
Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 48–56
Hong Kong, Nov 4, 2019. c©2019 Association for Computational Linguistics

48

Character-Based Models for Adversarial Phone Number Extraction:
Preventing Human Sex Trafficking

Nathanael Chambers Timothy Forman Catherine Griswold
Yogaish Khastgir Kevin Lu Stephen Steckler

Department of Computer Science
United States Naval Academy
nchamber@usna.edu

Abstract

Illicit activity on the Web often uses noisy
text to obscure information between client and
seller, such as the seller’s phone number. This
presents an interesting challenge to language
understanding systems; how do we model ad-
versarial noise in a text extraction system?
This paper addresses the sex trafficking do-
main, and proposes some of the first neu-
ral network architectures to learn and extract
phone numbers from noisy text. We create
a new adversarial advertisement dataset, pro-
pose several RNN-based models to solve the
problem, and most notably propose a visual
character language model to interpret unseen
unicode characters. We train a CRF jointly
with a CNN to improve number recognition by
89% over just a CRF. Through data augmenta-
tion in this unique model, we present the first
results on characters never seen in training.

1 Introduction

One reason people intentionally obscure textual
content is to evade automatic extraction systems.
There are good reasons for wanting to do this, pri-
vacy being at the forefront. However, illicit activ-
ity is another reason, and human sex trafficking is
one of the most egregious uses. We draw inspi-
ration from this domain, but extracting informa-
tion from adversarial noisy text is a more general
challenge for the NLP community. It is a language
understanding task that humans can easily do, but
which presents difficulty for automated methods.
This paper presents the first deep learning models
for adversarial phone number extraction, and re-
leases new datasets for future experimentation.

An obscured example number is shown here:

(9I4) Too.46-callme-ÖÖ1/4

The true phone number is 914-246-0014, but
this breaks even the most comprehensive rule-

based extractors. It contains examples of visual
substitution (I for 1 and unicode for 0), word sub-
stitution (“Too” for 2), and character confounders
(separators ‘.’, ‘-’, ‘/’ and other words). Any one
challenge might be solvable in isolation, but they
often combine together:

n1ne0one 7n1ne3 n1ne351

Rather than swapping letters for digits (I for
1), this example swaps digits for letters (1 for i)
which are also part of a word swap (‘nine’ for 9).
There are four ‘1’ characters in the string, but only
one of them maps to one of the two 1 digits in
the number 901-793-9351. Beyond this, the most
challenging noise occurs when unicode is injected,
thus rendering finite character models ineffective
since they’ve never seen these characters in train-
ing. This paper proposes to model all of this noise
with several neural network architectures.

The domain of focus for our study is human sex
trafficking, although our proposed models apply to
any domain with obscured information (social me-
dia, for instance, often mixes unusual characters,
confounding normal language models). This topic
is important in terms of global need, but it also has
attractive language properties for research. Since
our datasets come from people who need to post
contact information, they can’t obscure the text too
much, or nobody could call them. This results in
an interesting cognitive challenge that humans can
solve, but state-of-the-art extraction struggles.

The main contributions in this paper are (1) the
first neural models for noisy phone number extrac-
tion, (2) a visual language model over images of
characters, (3) a combined CRF with CNN input,
(4) a data augmentation technique for training that
helps recognize unseen unicode, and (5) state-of-
the-art extraction results on new datasets.

49

2 Previous Work

A number of papers have looked into the sex traf-
ficking domain. Some focus on classifying entire
ads as trafficking or not (Alvari et al., 2016, 2017),
while others build knowledge graphs of mentioned
entities (Szekely et al., 2015) or focus on normal-
izing attributes like geolocations (Kapoor et al.,
2017; Kejriwal and Szekely, 2017; Kejriwal et al.,
2017). Most of these use phone numbers as fea-
tures, and several found them to be among the
most important input (Dubrawski et al., 2015;
Nagpal et al., 2017; Li et al., 2018). In fact, phone
numbers are used as gold truth to connect simi-
lar ads or link traffickers (Rabbany et al., 2018;
Li et al., 2018). Phone numbers have also been
shown to be some of the most stable links to enti-
ties (Costin et al., 2013), so are important for en-
tity linking tasks. Almost all of these threads as-
sume correct phone extraction and ignore the dif-
ficulty of ads with obscured numbers. Although
sometimes unspecified, they all appear to use rule-
based extractors.

Most relevant to this paper is TJBatchEx-
tractor, a rule-based regular expression system
(Dubrawski et al., 2015) which is still state-of-
the-art for extraction, and is used by other work
on trafficking ID (Nagpal et al., 2017). We em-
ploy TJBatchExtractor to identify the ads with ob-
scured text from which it fails to extract a number.
Our paper thus focuses on only the difficult ads
with noisy phone numbers.

Most language models use words or characters
as their base inputs. One of our contributions
is a visual model of characters. We use an im-
age database of 65k unicode characters developed
by BBVA Next Security Lab1 for phishing pre-
vention. Most similar is Liu et al. (2017) who
use CNNs for Asian-language classification. They
aren’t addressing noise like our paper, but rather
the semantics inherent to their visual characters.

Finally, we employ data augmentation (Ding
et al., 2016; Xu et al., 2016) during training of our
visual character model. This is commonly used in
the visual community (Salamon and Bello, 2017;
Zhong et al., 2017) and we adopt their overall idea
to randomly perturb our character images to learn
a robust character recognizer.

1https://github.com/next-security-lab

3 Data and Attributes

3.1 Noisy and Obscured Data
We begin by highlighting the main methods peo-
ple use for adversarial noise in written text. This
is not an exhaustive list, but it covers the vast ma-
jority of cases observed in this paper’s datasets.

1. Digits as Lexemes. The most basic approach
to obscuring numbers is to substitute lexemes
(words) for digits. These are often easy to iden-
tify, and regular expressions with a dictionary are
usually sufficient for detection. Words might be
capitalized (FOUR) or camel case (foUr), such as
in the text, “threeoh2FOUR070six22”.

2. Homophones. This method replaces digits
with homophones or near-rhymes, thereby confus-
ing dictionary approaches as in “337 9twennyfo
06juan9”. Tokens “twenny” and “juan” share
phonological similarities with the digit pronunci-
ation. Regular expressions cannot capture these
without complex phoneme modeling.

3. Letters as Digits. This method substitutes
ASCII letters for their digit lookalikes (e.g., 6I5
093 93B6). The ‘I’ and ‘B’ are representing 1 and
8 respectively. These substitutions can grow more
complicated with things like ‘()’ for 0 and what
was popularized as leetspeak in the 1980’s with
‘E’ for ‘3’ and other such inversions.

4. Visual Deception and Unicode. This is a
variant of ‘Letters as Digits’ above, but goes be-
yond ASCII substitution to use Unicode charac-
ters. Unicode presents a huge challenge to extrac-
tion as these rely entirely on visual similarities in
the character images. Below are just some unicode
options that resemble the ASCII character ‘8’:

8 ! ! ! ! ! Ȣ ȣ " # $ %
A rule-based approach would have to manually

map all possible characters to their digits, an im-
possible task for 138k current unicode characters
(with future room for 1mil). This would also fail
on the larger problem of capturing visually am-
biguous close-matches. For instance, an emoticon
smiley face can be used for the ASCII letter ‘o’:

(4 !! 2) 456 9412

We are the first to our knowledge to model vi-
sual noise with a language model architecture.

50

5. Confounding Separators. Another common
noise tactic is to insert arbitrary characters as sep-
arators. For example: –270**1tree&&822==31–.
The noise in this obscured text is meant to con-
fuse a pattern matcher as to when a digit’s sub-
string begins and ends. Other difficult versions of
this method uses digit characters themselves as the
separators: 111 410 111 897 111 3245 111

6. Human Reasoning. The most difficult class
of obscured text is that which requires reason-
ing to solve. For instance, including arithmetic
(3+1) or instructions to invert digits. This type is
a small minority in obscured phone numbers, but
they prove most challenging.

Some of these challenges have rule-based so-
lutions in isolation, but combined together, they
overlap and build on each other for an exponen-
tial number of noisy combinations. This paper ad-
dresses all of these challenges except for homo-
phones and human reasoning. We leave phoneme
modeling to future work, and reasoning requires
a different approach than discriminative classi-
fiers. The most significant challenge this paper
addresses is that of the visual deceptions (letters
as digits, unicode, and visual sim). We propose
the first neural model for visual similarity detec-
tion with a unique visual model based on a CNN.

4 Corpora

4.1 Real-World Noisy Advertisements
Our initial corpus started from a 250k advertise-
ment crawl of Backpage and Craigslist escort sec-
tions, shared with us by the Global Emancipation
Network. The majority of these ads (180k) are one
line with a standard phone number and no actual
text. We filtered these out to focus on ads with
written descriptions.

After removing one-liners, we ran the state-of-
the-art extractor (Dubrawski et al., 2015) to iden-
tify all ads where the extractor failed to extract
anything. This remaining subset contains ads that
either don’t have a phone number, or they contain
an obscured number that fooled the rule-based ex-
tractor. Figure 1 shows one such explicit ad.

Undergraduate volunteers manually inspected
the remaining ads, removed those without num-
bers, and identified minimal text spans that en-
compassed any obscured phone numbers. These
annotations resulted in approximately 200 real-
world obscured ads with their obscured text spans.

Ad for Phone 555-584-4630

Sexy Slim 555 Ready for fun let me 584 sat-
isfy your 4630 every desire no disappointments..!!
**IF YOUR NOT SERIOUS PLEASE DON’T
CALL ME..!!Kik Me-censored ****CAR
PLAY ONLY****

Figure 1: An example advertisement from the escort
section of Backpage. Phone and username changed for
anonymity. This ad illustrates an obscured number with
normal digits, but text is interspersed in between.

Desiring a larger test set for evaluation, we cre-
ated an adversarial data collection environment for
undergrads to try and “beat” the TJBatchExtractor.
This small-scale collection resulted in about 200
more obscured phone examples.

Merging the crawl with these adversarial ob-
scured numbers, we had 390 real-world examples.
We split into 250 test numbers and 140 for devel-
opment (dev). The dev set was used for model im-
provement and parameter tuning, and the test set
only for final results. Two examples from the dev
set are given here:

Gold Phone Ad Text
3189481720 tree1ate nein 48-one7 twenty
4177015067 4!7 70! fifty6svn

Due to the nature of this domain, training data
is difficult to obtain so neural models are stymied.
We instead chose to “fake” the training data, cre-
ating our own computer-based adversarial dataset.
Though training data is artificial, all experiments
use the above real-world data annotations.

4.2 Artificial Noisy Adversarial Data

A core research question is now whether artificial
training data can train this real-world task. This
section describes our approach.

The generation algorithm starts with a 10 digit
number string (randomly selected2), and then
transforms the string with a sequence of obfusca-
tion operations. Space prevents a full description
of this process and its details, but we will release
the code upon publication. Example transforma-
tions are as follows:

1. Insert separator ASCII chars between digits.
2. Replace a digit with an ASCII lookalike.

2We used a US area code dictionary, and followed the con-
straint that the 4th digit must be [2-9] whereas the 5th to 10th
digits are [0-9]. Numbers were then chosen randomly.

51

Artificial Obscured Phone Numbers
2 1tree\6-zero0###33\˜15
778cinco7five688 PaRtyGiRL 6
*forejuan*for 55!826ate
5 1290 si&te4 ˜˜˜˜˜˜˜˜˜˜135
ate0 5 ***2 08–88 8nine

Figure 2: Examples from the artificial phone number
training set.

3. Replace a digit with its English, Spanish, or
homonym (2 to ‘two’)

4. Capitalize letters or replace with an ASCII
lookalike (C to ‘(’)

5. Replace two digits with its English word
(‘18’ to ‘eighteen’)

6. Insert random English words as separators

These occur in sequence, each with random
chance, so the original digit ‘2’ might become
‘too’ which then becomes ‘To0’ after character
conversion. The output of this process is arguably
more difficult than many real-world examples. See
Figure 2 for generated examples. We ultimately
trained on 100k of these.

5 Models for Obscured Extraction

5.1 Baseline Models
We use two baselines: one from prior work and
another with a basic RNN model.

5.1.1 Rule-Based Baseline
The state-of-the-art for phone number extraction
is the TJBatchExtractor from Debrawski et al.
(2015). This is a large set of regular expressions
designed to capture phone numbers even with vari-
ation and noise, mostly focused on what we’ve
named “Digits as Lexemes” and “Letters as Dig-
its”. Their previous results showed 99% extraction
accuracy, however, we found that 72% of ads are
one line with just unobscured digits, so their result
masks a more challenging subset.

5.1.2 RNN Baseline
Our baseline neural architecture is a character-
based bi-directional LSTM. Input is a 70 charac-
ter span of obscured text, and each character is
mapped to its embedding vector. The embeddings
are randomly initialized and learned during train-
ing. Each embedding is fed into the biLSTM, and
the final hidden state of the biLSTM is treated as
the representation of the obscured text. The hid-
den state is then passed to 10 independent dense

layers, one for each of the 10 digits in the phone
number. A softmax is then used on the output of
each dense layer to predict the digit in that position
of the 10-digit phone number.

We also tested GRUs instead of LSTMs, but
performance did not significantly change.

5.2 Obscured Models

5.2.1 RNN with Positional Attention
The RNN baseline transforms the input text to a
single vector from the biLSTM, and then predicts
the digits in the phone number from this vector.
We found that the model quickly learns to pre-
dict the first digits and the last digits, but learning
for the middle digits is hindered. This intuitively
makes sense because the vector represents the en-
tire text without directed guidance on identifying
where in the text the digits exist. How does the
final dense layer know where the 4th and 5th dig-
its begin? The initial digit, in contrast, is easier to
identify because it leads the string.

Our solution to this deficiency was to add po-
sitional attention to the LSTM. Instead of using
its final LSTM state, the vector is a weighted sum
of all hidden states. The weight vector α is the
learned positional attention. Formally, the ith digit
in the 10 digit phone number is predicted by a
dense layer over context vector input Wi:

Wi =

N∑
j=0

αij ∗ Vj (1)

where N is the length of the LSTM, Vj is the jth
LSTM hidden state, i is the ith digit in the phone,
and αi is the ith digit’s positional attention vector.
This allows the network to learn which part of the
text is relevant for each digit. The first digit in
the number should learn a weight vector α0 that
weights the front of the LSTM more than the end,
and vice versa for α9. Figure 3 shows this model.

We experimented with individual attention
(each digit i has its own learned αi) and a single
shared attention (all digits use the same learned
α). We only report on individual attention since it
outperformed shared attention.

We also tested multiple stacked LSTM layers.
Stacking showed no further improvement.

5.2.2 RNN with Conditioned Prediction
One characteristic of our task is that each digit
prediction is mostly independent from the previ-
ous digit. Unlike many domains in NLP, this is

52

A T E 6

+

8 5 (seven other digits) 6

LSTM

Character
Embeddings

+ +Position
Attention

Dense Layer
+ softmax

Figure 3: LSTM with position attention. Dotted lines
included with conditioned prediction (Sec 5.2.2).

not a sequence modeling problem where knowing
the previous digit semantically assists in guessing
the next. For instance, a 5 is not more likely to be
followed by a 4.3 Despite position attention, the
model still had difficulty distinguishing which por-
tion of the context vector was relevant to a middle
digit. It sometimes repeats an inner digit because
the 4th and 5th positions were too nearby in the
obscured text. Observe these 2 examples:

41093four 2830
4109threeefour tooo830

The seventh digit is a 2, but it starts five char-
acters later in the second string. We observed
repeated digit predictions like: 4109344830. It
would predict the same number twice, and then
skip over the next due to the shifting positions.

Our quick solution to avoiding repeats was to
pass the predictions forward. We added a sim-
ple conditional dependency that feeds the softmax
output of the previous digit to the current digit.
The dotted lines in Figure 3 illustrate this new
link. This removed many of our repeated digits,
and also increased accuracy in other examples that
weren’t even repeated but just made mistakes.

5.2.3 Conditional Random Field Model
Given that providing the previous digit prediction
showed slight improvements on the development
set, we wanted to formalize the sequence predic-
tions with proper transition probabilities. If a digit
prediction leads to an unlikely next prediction (ac-
cording to the model), then perhaps the previous
digit should switch to its 2nd most likely in order
to maximize the joint prediction.

3There are exceptions and phone numbers do have some
constraints, such as having a limited set of 3 leading digits.
However, the remaining 7 digits are mostly random in the US.

A T E 6

B8 B6

LSTM

Character
Embeddings

Dense Layer
+ softmax

I8 I8
CRF

Figure 4: Neural architecture with a CRF top layer.

The other RNN problem is that input varies in
length and noise. Some input is only about digits:

4treeTOO564ateSVN33

Others contain varying complex separators:

–4**tree**TOO sms 564ate+SVN+33

RNNs must learn to ignore separators in ways
that don’t confuse the subsequent dense layers.
The network is remarkably adept at this, but we
hypothesized that a better model should make
a prediction on each and every input character
rather than merging all into the same hidden state.

Conditional Random Fields (Lafferty et al.,
2001) are a natural way of modeling the above. A
CRF tags each character as it goes, and performs
both training and inference, using viterbi search
to find the most likely output prediction sequence.
Figure 4 shows this model. We used the CRF im-
plementation in Keras inspired by (Huang et al.,
2015) to overlay a CRF on top of the RNN-based
models (see also Ma and Hovy (2016)).

The output of a CRF is different since it must
output a label for every character (rather than just
10 phone digits). We use the standard CRF labels
to mark the beginning (B) and included (I) charac-
ters. This means that instead of a single label for
each possible phone digit (e.g., 8), we now have
two labels which represent a character that begins
a digit (B8) and a character in the middle or end
of a digit (I8). We additionally use an Other la-
bel ‘O’ to label the noisy separator characters that
aren’t part of any digit’s substring. The following
is an example:

B2 I2 I2 B4 B7 O B6 I6 I6 B9 B9
T O O 4 7 - s i x 9 9

The mapping from CRF labels (B2,I2,I2) to ac-
tual digits (2) is deterministic. Evaluation metrics
for the previous RNNs also apply to the CRF out-
put after it is mapped. However, training for the
CRF is done entirely on the CRF label loss.

53

A T E 6

+

8 5 (seven other digits) 6

LSTM

Character
Embeddings

+ +Position
Attention

Dense Layer
+ softmax

A T E 6
Character

Images

CNN

CNN

Max pool +
Flatten

Figure 5: CNN architecture for visual image input to
the LSTM model.

5.2.4 Visual Characters with CNNs
As with most NLP tasks, out of vocabulary (OOV)
input is an issue. Our adversarial task is even more
severe because visual substitutions are intentional,
and often OOV as there are 138k current unicode
options. If the character is unseen in training, only
context can try to guess the digit. Below are ex-
amples of such replacement:

Digits ASCII Unicode

 410 41o 41!
Why are these easy for humans to decipher? It’s

purely due to visual similarity. In a “normal” NLP
neural model, each character (or token) is mapped
to an embedding, so unseen characters have no
representation. We might use the default approach
of mapping all unknowns to a shared ‘UNK’ em-
bedding, but this loses the different visual charac-
teristics of each character.

All of this motivates our new Visual-Based
Character RNN. Our model does not learn a dic-
tionary of character embeddings, but instead uses
a series of CNN layers that transform 34x34 im-
ages of the characters. The transformations then
feed into our above models. This is now a model
that can interpret unseen (in training) characters.

Figure 5 shows the CNN combined with our po-
sitional attention RNN. We use two 3x3 convolu-
tion layers with 4 and 8 filters respectively. Each
layer is followed by a relu layer and a batch nor-

malization layer (not shown in the figure). The
convolutions are followed by a max pooling layer
and then flattened. A dense layer with softmax
then reduces the flattened vector. We experi-
mented with up to 3 convolution layers, up to 32
filters, and varied the size of the dense layer.

Visual input changes the model significantly. It
is no longer learning an NLP-style character em-
bedding, but rather learning CNN parameters to
transform an image input into that embedding.
Our first models ran into problems because they
simply memorized each 34x34 image. Since all
ASCII ‘3’ characters map to the same flattened
representation, the model memorizes it, and uni-
code variations fail no matter how similar. We
thus introduced data augmentation during train-
ing. Each 34x34 input is ‘jiggled’ with ran-
dom transformations: (1) translation of the im-
age up/down or right/left, (2) darken/lighten the
image, (3) stretch or widen, and (4) rotate up to
20 degrees. This provided different inputs for the
same ASCII chars, so the CNN was encouraged to
learn key visual features across all variants. Data
augmentation led to our most significant improve-
ments on unseen unicode character input.

6 Experiments

All models were trained on the 100k artificial ob-
scured phone dataset (Section 4.2). 90k was used
for training and 10k to determine convergence.
The RNNs were set to N = 70 in length, and in-
puts were padded to that length. The rare input text
longer than 70 is cropped. Embedding size N=100
and LSTM internal dimensions M=200 were cho-
sen for all RNNs based on dev set performance.
The CRFs performed best at N=200. We also ap-
plied dropout of 0.2 for the LSTMs and 0.5 CRF.

We report results with three metrics: digit ac-
curacy, Levenshtein edit distance, and perfect ac-
curacy. Digit accuracy is the simple alignment of
predicted digit with gold digit (# correct / 10). If
a predicted phone number is longer than 10 dig-
its (CRFs are not bound to strictly 10 predictions),
digit accuracy is computed only over the first 10
predicted digits.

Digit accuracy is flawed because a model might
insert one extra digit, but still guess correct for the
remainder. For example:

Gold: 4109342309
Guess: 41109342309

The CRF inserted an extra 1 digit, just one mis-
take, but digit accuracy is now a very low 0.2.

54

Development Set Test Set
Model Digit Lev Perfect Digit Lev Perfect
TJBatch Rules 0.0 0.0 0.0 0.0 0.0 0.0
LSTM (5.1.2) 77.0 79.7 48.1 74.4 78.2 40.3
LSTM-2 77.5 79.4 49.7 74.8 77.6 40.6
LSTM +att (5.2.1) 78.5 80.5 48.6 76.6 78.9 43.5
LSTM +cond (5.2.2) 79.7 81.6 48.5 76.5 79.5 39.8
LSTM +att +cond 79.1 81.2 48.3 77.2 79.8 42.3
CRF with LSTM (5.2.3) 72.9 84.0 58.1 67.7 83.4 48.2

Table 1: Results on dev and test. Though flawed, digit accuracy is included for completeness. The +att and +cond
options are not compatible with the CRF which does not need attention since it predicts at every input character.

We thus use the Levenshtein edit distance to bet-
ter evaluate performance. Levenshtein’s measure
judges string similarity based on the minimum
number of “edits” required to transform the pre-
diction into the gold: (1.0 − edits/10). In the
above case, one deletion is required to make the
strings the same, so the score is (1− 1/10) = 0.9.

Finally, perfect accuracy is the number of per-
fect phone numbers (all 10 digits) that were cor-
rectly guessed, divided by the size of the test set.

Real-world Test: We report results only on the
real-world test set from Section 4.1. The artifi-
cial data was solely used for training. We did not
run models on the test set until the very end after
choosing our best settings (on the dev set).

Real-world Challenge Test: To further illustrate
the challenge of noisy text, we enhanced the real-
world test set with unicode injections. Using a
hand-created character lookup of visually similar
unicode characters, we replaced 10% of the char-
acters with randomly chosen unicode lookalikes
not in the training data. This results in a very chal-
lenging test set to further benchmark the models.

Finally, all results in the next section are the av-
erage of 4 train/test runs of the same model.

7 Results

Table 1 contains results without CNNs for the
baselines, RNNs, and CRF. The models listed are
those that showed consistent improvement on de-
velopment, and the test set columns were run only
at the end for publication results. Adding position
attention and conditional dependence each showed
improvements of 1-2% Levenshtein. Stacking two
LSTMs showed little gain. The CRF excelled with
a 11% relative gain (on test) for perfect prediction
over the best LSTM setup.

CNN Comparison (Perfect Acc)

Test Challenge
Lev Perf Lev Perf

Best LSTM (no CNN) 81.2 48.3 72.9 22.1
CNN-LSTM 77.3 42.1 65.5 15.6
CNN-LSTM +aug 79.7 39.8 75.2 27.3
Best CRF (no CNN) 84.0 58.1 74.9 17.6
CNN-CRF 82.8 54.2 73.4 14.6
CNN-CRF +aug 83.3 56.1 79.7 33.3

Table 2: Results of the CNN models. Challenge has
10% unseen unicode injected. +aug used visual data
augmentation during training.

For CNN results, Table 2 shows test set perfor-
mance. Adding just the CNNs does not improve
recognition, but in fact are slightly worse. How-
ever, more compelling is the challenge set with
injected unicode confounders. Recall the impor-
tance of data augmentation during training so the
models learn real visual features. These “+aug”
results show why it is needed with a 89% rela-
tive improvement in perfect phone accuracy (from
17.6% to 33.3%). The non-CNN LSTM and CRF
struggle at 17-22%. They simply cannnot repre-
sent unseen characters.

Our new CRF model (no CNN) outperforms the
RNNs on the test set by 10% absolute. When com-
paring challenge test performance, the best CRF-
CNN outperforms the best non-CNN LSTM by
11% absolute. To further illustrate the effect of
unicode confounders, we varied how much we in-
jected and graphed performance in Figure 3. The
CNN models consistently outperform.

8 Full Ad Extraction

We wrapup with a pilot for full ad extraction. The
models presented so far extract from one span of
text (it assumes a phone number exists). This for-

55

Table 3: Phone accuracy as a higher % of unicode sub-
stitutions are made for lookalike ASCII characters.

mulation is a well-defined task for research, but
we also propose how one might apply these ex-
tractors to the more difficult task of full document
extraction when the location of the phone number
is unknown. We briefly describe initial tests.

The most straightforward way to extract from
a document is to split it into text windows
(spans) and try all possible extractions. Since
these are probabilistic models, we can compute
P (phone|span), and find the window span that
maximizes the probability.

best = maxspanP (phone|span) (2)

P (phone|span) =
9∏

i=0

maxjP (di = j|span) (3)

The phone number extracted from the best span is
the phone number in the text.

We collected a set of real advertisements that
don’t have phone numbers, and artificially inserted
an obscured number from our artificial dataset.
This allows us to track which span contains the
phone number, and then evaluate an extractor.

The difficulty with this task is that our mod-
els are trained on precise text spans, whereas this
full document dataset contains lots of non-phone-
related text. To address this difference, we stopped
padding our snippet input with null values (up to
the length of the RNN), and instead pad with ran-
domly selected text snippets from real ads. The
models are exactly the same, we just change how
padding works when the training text is shorter
than length 70. We refer to this as the “ad pad”.

Datum: 6I5 093 93B6
Null-Pad: 6I5 093 93B6
Ad-Pad: 6I5 093 93B6always in town call

To be clear, no models were changed, just how
training input is padded. Can the models iden-
tify the correct text span that contains a phone
number? Table 4 shows these results for standard

Text Span ID of Phone Numbers
Full Full+Partial

Zero pad 70.3% 92.1%
Craigslist ad pad 99.3% 99.7%
Backpage ad pad 98.0% 99.6%

Table 4: Results of choosing text spans with the full
phone number, or a partial match. Partial matches con-
tained on average 7-8 of the 10 digits.

null-padding versus ad-padding, as well as cross-
domain tests. We trained on Craigslist and Back-
page separately, then tested on only Backpage ads.

Window identification works very well as long
as training padded its input with real ad text. This
is encouraging in that it seems these models can
reliably identify where a phone number is present.

Finally, we tested how the models also extract
from these spans after identifying them. Extrac-
tion showed 80% accuracy on full numbers, com-
pared to 98% when train/test only on artificial
phone snippets. We attribute the drop to the diffi-
cult task - window spans contain more noise than
a precise text span. Future work will focus on this
full document task with real-world numbers.

9 Discussion

This is the first work to model noisy phone num-
ber extraction with neural models. Most notably,
our CNNs explore how to use visual characteris-
tics of the characters, rather than standard NLP-
style models with trained embeddings. To the best
of our knowledge, this is the first proposal for a vi-
sual language model in an extraction architecture.

We showed results on new challenge datasets
with injected unicode. These results illustrate the
challenge for extractors, but also the usefulness of
CNN recognizers. In fact, current rule-based ex-
tractors cannot extract any of the numbers in our
test sets. Our CRF outperformed an LSTM-only
model by 10% absolute, and data augmentation
improved on unicode tests by a relative 89% gain.

Possible future work could investigate a Gen-
erative Adversarial Network (GAN) (Goodfellow
et al., 2014). GANs have become popular in vision
tasks, but the normal GAN setup requires training
data to start from, and this sparse domain prohibits
its straightforward use.

Data from this work’s training and evaluation
are available online4, and we hope this spurs fur-
ther work on this important societal challenge.

4www.usna.edu/Users/cs/nchamber/data/phone/

56

10 Acknowledgments

This work would not be possible without the
help of the Global Emancipation Network. Many
thanks also to Jeff Kosseff for bringing this issue
to our attention in the first place. We recognize
and appreciate the support of the DoD HPC Mod-
ernization Office for enhancing our undergradu-
ate education and research. Finally, thanks to Re-
becca Hwa for helpful conversations early on in
this work.

References
Hamidreza Alvari, Paulo Shakarian, and J. E. Kelly

Snyder. 2017. Semi-supervised learning for detect-
ing human trafficking. In Semi-supervised learning
for detecting human trafficking.

Hamidreza Alvari, Paulo Shakarian, and J.E. Kelly
Snyder. 2016. A non-parametric learning approach
to identify online human trafficking. In IEEE Con-
ference on Intelligence and Security Informatics
(ISI).

Andrei Costin, Jelena Isacenkova, Marco Balduzzi,
Aurélien Francillon, and Davide Balzarotti. 2013.
The role of phone numbers in understanding cyber-
crime schemes. In 2013 Eleventh Annual Confer-
ence on Privacy, Security and Trust, pages 213–220.
IEEE.

Jun Ding, Bo Chen, Hongwei Liu, and Mengyuan
Huang. 2016. Convolutional neural network with
data augmentation for sar target recognition. IEEE
Geoscience and remote sensing letters, 13(3):364–
368.

Artur Dubrawski, Kyle Miller, Matthew Barnes,
Benedikt Boecking, and Emily Kennedy. 2015.
Leveraging publicly available data to discern pat-
terns of human-trafficking activity. Journal of Hu-
man Trafficking, 1.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in neural information
processing systems, pages 2672–2680.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Rahul Kapoor, Mayank Kejriwal, and Pedro Szekely.
2017. Using contexts and constraints for improved
geotagging of human trafficking webpages. In Pro-
ceedings of the Fourth International ACM Workshop
on Managing and Mining Enriched Geo-Spatial
Data.

Mayank Kejriwal, Jiayuan Ding, Runqi Shao, Anoop
Kumar, and Pedro Szekely. 2017. Flagit: A system
for minimally supervised human trafficking indica-
tor mining.

Mayank Kejriwal and Pedro Szekely. 2017. Informa-
tion extraction in illicit web domains. In WWW.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data.

Lin Li, Olga Simek, Angela Lai, Matthew P. Daggett,
Charlie K. Dagli, and Cara Jones. 2018. Detection
and characterization of human trafficking networks
using unsupervised scalable text template matching.
In IEEE International Conference on Big Data (Big
Data).

Frederick Liu, Han Lu, Chieh Lo, and Graham Neu-
big. 2017. Learning character-level compositional-
ity with visual features. In ACL.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
arXiv preprint arXiv:1603.01354.

C. Nagpal, K. Miller, B. Boecking, and A. Dubrawski.
2017. An entity resolution approach to isolate in-
stances of human trafficking online.

Reihaneh Rabbany, David Bayani, and Artur
Dubrawski. 2018. Active search of connec-
tions for case building and combating human
trafficking. In KDD.

Justin Salamon and Juan Pablo Bello. 2017. Deep con-
volutional neural networks and data augmentation
for environmental sound classification. IEEE Signal
Processing Letters, 24(3):279–283.

Pedro Szekely, Craig Knoblock, Jason Slepickz, An-
drew Philpot, et al. 2015. Building and using a
knowledge graph to combat human trafficking. In
International Conference on Semantic Web (ICSW).

Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen,
Yangyang Lu, and Zhi Jin. 2016. Improved re-
lation classification by deep recurrent neural net-
works with data augmentation. arXiv preprint
arXiv:1601.03651.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li,
and Yi Yang. 2017. Random erasing data augmen-
tation. arXiv preprint arXiv:1708.04896.

