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Abstract
Grammar error correction (GEC) systems have
become ubiquitous in a variety of software
applications, and have started to approach
human-level performance for some datasets.
However, very little is known about how to
efficiently personalize these systems to the
user’s characteristics, such as their proficiency
level and first language, or to emerging do-
mains of text. We present the first results on
adapting a general purpose neural GEC system
to both the proficiency level and the first lan-
guage of a writer, using only a few thousand
annotated sentences. Our study is the broad-
est of its kind, covering five proficiency levels
and twelve different languages, and compar-
ing three different adaptation scenarios: adapt-
ing to the proficiency level only, to the first
language only, or to both aspects simultane-
ously. We show that tailoring to both scenarios
achieves the largest performance improvement
(3.6 F0.5) relative to a strong baseline.

1 Introduction

Guides for English teachers have extensively doc-
umented how grammatical errors made by learn-
ers are influenced by their native language (L1).
Swan and Smith (2001) attribute some of the er-
rors to “transfer” or “interference” between lan-
guages. For example, German native speakers are
more likely to incorrectly use a definite article with
general purpose nouns or omit the indefinite article
when defining people’s professions. Other errors
are attributed to the absence of a certain linguistic
feature in the native language. For example, Chi-
nese and Russian speakers make more errors in-
volving articles, since these languages do not have
articles.

A few grammatical error correction (GEC) sys-
tems have incorporated knowledge about L1. Ro-
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zovskaya and Roth (2011) use a different prior for
each of five L1s to adapt a Naive Bayes classi-
fier for preposition correction. Rozovskaya et al.
(2017) expand on this work to eleven L1s and
three error types. Mizumoto et al. (2011) showed
for the first time that a statistical machine transla-
tion (SMT) system applied to GEC performs bet-
ter when the training and test data have the same
L1. Chollampatt et al. (2016) extend this work by
adapting a neural language model to three differ-
ent L1s and use it as a feature in SMT-based GEC
system. However, we are not aware of prior work
addressing the impact of both proficiency level and
native language on the performance of GEC sys-
tems. Furthermore, neural GEC systems, which
have become state-of-the-art (Gehring et al., 2017;
Junczys-Dowmunt et al., 2018; Grundkiewicz and
Junczys-Dowmunt, 2018), are general purpose
and domain agnostic.

We believe the future of GEC lies in providing
users with feedback that is personalized to their
proficiency level and native language (L1). In this
work, we present the first results on adapting a
general purpose neural GEC system for English to
both of these characteristics by using fine-tuning,
a transfer learning method for neural networks,
which has been extensively explored for domain
adaptation of machine translation systems (Lu-
ong and Manning, 2015; Freitag and Al-Onaizan,
2016; Chu et al., 2017; Miceli Barone et al., 2017;
Thompson et al., 2018). We show that a model
adapted to both L1 and proficiency level outper-
forms models adapted to only one of these charac-
teristics. Our contributions also include the first
results on adapting GEC systems to proficiency
levels and the broadest study of adapting GEC to
L1 which includes twelve different languages.
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Figure 1: Corpus Distributions for CEFR Level, L1 and L1-Level.

2 Personalizing GEC

Data In this work, we adapt a general purpose
neural GEC system, initially trained on two mil-
lion sentences written by both native and non-
native speakers and covering a variety of topics
and styles. All the sentences have been corrected
for grammatical errors by professional editors.1

Adaptation of the model to proficiency level
and L1 requires a corpus annotated with these
features. We use the Cambridge Learner Corpus
(CLC) (Nicholls, 2003) comprising examination
essays written by English learners with six profi-
ciency levels2 and more than 100 different native
languages. Each essay is corrected by one anno-
tator, who also identifies the minimal error spans
and labels them using about 80 error types. From
this annotated corpus we extract a parallel corpus
comprising of source sentences with grammatical
errors and the corresponding corrected target sen-
tences.

We do note the proprietary nature of the CLC
which makes reproducibility difficult, though it
has been used in prior research, such as Rei and
Yannakoudakis (2016). It was necessary for this
study as the other GEC corpora available are not
annotated for both L1 and level. The Lang-
8 Learner Corpora (Mizumoto et al., 2011) also
provides information about L1, but it has no in-
formation about proficiency levels. The FCE
dataset (Yannakoudakis et al., 2011) is a subset
of the CLC, however, it only covers one profi-
ciency level and there are not enough sentences
for each L1 for our experiments. Previous work
on adapting GEC classifiers to L1 (Rozovskaya
et al., 2017) used the FCE corpus, and thus did not

1To maintain anonymity, we do not include more details.
2The CLC uses levels defined by the Common European

Framework of Reference for Languages: A1 - Beginner, A2 -
Elementary, B1 - Intermediate, B2 - Upper intermediate, C1
- Advanced, C2 - Proficiency.

address adaptation to different proficiency levels.
One of our future goals is to create a public corpus
for this type of work.

Experimental Setup Our baseline neural GEC
system is an RNN-based encoder-decoder neu-
ral network with attention and LSTM units (Bah-
danau et al., 2015). The system takes as input
an English sentence which may contain gram-
matical errors and decodes the corrected sen-
tence. We train the system on the parallel cor-
pus extracted from the CLC with the OpenNMT-
py toolkit (Klein et al., 2018) using the hyper-
parameters listed in the Appendix. To increase the
coverage of the neural network’s vocabulary, with-
out hurting efficiency, we break source and target
words into sub-word units. The segmentation into
sub-word units is learned from unlabeled data us-
ing the Byte Pair Encoding (BPE) algorithm (Sen-
nrich et al., 2016). The vocabulary, consisting of
20,000 BPE sub-units, is shared between the en-
coder and decoder.3 We truncate sentences longer
than 60 BPE sub-units and train the baseline sys-
tem with early stopping on a development set sam-
pled from the base dataset.4

To train and evaluate the adapted models, we
extract subsets of sentences from the CLC that
have been written by learners having a particular
Level, L1, or L1-Level combination. We consider
all subsets having at least 11,000 sentences, such
that we can allocate 8,000 sentences for training,
1,000 for tuning and 2,000 for testing. We com-
pare adapted models trained and evaluated on the
same subset of the data. For example, we adapt
a model using the Chinese training data and then
evaluate it on the Chinese test set.

Since our base dataset and CLC are different
domains, we wanted to make sure that improve-

3Although the source and target vocabularies are the
same, the embeddings are not tied.

4Performance did not improve after 15 epochs.
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ments by fine-tuning by Level or L1 were not
due to simply being in-domain with the test data,
which is also from the CLC. To control for this, we
construct another baseline system (“Random”) by
adapting the general purpose GEC system to a ran-
dom sample of learner data drawn from the CLC.
In Figure 1 we show the distribution of Level, L1
and L1-Level sentences in a random CLC sam-
ple, for the subsets having at least 100 sentences.
B1 is the most frequent level, while A2, the low-
est proficiency level included in this study, is half
as frequent in the random sample. The L1 dis-
tribution is dominated by Spanish, with Chinese
second with half as many sentences. Among the
L1-Level subsets, Spanish-B2 is the most frequent
with Spanish-A2 covering half as many sentences.

Fine-tuning We build adapted GEC models us-
ing fine-tuning, a transfer learning method for neu-
ral networks. We continue training the parameters
of the general purpose model on the “in-domain”
subset of the data covering a particular Level, L1,
or L1-Level. Thompson et al. (2018) showed that
adapting only a single component of the encoder-
decoder network is almost as effective as adapting
the entire set of parameters. In this work, we fine-
tune the parameters of the source embeddings and
encoder, while keeping the other parameters fixed.

To avoid quickly over-fitting to the smaller
“in-domain” training data, we reduce the batch
size (Thompson et al., 2018) and continue us-
ing the dropout regularization (Miceli Barone
et al., 2017). We apply dropout to all the lay-
ers and to the source words, as well as varia-
tional dropout (Gal and Ghahramani, 2016) on
each step, all with probability 0.1. We also re-
duce the learning rate by four times and use the
start decay at option which halves the learn-
ing rate after each epoch. Consequently, the up-
dates become small after a few epochs. To en-
able the comparison between different adaptation
scenarios, all fine-tuned models are trained for 10
epochs on 8,000 sentences of “in-domain” data.

3 Results

We report the results for the three adaptation sce-
narios: adapting to Level only, adapting to L1
only, and adapting to both L1 and Level. We sum-
marize the results by showing the average M2 F0.5

score (Dahlmeier and Ng, 2012) across all the test
sets included in the respective scenario.

We first note that the strong baseline (“Ran-
dom”), which is a model adapted to a random sam-
ple of CLC , achieves improvements between 11 to
13 F0.5 points on average on all scenarios. While
not the focus of the paper, this large improvement
shows the performance gains by simply adapting
to a new domain (in this case CLC data). Second,
we note that the models adapted only by Level or
by L1 are on average better than the “Random”
model by 2.1 and 2.3 F0.5 points respectively. Fi-
nally, the models adapted to both Level and L1
outperform all others, beating the “Random” base-
line on average by 3.6 F0.5 points.

On all adaptation scenarios we report the per-
formance of the single best model released by
Junczys-Dowmunt et al. (2018). Their model,
which we call JD single, was trained on English
learner data of comparable size to our base dataset
and optimized using the CoNLL14 training and
test data.

Adaptation by Proficiency Level We adapt
GEC models to five of the CEFR proficiency lev-
els: A2, B1, B2, C1, C2. The results in Ta-
ble 1 show that performance improves for all lev-
els compared to the “Random” baseline. The
largest improvement, 5.2 F0.5 points, is achieved
for A2, the lowest proficiency level. We attribute
the large improvement to this level having a higher
error rate, a lower lexical diversity and being less
represented in the random sample on which the
baseline is trained on. In contrast, for the B1 and
B2 levels, the most frequent in the random sample,
improvements are more modest: 0.7 and 0.2 F0.5

points respectively. Our adapted models are better
than the JD single model on all levels, and with a
large margin on the A2 and C1 levels.

Adapt A2 B1 B2 C1 C2 Avg.
No 30.4 34.9 33.1 32.5 33.0 32.8
Rand. 48.4 47.9 42.5 41.4 39.2 43.8
Level 53.6 48.6 42.7 43.3 41.1 45.9

JD single 44.1 47.1 41.7 37.8 35.0 44.1

Table 1: Adaptation to Proficiency Level in F0.5

Adaptation by L1 We adapt GEC models to
twelve L1s: Arabic, Chinese, French, German,
Greek, Italian, Polish, Portuguese, Russian, Span-
ish, Swiss-German and Turkish. The results in
Table 2 (top) show that all L1-adapted models
are better than the baseline, with improvements
ranging from 1.2 F0.5 for Chinese and French, up
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Adapt AR CN FR DE GR IT PL PT RU ES CH TR Avg
No 37.5 36.2 32.7 31.4 32.7 29.3 36.0 31.7 35.8 32.1 31.1 35.4 33.5
Random 46.3 45.0 44.9 44.7 46.4 44.9 46.2 45.2 45.3 47.6 44.2 47.0 45.6
L1 48.3 46.2 46.1 47.1 49.0 46.8 48.4 47.6 47.8 49.8 47.1 50.6 47.9

JD single 47.0 44.7 44.2 41.4 44.1 40.7 46.0 44.6 43.7 44.8 40.7 47.5 44.1

Adapt CN-B2 CN-C1 FR-B1 DE-B1 IT-B1 PT-B1 ES-A2 ES-B1 ES-B2 Avg.
No 36.1 32.5 31.8 31.2 28.1 31.4 28.9 31.9 33.7 31.8
Random 42.7 39.1 45.3 46.1 43.5 45.2 50.2 46.4 44.1 44.7
Level 43.4 41.0 46.5 46.9 45.3 46.1 56.6 47.5 43.7 46.3
L1 44.1 40.9 46.5 48.1 46.5 46.2 53.8 47.6 44.4 46.5
L1 & Level 45.5 43.1 48.1 50.2 47.3 47.9 58.2 48.8 45.6 48.3

JD single 43.0 35.8 46.9 43.8 41.6 46.7 43.4 45.0 41.0 43.0

Table 2: Top: Adaptation to L1 Only. Bottom: Adaptation to Level and L1. Eval metric: F0.5

to 3.6 F0.5 for Turkish. For the languages that
are less frequent in the random sample of CLC
(Greek, Turkish, Arabic, Polish and Russian) we
see consistent improvements of over 2 F0.5 points.
Our adapted models are better than the JD single
model on all L1s, and with a margin larger than
5 F0.5 points on German, Swiss-German, Italian,
Greek and Spanish.

Adaptation by L1 and Proficiency Level Fi-
nally, we adapt GEC models to the following
nine L1 – Level subsets: Chinese-B2, Chinese-C1,
French-B1, German-B1, Italian-B1, Portuguese-
B1, Spanish-A2, Spanish-B1 and Spanish-B2. We
include these subsets in our study because they
meet the requirement of having at least 8,000 sen-
tences for training. All the models adapted to both
Level and L1 outperform the models adapted to
only one of these features, as shown in Table 2
(bottom). Focusing on the two levels for Chinese
native speakers, we see the model adapted to C1
achieves a larger improvement over the baseline,
4.1 F0.5 points, compared to 2.7 F0.5 points for the
B2 level. Again, this is explained by the lower fre-
quency of the C1 level in the random sample of
CLC, which is also reflected by the lowest F0.5

score for the baseline model. Similarly, among
the models adapted to different levels of Spanish
native speakers, the one adapted to Spanish-A2
achieves the largest gains of 8 F0.5 points. The
Spanish-A2 testset has the highest number of er-
rors per 100 words among all the L1-Level test-
sets, as shown in Table 1 in the Appendix. Fur-
thermore, the A2 level is only half as frequent as
the B1 level in the random sample of CLC. Finally,
our adapted models are better than the JD single
model on all L1–Level subsets, with a margin of 5

F0.5 points on average.

Adapted P R F0.5
Random 61.9 35.6 54.0
CN-C1 61.1 37.0 54.1
CN-B2 62.4 37.5 55.1
+ spellcheck 63.6 40.3 57.0

JD single 59.1 40.4 54.1
JD ensemble 63.1 42.6 57.5

Table 3: Results on the CoNLL14 testsets for Chinese
models.

CoNLL14 Evaluation We compare our adapted
models on the CoNLL14 testset (Ng et al., 2014)
in Table 3. The model adapted to Chinese-B2
improves the most over the baseline, achieving
55.1 F0.5. This result aligns with how the test
set was constructed: it consists of essays writ-
ten by university students, mostly Chinese na-
tive speakers. When we pre-process the eval-
uation set before decoding with a commercial
spellchecker5, our adapted model scores 57.0
which places it near other leading models, trained
on a similar amount of data, such as Chollam-
patt and Ng (2018) (56.52) and Junczys-Dowmunt
et al. (2018)6 (57.53) even though we do not use
the CoNLL14 in-domain training data. We note
that the most recent state-of-the-art models (Zhao
et al., 2019; Grundkiewicz et al., 2019), are trained
on up to one hundred million additional synthetic
parallel sentences, while we adapt models with
only eight thousand parallel sentences.

5Details removed for anonymity.
6We call their ensemble of four models with language

model re-scoring JD ensemble and their single best model
without language model re-scoring JD single
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Adapt Det Prep Verb Tense NNum Noun Pron
CN-C1 3.53 5.90 2.99 1.77 8.28 8.02 22.78
FR-B1 2.34 1.99 12.54 5.16 9.16 3.48 1.13
DE-B1 8.85 1.77 2.04 2.37 3.86 7.18 22.75
IT-B1 2.37 5.32 12.48 6.74 4.40 3.29 8.99
ES-A2 6.06 12.52 7.51 8.54 8.73 12.39 10.57

Table 4: L1-Level breakdown by error type in relative improvements in F0.5 over the “Random” baseline.

Error-type Analysis We conclude our study by
reporting improvements on the most frequent error
types, excluding punctuation, spelling and orthog-
raphy errors. We identify the error types in each
evaluation set with Errant, a rule-based classi-
fier (Bryant et al., 2017). Table 4 shows the results
for the systems adapted to both L1 and Level that
improved the most in overall F0.5. The adapted
systems consistently outperform the “Random”
baseline on most error types. For Chinese-C1, the
adapted model achieves the largest gains on pro-
noun (Pron) and noun number agreement errors
(NNum). The Spanish-A2 adapted model achieves
notable gains on preposition (Prep), noun and pro-
noun errors. Both the French-B1 and Italian-B1
adapted models gain the most on verb errors. For
German-B1, the adapted model improves the most
on pronoun (Pron) and determiner (Det) errors.
The large improvement of 22.75 F0.5 points for
the pronoun category is in part an artefact of the
small error counts. The adapted model corrects
35 pronouns (P=67.3) while the baseline corrects
only 15 pronouns (P=46.9). We leave an in depth
analysis by error type to future work.

Below, we give an example of a confused aux-
iliary verb that the French-B1 adapted model cor-
rects. The verb phrase corresponding to “go shop-
ping” in French is “faire des achats”, where the
verb “faire” would translate to “make/do”.

Orig He told me that celebrity can be bad
because he can’t do shopping nor-
mally.

Rand He told me that the celebrity can be
bad because he can’t do shopping
normally.

FR-B1 He told me that celebrity can be bad
because he can’t go shopping nor-
mally.

Ref He told me that celebrity can be bad
because he can’t go shopping nor-
mally.

4 Conclusions

We present the first results on adapting a neural
GEC system to proficiency level and L1 of lan-
guage learners. This is the broadest study of its
kind, covering five proficiency levels and twelve
different languages. While models adapted to ei-
ther proficiency level or L1 are on average better
than the baseline by over 2 F0.5 points and the
largest improvement (3.6 F0.5) is achieved when
adapting to both characteristics simultaneously.

We envision building a single model that com-
bines knowledge across L1s and proficiency lev-
els using a mixture-of-experts approach. Adapted
models could also be improved by using the mixed
fine tuning approach which uses a mix of in-
domain and out-of-domain data (Chu et al., 2017).
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