as

N(i, k) = {sj forj € {jo, ., Jk-1}}

Finally, the k-nearest neighbours accuracy for s;
is given by

|N(i, k) N G(i, k)|
k

A good embedding model should cluster the
embeddings for similar inputs in the embedding
space. Hence, the 5-NN test can be seen as an in-
dicator of how cohesive the embedding space is.

SEvaluation data will be hosted at

https://github.com/ccliu2/syn-emb
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Table 3: Syntactic Nearest-Neighbour Accuracy (%)

ISO 1-NN/5-NN Total/Groups
English en  97.27/93.36 2784/160
German de  93.45/86.77 1282/91
Spanish es 93.81/86.24  1503/81
Chinese zh  71.26/61.44 167/22
Korean ko  28.27/18.40 527/40
Dutch nl 74.17/51.71  3171/452

The results are shown in Table 3. The differ-
ences in the number of groups in each language
are due to different availabilities of sentences and
sentence-types in the Tatoeba dataset.

The high nearest neighbours accuracy indicates
that syntax information was successfully captured
by the embeddings. Table 3 also shows that the
syntactic information of multiple languages was
captured by a single embedding model.

4.1.1 Language Model

A number of recent works (Hewitt and Man-
ning, 2019; Goldberg, 2019) have probed lan-
guage models to determine if they contain syn-
tactic information. We applied the same nearest
neighbours experiment (with the same test sets)
on a number of existing language models: Uni-
versal Sentence Encoder (USE) (Cer et al., 2018),
LASER, and BERT. For USE we used models
available from TensorHub®. For LASER we used
models and created embeddings from the official
repository ’.

For BERT, we report the results using max
(BERT),,,4:) and average-pooling (BERT ), ob-
tained from the BERT embedding toolkit® with
the multilingual cased model (104 languages, 12-
layers, 768-hidden units, 12-heads), and “pooled-
output’ (BERT y¢py¢) from the TensorHub version

Shttps://www.tensorflow.org/hub
"https://github.com/facebookresearch/LASER
8https://github.com/imgarylai/bert-embedding



of the model with the same parameters.

We computed the nearest neighbours experi-
ment for all languages in the training data for
the above models. The results are shown in Ta-
ble 4. The results show that general purpose
language models do capture syntax information,
which varies greatly across languages and models.

The nearest neighbours accuracy of our syn-
tactic embeddings in Table 3 significantly outper-
forms the general purpose language models. Ar-
guably these language models were trained using
different training data. However, this is a reason-
able comparison because many real-world appli-
cations rely on released pre-trained language mod-
els for syntactically related information. Hence,
we want to show that we can use much smaller
models trained with direct supervision, to obtain
syntactic embeddings with similar or better qual-
ity. Nonetheless, the training method used in this
work can certainly be extended to architectures
similar to BERT or USE.

4.2 Functional Dissimilarity

The experiments in the previous section showed
that the proposed syntactic embeddings formed
cohesive clusters in the embedding space, based
on UPOS sequence similarities. We further stud-
ied the spatial relationships within the embed-
dings.

Word2Vec (Mikolov et al., 2013) examined spa-
tial relationships between embeddings and com-
pared them to the semantic relationships between
words. Operations on vectors in the embedding
space such as King — Man+ Woman = Queen
created vectors that also correlated with similar
operations in semantics. Such semantic compar-
isons do not directly translate to syntactic embed-
dings. However, syntax information shifts with
edits on POS sequences. Hence, we examined
the spatial relationships between syntactic embed-
dings by comparing their cosine similarities with
the edit distances between UPOS sequence pairs.

Given n UPOS sequences U = {ug, ..., Up—1},
we compute the matrix L € R™*", where [;; =
I(u;, u;), the complement of the normalized Lev-
enshtein distance between u; and ;.

Given the set of embedding vectors
{eg,...,en—1} where e; is the embedding for
sentence s;, we also compute D € R™*"™ where
dij = d(e;,ej). We further normalize d;; to be
within [0, 1] by min-max normalization to obtain

D = minMax(D).
Following (Yin and Shen, 2018), we define the
functional dissimilarity score by

|L - Dl|p
—_—

Intuitively, UPOS sequences that are similar
(smaller edit distance) should be embedded close
to each other in the embedding space, and embed-
dings that are further away should have dissimilar
UPOS sequences. Hence, the functional dissimi-
larity score is low if the relative changes in UPOS
sequences are reflected in the embedding space.
The score is high if such changes are not reflected.

The functional dissimilarity score was com-
puted using sentences from the test set in CoNLL
2017 Universal Dependencies task (Nivre et al.,
2017) for the relevant languages with the provided
UPOS sequences. Furthermore, none of the evalu-
ated models, including the proposed method, were
trained with CoNLL2017 data.

We compared the functional dissimilarity scores
of our syntactic representations against embed-
dings obtained from BERT and LASER, to further
demonstrate that simple network structures with
explicit supervision may be sufficient to capture
syntactic structure. All the results are shown in
Table 5. We only show the best (lowest) results
from BERT.

4.3 Transfer Performance of Syntactic
Embeddings

Many NLP tasks utilize POS as features, but hu-
man annotated POS sequences are difficult and ex-
pensive to obtain. Thus, it is important to know if
we can learn sentences-level syntactic embeddings
for low-sources languages without treebanks.

We performed zero-shot transfer of the syntac-
tic embeddings for French, Portuguese and In-
donesian. French and Portuguese are simulated
low-resource languages, while Indonesian is a true
low-resource language. We reported the 1-NN and
5-NN accuracies for all languages using the same
evaluation setting as described in the previous sec-
tion. The results are shown in Table 6 (top).

We also fine-tuned the learned syntactic embed-
dings on the low-resource language for a varying
number of training data and languages. The results
are shown in Table 6 (bottom). In this table, the
low-resource language is denoted as the ‘source’,
while the high-resource language(s) is denoted as
the ‘target’. With this training method, no UPOS
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Table 4: Syntactic Nearest-Neighbour for Language Models (%)

English German Spanish Chinese Korean Dutch
Model 1-NN/5-NN  1-NN/5-NN 1-NN/5-NN 1-NN/5-NN 1-NN/5-NN  1-NN/5-NN
USE 71.83/55.68 59.87/44.26 53.05/38.06 39.23/30.18 21.22/12.43 28.66/12.77
BERT,, . 90.19/86.36  83.66/77.63 83.89/79.92 67.96/68.40 20.30/11.92 37.67/19.51
BERT,q 89.06/84.70 79.54/74.82 78.24/75.61 65.75/67.07 20.30/11.47 37.04/19.46
BERT output  77.75/63.44  66.20/51.89  65.21/50.41 52.49/46.34 16.39/10.98 24.27/10.67
LASER 86.33/76.66 76.56/62.88 72.49/59.72 56.89/45.15 26.63/15.90 50.75/31.00
Table 5: Functional Dissimilarity Scores (Lower is Better)

Model English German Spanish Chinese Korean Dutch

BERT,4 0.3463 0.3131 0.2955 0.2935 0.3001 0.3131

LASER 0.1602 0.1654 0.2074 0.3099 0.2829 0.1654

Proposed Work 0.1527 0.1588  0.1588  0.2267  0.2533 0.1588

tag information was provided to the model for
the ‘source’ languages, where supervising infor-
mation comes solely from parallel sentences and
UPOS tags in high-resource languages.

The results show that for a new language
(French and Portuguese) that is similar to the fam-

Table 6: Syntactic Nearest-Neighbour on New lan-
guages (%)

ily of pre-training languages, there are two ways
to achieve higher 1-NN accuracy.

Lang (ISO) 1-NN/5-NN  Total/Group
French (fr) 35.86/22.11 6816/435
Protuguese (pt) 48.29/23.15 4608/922
Indonesian (id) 21.00/35.92  657/59

If the num-

Number of Parallel Sentence Pairs

ber of unique sentences in the new language is
small, accuracy can be improved by increasing the
size of the parallel corpora used to fine-tune. If
only one parallel corpus is available, accuracy can
be improved by increasing the number of unique
sentence-pairs used to fine-tune.

For a new language that is dissimilar to the fam-
ily of pre-training languages, e.g. Indonesian in
Table 6, the above methods only improved nearest
neighbours accuracy slightly. This may be caused
by differing data distribution or by tagger inaccu-
racies. The results for Indonesian do indicate that
some syntactic structure can be learned by using
our method, even for a dissimilar language.

A future direction is to conduct a rigorous anal-
ysis of transfer learning between languages from
the same versus different language families.

5 Conclusion

We examined the possibility of creating syntactic
embeddings by using a multilingual method based
on sequence-to-sequence models. In contrast to
prior work, our method only requires parallel cor-
pora and UPOS tags in the target language.

We studied the quality of learned embeddings
by examining nearest neighbours in the embed-
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Source -Target(s) 2k 10k

1SO I-NN/5-NN  1-NN/5-NN
fr-en 47.37/32.18 58.41/42.87
fr-(en,es) 46.82/31.92 58.01/42.65
pt-en 56.75/30.14 64.52/36.94
pt-(en,es) 57.94/30.63  65.00/37.06
id-en 27.09/47.64 31.35/56.01

ding space and investigating their functional dis-
similarity. These results were compared against
recent state-of-the-art language models. We also
showed that pre-training with a parallel corpus
allowed the syntactic embeddings to be trans-
ferred to low-resource languages via few-shot
fine-tuning.

Our evaluations indicated that syntactic struc-
ture can be learnt by using simple network archi-
tectures and explicit supervision. Future direc-
tions include improving the transfer performance
for low-resource languages, disentangling seman-
tic and syntactic embeddings, and analyzing the
effect of transfer learning between languages be-
long to the same versus different language fami-
lies.
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