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Abstract

As an attempt to combine extractive and ab-
stractive summarization, Sentence Rewriting
models adopt the strategy of extracting salient
sentences from a document first and then para-
phrasing the selected ones to generate a sum-
mary. However, the existing models in this
framework mostly rely on sentence-level re-
wards or suboptimal labels, causing a mis-
match between a training objective and eval-
uation metric. In this paper, we present a
novel training signal that directly maximizes
summary-level ROUGE scores through rein-
forcement learning. In addition, we incorpo-
rate BERT into our model, making good use
of its ability on natural language understand-
ing. In extensive experiments, we show that a
combination of our proposed model and train-
ing procedure obtains new state-of-the-art per-
formance on both CNN/Daily Mail and New
York Times datasets. We also demonstrate that
it generalizes better on DUC-2002 test set.

1 Introduction

The task of automatic text summarization aims to
compress a textual document to a shorter highlight
while keeping salient information of the original
text. In general, there are two ways to do text
summarization: Extractive and Abstractive (Mani
and Maybury, 2001). Extractive approaches gen-
erate summaries by selecting salient sentences or
phrases from a source text, while abstractive ap-
proaches involve a process of paraphrasing or gen-
erating sentences to write a summary.

Recent work (Liu, 2019; Zhang et al., 2019c)
demonstrates that it is highly beneficial for ex-
tractive summarization models to incorporate pre-
trained language models (LMs) such as BERT
(Devlin et al., 2019) into their architectures. How-
ever, the performance improvement from the pre-
trained LMs is known to be relatively small in case

of abstractive summarization (Zhang et al., 2019a;
Hoang et al., 2019). This discrepancy may be due
to the difference between extractive and abstrac-
tive approaches in ways of dealing with the task—
the former classifies whether each sentence to be
included in a summary, while the latter generates
a whole summary from scratch. In other words, as
most of the pre-trained LMs are designed to be of
help to the tasks which can be categorized as clas-
sification including extractive summarization, they
are not guaranteed to be advantageous to abstrac-
tive summarization models that should be capa-
ble of generating language (Wang and Cho, 2019;
Zhang et al., 2019b).

On the other hand, recent studies for abstractive
summarization (Chen and Bansal, 2018; Hsu et al.,
2018; Gehrmann et al., 2018) have attempted to
exploit extractive models. Among these, a notable
one is Chen and Bansal (2018), in which a sophis-
ticated model called Reinforce-Selected Sentence
Rewriting is proposed. The model consists of both
an extractor and abstractor, where the extractor
picks out salient sentences first from a source ar-
ticle, and then the abstractor rewrites and com-
presses the extracted sentences into a complete
summary. It is further fine-tuned by training the
extractor with the rewards derived from sentence-
level ROUGE scores of the summary generated
from the abstractor.

In this paper, we improve the model of Chen
and Bansal (2018), addressing two primary issues.
Firstly, we argue there is a bottleneck in the exist-
ing extractor on the basis of the observation that
its performance as an independent summarization
model (i.e., without the abstractor) is no better
than solid baselines such as selecting the first 3
sentences. To resolve the problem, we present a
novel neural extractor exploiting the pre-trained
LMs (BERT in this work) which are expected to
perform better according to the recent studies (Liu,
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2019; Zhang et al., 2019c). Since the extractor is
a sort of sentence classifier, we expect that it can
make good use of the ability of pre-trained LMs
which is proven to be effective in classification.

Secondly, the other point is that there is a mis-
match between the training objective and eval-
uation metric; the previous work utilizes the
sentence-level ROUGE scores as a reinforcement
learning objective, while the final performance
of a summarization model is evaluated by the
summary-level ROUGE scores. Moreover, as
Narayan et al. (2018) pointed out, sentences with
the highest individual ROUGE scores do not
necessarily lead to an optimal summary, since
they may contain overlapping contents, causing
verbose and redundant summaries. Therefore,
we propose to directly use the summary-level
ROUGE scores as an objective instead of the
sentence-level scores. A potential problem arising
from this apprsoach is the sparsity of training sig-
nals, because the summary-level ROUGE scores
are calculated only once for each training episode.
To alleviate this problem, we use reward shaping
(Ng et al., 1999) to give an intermediate signal for
each action, preserving the optimal policy.

We empirically demonstrate the superiority of
our approach by achieving new state-of-the-art
abstractive summarization results on CNN/Daily
Mail and New York Times datasets (Hermann
et al., 2015; Durrett et al., 2016). It is worth not-
ing that our approach shows large improvements
especially on ROUGE-L score which is consid-
ered a means of assessing fluency (Narayan et al.,
2018). In addition, our model performs much bet-
ter than previous work when testing on DUC-2002
dataset, showing better generalization and robust-
ness of our model.

Our contributions in this work are three-fold: a
novel successful application of pre-trained trans-
formers for abstractive summarization; suggest-
ing a training method to globally optimize sen-
tence selection; achieving the state-of-the-art re-
sults on the benchmark datasets, CNN/Daily Mail
and New York Times.

2 Background

2.1 Sentence Rewriting

In this paper, we focus on single-document multi-
sentence summarization and propose a neural ab-
stractive model based on the Sentence Rewriting
framework (Chen and Bansal, 2018; Xu and Dur-

rett, 2019) which consists of two parts: a neural
network for the extractor and another network for
the abstractor. The extractor network is designed
to extract salient sentences from a source article.
The abstractor network rewrites the extracted sen-
tences into a short summary.

2.2 Learning Sentence Selection

The most common way to train extractor to se-
lect informative sentences is building extractive
oracles as gold targets, and training with cross-
entropy (CE) loss. An oracle consists of a set
of sentences with the highest possible ROUGE
scores. Building oracles is finding an optimal
combination of sentences, where there are 2n pos-
sible combinations for each example. Because of
this, the exact optimization for ROUGE scores is
intractable. Therefore, alternative methods iden-
tify the set of sentences with greedy search (Nalla-
pati et al., 2017), sentence-level search (Hsu et al.,
2018; Shi et al., 2019) or collective search using
the limited number of sentences (Xu and Durrett,
2019), which construct suboptimal oracles. Even
if all the optimal oracles are found, training with
CE loss using these labels will cause underfitting
as it will only maximize probabilities for sentences
in label sets and ignore all other sentences.

Alternatively, reinforcement learning (RL) can
give room for exploration in the search space.
Chen and Bansal (2018), our baseline work, pro-
posed to apply policy gradient methods to train
an extractor. This approach makes an end-to-
end trainable stochastic computation graph, en-
couraging the model to select sentences with high
ROUGE scores. However, they define a reward
for an action (sentence selection) as a sentence-
level ROUGE score between the chosen sentence
and a sentence in the ground truth summary for
that time step. This leads the extractor agent to
a suboptimal policy; the set of sentences match-
ing individually with each sentence in a ground
truth summary isn’t necessarily optimal in terms
of summary-level ROUGE score.

Narayan et al. (2018) proposed policy gradient
with rewards from summary-level ROUGE. They
defined an action as sampling a summary from
candidate summaries that contain the limited num-
ber of plausible sentences. After training, a sen-
tence is ranked high for selection if it often oc-
curs in high scoring summaries. However, their
approach still has a risk of ranking redundant sen-
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Figure 1: The overview architecture of the extractor netwrok

tences high; if two highly overlapped sentences
have salient information, they would be ranked
high together, increasing the probability of being
sampled in one summary.

To tackle this problem, we propose a training
method using reinforcement learning which glob-
ally optimizes summary-level ROUGE score and
gives intermediate rewards to ease the learning.

2.3 Pre-trained Transformers

Transferring representations from pre-trained
transformer language models has been highly suc-
cessful in the domain of natural language under-
standing tasks (Radford et al., 2018; Devlin et al.,
2019; Radford et al., 2019; Yang et al., 2019).
These methods first pre-train highly stacked trans-
former blocks (Vaswani et al., 2017) on a huge un-
labeled corpus, and then fine-tune the models or
representations on downstream tasks.

3 Model

Our model consists of two neural network mod-
ules, i.e. an extractor and abstractor. The ex-
tractor encodes a source document and chooses
sentences from the document, and then the ab-
stractor paraphrases the summary candidates. For-
mally, a single document consists of n sentences
D = {s1, s2, · · · , sn}. We denote i-th sentence
as si = {wi1, wi2, · · · , wim} where wij is the j-th
word in si. The extractor learns to pick out a sub-
set of D denoted as D̂ = {ŝ1, ŝ2, · · · , ŝk|ŝi ∈ D}
where k sentences are selected. The abstractor
rewrites each of the selected sentences to form a
summary S = {f(ŝ1), f(ŝ2), · · · , f(ŝk)}, where

f is an abstracting function. And a gold summary
consists of l sentences A = {a1, a2, · · · , al}.

3.1 Extractor Network

The extractor is based on the encoder-decoder
framework. We adapt BERT for the encoder to
exploit contextualized representations from pre-
trained transformers. BERT as the encoder maps
the input sequence D to sentence representation
vectorsH = {h1, h2, · · · , hn}, where hi is for the
i-th sentence in the document. Then, the decoder
utilizes H to extract D̂ from D.

3.1.1 Leveraging Pre-trained Transformers
Although we require the encoder to output the rep-
resentation for each sentence, the output vectors
from BERT are grounded to tokens instead of sen-
tences. Therefore, we modify the input sequence
and embeddings of BERT as Liu (2019) did.

In the original BERT’s configure, a [CLS] token
is used to get features from one sentence or a pair
of sentences. Since we need a symbol for each
sentence representation, we insert the [CLS] token
before each sentence. And we add a [SEP] token
at the end of each sentence, which is used to differ-
entiate multiple sentences. As a result, the vector
for the i-th [CLS] symbol from the top BERT layer
corresponds to the i-th sentence representation hi.

In addition, we add interval segment embed-
dings as input for BERT to distinguish multiple
sentences within a document. For si we assign
a segment embedding EA or EB conditioned on
i is odd or even. For example, for a consecu-
tive sequence of sentences s1, s2, s3, s4, s5, we as-
sign EA, EB, EA, EB, EA in order. All the words
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in each sentence are assigned to the same seg-
ment embedding, i.e. segment embeddings for
w11, w12, · · · , w1m is EA, EA, · · · , EA. An illus-
tration for this procedure is shown in Figure 1.

3.1.2 Sentence Selection
We use LSTM Pointer Network (Vinyals et al.,
2015) as the decoder to select the extracted sen-
tences based on the above sentence representa-
tions. The decoder extracts sentences recurrently,
producing a distribution over all of the remaining
sentence representations excluding those already
selected. Since we use the sequential model which
selects one sentence at a time step, our decoder can
consider the previously selected sentences. This
property is needed to avoid selecting sentences
that have overlapping information with the sen-
tences extracted already.

As the decoder structure is almost the same with
the previous work, we convey the equations of
Chen and Bansal (2018) to avoid confusion, with
minor modifications to agree with our notations.
Formally, the extraction probability is calculated
as:

ut,i = v>m tanh(Weet +Whhi) (1)

P (ŝt|D, ŝ1, · · · , ŝt−1) = softmax(ut) (2)

where et is the output of the glimpse operation:

ct,i = v>g tanh(Wg1hi +Wg2zt) (3)

αt = softmax(ct) (4)

et =
∑
i

αtWg1hi (5)

In Equation 3, zt is the hidden state of the LSTM
decoder at time t (shown in green in Figure 1). All
the W and v are trainable parameters.

3.2 Abstractor Network
The abstractor network approximates f , which
compresses and paraphrases an extracted docu-
ment sentence to a concise summary sentence.
We use the standard attention based sequence-to-
sequence (seq2seq) model (Bahdanau et al., 2015;
Luong et al., 2015) with the copying mechanism
(See et al., 2017) for handling out-of-vocabulary
(OOV) words. Our abstractor is practically identi-
cal to the one proposed in Chen and Bansal (2018).

4 Training

In our model, an extractor selects a series of sen-
tences, and then an abstractor paraphrases them.

As they work in different ways, we need differ-
ent training strategies suitable for each of them.
Training the abstractor is relatively obvious; max-
imizing log-likelihood for the next word given the
previous ground truth words. However, there are
several issues for extractor training. First, the ex-
tractor should consider the abstractor’s rewriting
process when it selects sentences. This causes
a weak supervision problem (Jehl et al., 2019),
since the extractor gets training signals indirectly
after paraphrasing processes are finished. In ad-
dition, thus this procedure contains sampling or
maximum selection, the extractor performs a non-
differentiable extraction. Lastly, although our goal
is maximizing ROUGE scores, neural models can-
not be trained directly by maximum likelihood es-
timation from them.

To address those issues above, we apply stan-
dard policy gradient methods, and we propose
a novel training procedure for extractor which
guides to the optimal policy in terms of the
summary-level ROUGE. As usual in RL for se-
quence prediction, we pre-train submodules and
apply RL to fine-tune the extractor.

4.1 Training Submodules

Extractor Pre-training Starting from a poor
random policy makes it difficult to train the ex-
tractor agent to converge towards the optimal pol-
icy. Thus, we pre-train the network using cross
entropy (CE) loss like previous work (Bahdanau
et al., 2017; Chen and Bansal, 2018). However,
there is no gold label for extractive summariza-
tion in most of the summarization datasets. Hence,
we employ a greedy approach (Nallapati et al.,
2017) to make the extractive oracles, where we
add one sentence at a time incrementally to the
summary, such that the ROUGE score of the cur-
rent set of selected sentences is maximized for the
entire ground truth summary. This doesn’t guaran-
tee optimal, but it is enough to teach the network
to select plausible sentences. Formally, the net-
work is trained to minimize the cross-entropy loss
as follows:

Lext = − 1

T

T∑
t=1

logP (s∗t |D, s∗1, · · · , s∗t−1) (6)

where s∗t is the t-th generated oracle sentence.

Abstractor Training For the abstractor train-
ing, we should create training pairs for input and
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target sentences. As the abstractor paraphrases on
sentence-level, we take a sentence-level search for
each ground-truth summary sentence. We find the
most similar document sentence s′t by:

s′t = argmaxsi(ROUGE-Lsent
F1

(si, at)) (7)

And then the abstractor is trained as a usual
sequence-to-sequence model to minimize the
cross-entropy loss:

Labs = − 1

m

m∑
j=1

logP (waj |wa1 , · · · , waj−1,Φ)

(8)
where waj is the j-th word of the target sentence
at, and Φ is the encoded representation for s′t.

4.2 Guiding to the Optimal Policy
To optimize ROUGE metric directly, we assume
the extractor as an agent in reinforcement learn-
ing paradigm (Sutton et al., 1998). We view the
extractor has a stochastic policy that generates ac-
tions (sentence selection) and receives the score of
final evaluation metric (summary-level ROUGE in
our case) as the return

R(S) = ROUGE-Lsumm
F1

(S,A). (9)

While we are ultimately interested in the maxi-
mization of the score of a complete summary, sim-
ply awarding this score at the last step provides
a very sparse training signal. For this reason we
define intermediate rewards using reward shap-
ing (Ng et al., 1999), which is inspired by Bah-
danau et al. (2017)’s attempt for sequence predic-
tion. Namely, we compute summary-level score
values for all intermediate summaries:

(R({ŝ1}), R({ŝ1, ŝ2}), · · · , R({ŝ1, ŝ2, · · · , ŝk}))
(10)

The reward for each step rt is the difference be-
tween the consecutive pairs of scores:

rt = R({ŝ1, ŝ2, · · · , ŝt})−R({ŝ1, ŝ2, · · · , ŝt−1})
(11)

This measures an amount of increase or decrease
in the summary-level score from selecting ŝt. Us-
ing the shaped reward rt instead of awarding the
whole score R at the last step does not change
the optimal policy (Ng et al., 1999). We de-
fine a discounted future reward for each step as
Rt =

∑k
t=1 γ

trt+1, where γ is a discount factor.
Additionally, we add ‘stop’ action to the action

space, by concatenating trainable parameters hstop

(the same dimension as hi) to H . The agent treats
it as another candidate to extract. When it selects
‘stop’, an extracting episode ends and the final re-
turn is given. This encourages the model to extract
additional sentences only when they are expected
to increase the final return.

Following Chen and Bansal (2018), we use the
Advantage Actor Critic (Mnih et al., 2016) method
to train. We add a critic network to estimate a
value function Vt(D, ŝ1, · · · , ŝt−1), which then is
used to compute advantage of each action (we will
omit the current state (D, ŝ1, · · · , ŝt−1) to sim-
plify):

At(si) = Qt(si)− Vt. (12)

where Qt(si) is the expected future reward for
selecting si at the current step t. We maximize
this advantage with the policy gradient with the
Monte-Carlo sample (At(si) ≈ Rt − Vt):

∇θπLπ ≈ 1
k

∑k
t=1∇θπ logP (si|D, ŝ1, · · · , ŝt−1)At(si)

(13)

where θπ is the trainable parameters of the ac-
tor network (original extractor). And the critic is
trained to minimize the square loss:

∇θψLψ = ∇θψ(Vt −Rt)2 (14)

where θψ is the trainable parameters of the critic
network.

5 Experimental Setup

5.1 Datasets
We evaluate the proposed approach on the
CNN/Daily Mail (Hermann et al., 2015) and New
York Times (Sandhaus, 2008) dataset, which are
both standard corpora for multi-sentence abstrac-
tive summarization. Additionally, we test general-
ization of our model on DUC-2002 test set.

CNN/Daily Mail dataset consists of more than
300K news articles and each of them is paired with
several highlights. We used the standard splits of
Hermann et al. (2015) for training, validation and
testing (90,226/1,220/1,093 documents for CNN
and 196,961/12,148/10,397 for Daily Mail). We
did not anonymize entities. We followed the pre-
processing methods in See et al. (2017) after split-
ting sentences by Stanford CoreNLP (Manning
et al., 2014).

The New York Times dataset also consists of
many news articles. We followed the dataset splits
of Durrett et al. (2016); 100,834 for training and
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Models ROUGE-1 ROUGE-2 ROUGE-L R-AVG
Extractive
lead-3 (See et al., 2017) 40.34 17.70 36.57 31.54
REFRESH (Narayan et al., 2018) 40.00 18.20 36.60 31.60
JECS (Xu and Durrett, 2019) 41.70 18.50 37.90 32.70
HiBERT (Zhang et al., 2019c) 42.37 19.95 38.83 33.71
BERTSUM (Liu, 2019) 43.25 20.24 39.63 34.37
BERT-ext (ours) 42.29 19.38 38.63 33.43
BERT-ext + RL (ours) 42.76 19.87 39.11 33.91
Abstractive
Pointer Generator (See et al., 2017) 39.53 17.28 36.38 31.06
Inconsistency Loss (Hsu et al., 2018) 40.68 17.97 37.13 31.93
Sentence Rewrite (w/o rerank) (Chen and Bansal, 2018) 40.04 17.61 37.59 31.74
Sentence Rewrite (Chen and Bansal, 2018) 40.88 17.80 38.54 32.41
Bottom-Up (Gehrmann et al., 2018) 41.22 18.68 38.34 32.75
Transformer-LM (Hoang et al., 2019) 38.67 17.47 35.79 30.64
Two-Stage BERT (Zhang et al., 2019a) 41.71 19.49 38.79 33.33
BERT-ext + abs (ours) 40.14 17.87 37.83 31.95
BERT-ext + abs + rerank (ours) 40.71 17.92 38.51 32.38
BERT-ext + abs + RL (ours) 41.00 18.81 38.51 32.77
BERT-ext + abs + RL + rerank (ours) 41.90 19.08 39.64 33.54

Table 1: Performance on CNN/Daily Mail test set using the full length ROUGE F1 score. R-AVG calculates
average score of ROUGE-1, ROUGE-2 and ROUGE-L.

9,706 for test examples. And we also followed the
filtering procedure of them, removing documents
with summaries that are shorter than 50 words.
The final test set (NYT50) contains 3,452 exam-
ples out of the original 9,706.

The DUC-2002 dataset contains 567 document-
summary pairs for single-document summariza-
tion. As a single document can have multiple sum-
maries, we made one pair per summary. We used
this dataset as a test set for our model trained on
CNN/Daily Mail dataset to test generalization.

5.2 Implementation Details

Our extractor is built on BERTBASE with fine-
tuning, smaller version than BERTLARGE due to
limitation of time and space. We set LSTM hid-
den size as 256 for all of our models. To initial-
ize word embeddings for our abstractor, we use
word2vec (Mikolov et al., 2013) of 128 dimen-
sions trained on the same corpus. We optimize
our model with Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9 and β2 = 0.999. For ex-
tractor pre-training, we use learning rate schedule
following (Vaswani et al., 2017) with warmup =
10000:

lr = 2e−3 ·min(steps−0.5, steps · warmup−1.5).

Models R-1 R-2 R-L
lead-3 (See et al., 2017) 40.34 17.70 36.57
rnn-ext (Chen and Bansal, 2018) 40.17 18.11 36.41
JECS-ext (Xu and Durrett, 2019) 40.70 18.00 36.80
BERT-ext (ours) 42.29 19.38 38.63

Table 2: Comparison of extractor networks.

And we set learning rate 1e−3 for abstractor and
4e−6 for RL training. We apply gradient clipping
using L2 norm with threshold 2.0. For RL train-
ing, we use γ = 0.95 for the discount factor. To
ease learning hstop, we set the reward for the stop
action to λ · ROUGE-Lsumm

F1
(S,A), where λ is a

stop coefficient set to 0.08. Our critic network
shares the encoder with the actor (extractor) and
has the same architecture with it except the output
layer, estimating scalar for the state value. And
the critic is initialized with the parameters of the
pre-trained extractor where it has the same archi-
tecture.

5.3 Evaluation

We evaluate the performance of our method us-
ing different variants of ROUGE metric com-
puted with respect to the gold summaries. On
the CNN/Daily Mail and DUC-2002 dataset, we
use standard ROUGE-1, ROUGE-2, and ROUGE-
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R-1 R-2 R-L
Sentence-matching 52.09 28.13 49.74
Greedy Search 55.27 29.24 52.64
Combination Search 55.51 29.33 52.89

Table 3: Comparison of different methods building up-
per bound for full model.

L (Lin, 2004) on full length F1 with stemming
as previous work did (Nallapati et al., 2017; See
et al., 2017; Chen and Bansal, 2018). On NYT50
dataset, following Durrett et al. (2016) and Paulus
et al. (2018), we used the limited length ROUGE
recall metric, truncating the generated summary to
the length of the ground truth summary.

6 Results

6.1 CNN/Daily Mail

Table 1 shows the experimental results on
CNN/Daily Mail dataset, with extractive models
in the top block and abstractive models in the bot-
tom block. For comparison, we list the perfor-
mance of many recent approaches with ours.

Extractive Summarization As See et al. (2017)
showed, the first 3 sentences (lead-3) in an ar-
ticle form a strong summarization baseline in
CNN/Daily Mail dataset. Therefore, the very first
objective of extractive models is to outperform the
simple method which always returns 3 or 4 sen-
tences at the top. However, as Table 2 shows,
ROUGE scores of lead baselines and extractors
from previous work in Sentence Rewrite frame-
work (Chen and Bansal, 2018; Xu and Durrett,
2019) are almost tie. We can easily conjecture
that the limited performances of their full model
are due to their extractor networks. Our extrac-
tor network with BERT (BERT-ext), as a single
model, outperforms those models with large mar-
gins. Adding reinforcement learning (BERT-ext +
RL) gives higher performance, which is compet-
itive with other extractive approaches using pre-
trained Transformers (see Table 1). This shows
the effectiveness of our learning method.

Abstractive Summarization Our abstractive
approaches combine the extractor with the abstrac-
tor. The combined model (BERT-ext + abs) with-
out additional RL training outperforms the Sen-
tence Rewrite model (Chen and Bansal, 2018)
without reranking, showing the effectiveness of
our extractor network. With the proposed RL

Models R-1 R-2 R-L
Sentence-level Reward 40.82 18.63 38.41
Combinatorial Reward 40.85 18.77 38.44
Sentence-level Reward + rerank 41.58 18.72 39.31
Combinatorial Reward + rerank 41.90 19.08 39.64

Table 4: Comparison of RL training.

training procedure (BERT-ext + abs + RL), our
model exceeds the best model of Chen and Bansal
(2018). In addition, the result is better than those
of all the other abstractive methods exploiting ex-
tractive approaches in them (Hsu et al., 2018;
Chen and Bansal, 2018; Gehrmann et al., 2018).

Redundancy Control Although the proposed
RL training inherently gives training signals that
induce the model to avoid redundancy across sen-
tences, there can be still remaining overlaps be-
tween extracted sentences. We found that the ad-
ditional methods reducing redundancies can im-
prove the summarization quality, especially on
CNN/Daily Mail dataset.

We tried Trigram Blocking (Liu, 2019) for ex-
tractor and Reranking (Chen and Bansal, 2018)
for abstractor, and we empirically found that the
reranking only improves the performance. This
helps the model to compress the extracted sen-
tences focusing on disjoint information, even if
there are some partial overlaps between the sen-
tences. Our best abstractive model (BERT-ext +
abs + RL + rerank) achieves the new state-of-the-
art performance for abstractive summarization in
terms of average ROUGE score, with large mar-
gins on ROUGE-L.

However, we empirically found that the rerank-
ing method has no effect or has negative effect on
NYT50 or DUC-2002 dataset. Hence, we don’t
apply it for the remaining datasets.

Combinatorial Reward Before seeing the ef-
fects of our summary-level rewards on final re-
sults, we check the upper bounds of different train-
ing signals for the full model. All the document
sentences are paraphrased with our trained ab-
stractor, and then we find the best set for each
search method. Sentence-matching finds sen-
tences with the highest ROUGE-L score for each
sentence in the gold summary. This search method
matches with the best reward from Chen and
Bansal (2018). Greedy Search is the same method
explained for extractor pre-training in section 4.1.
Combination Search selects a set of sentences
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Models Relevance Readability Total
Sentence Rewrite (Chen and Bansal, 2018) 56 59 115
BERTSUM (Liu, 2019) 58 60 118
BERT-ext + abs + RL + rerank (ours) 66 61 127

Table 5: Results of human evaluation.

which has the highest summary-level ROUGE-L
score, from all the possible combinations of sen-
tences. Due to time constraints, we limited the
maximum number of sentences to 5. This method
corresponds to our final return in RL training.

Table 3 shows the summary-level ROUGE
scores of previously explained methods. We
see considerable gaps between Sentence-matching
and Greedy Search, while the scores of Greedy
Search are close to those of Combination Search.
Note that since we limited the number of sentences
for Combination Search, the exact scores for it
would be higher. The scores can be interpreted to
be upper bounds for corresponding training meth-
ods. This result supports our training strategy; pre-
training with Greedy Search and final optimization
with the combinatorial return.

Additionally, we experiment to verify the con-
tribution of our training method. We train the same
model with different training signals; Sentence-
level reward from Chen and Bansal (2018) and
combinatorial reward from ours. The results are
shown in Table 4. Both with and without rerank-
ing, the models trained with the combinatorial re-
ward consistently outperform those trained with
the sentence-level reward.

Human Evaluation We also conduct human
evaluation to ensure robustness of our training pro-
cedure. We measure relevance and readability of
the summaries. Relevance is based on the sum-
mary containing important, salient information
from the input article, being correct by avoiding
contradictory/unrelated information, and avoiding
repeated/redundant information. Readability is
based on the summarys fluency, grammaticality,
and coherence. To evaluate both these criteria,
we design a Amazon Mechanical Turk experiment
based on ranking method, inspired by Kiritchenko
and Mohammad (2017). We randomly select 20
samples from the CNN/Daily Mail test set and ask
the human testers (3 for each sample) to rank sum-
maries (for relevance and readability) produced by
3 different models: our final model, that of Chen
and Bansal (2018) and that of Liu (2019). 2, 1
and 0 points were given according to the ranking.

Models R-1 R-2 R-L
Extractive
First sentences (Durrett et al., 2016) 28.60 17.30 -
First k words (Durrett et al., 2016) 35.70 21.60 -
Full (Durrett et al., 2016) 42.20 24.90 -
BERTSUM (Liu, 2019) 46.66 26.35 42.62
Abstractive
Deep Reinforced (Paulus et al., 2018) 42.94 26.02 -
Two-Stage BERT (Zhang et al., 2019a) 45.33 26.53 -
BERT-ext + abs (ours) 44.41 24.61 41.40
BERT-ext + abs + RL (ours) 46.63 26.76 43.38

Table 6: Performance on NYT50 test set using the lim-
ited length ROUGE recall score.

Models R-1 R-2 R-L
Pointer Generator (See et al., 2017) 37.22 15.78 33.90
Sentence Rewrite (Chen and Bansal, 2018) 39.46 17.34 36.72
BERT-ext + abs + RL (ours) 43.39 19.38 40.14

Table 7: Performance on DUC-2002 test set using the
full length ROUGE F1 score.

The models were anonymized and randomly shuf-
fled. Following previous work, the input article
and ground truth summaries are also shown to the
human participants in addition to the three model
summaries. From the results shown in Table 5, we
can see that our model is better in relevance com-
pared to others. In terms of readability, there was
no noticeable difference.

6.2 New York Times corpus

Table 6 gives the results on NYT50 dataset.
We see our BERT-ext + abs + RL outperforms
all the extractive and abstractive models, except
ROUGE-1 from Liu (2019). Comparing with two
recent models that adapted BERT on their summa-
rization models (Liu, 2019; Zhang et al., 2019a),
we can say that we proposed another method suc-
cessfully leveraging BERT for summarization. In
addition, the experiment proves the effectiveness
of our RL training, with about 2 point improve-
ment for each ROUGE metric.

6.3 DUC-2002

We also evaluated the models trained on the
CNN/Daily Mail dataset on the out-of-domain
DUC-2002 test set as shown in Table 7. BERT-
ext + abs + RL outperforms baseline models with
large margins on all of the ROUGE scores. This
result shows that our model generalizes better.
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7 Related Work

There has been a variety of deep neural net-
work models for abstractive document summa-
rization. One of the most dominant structures is
the sequence-to-sequence (seq2seq) models with
attention mechanism (Rush et al., 2015; Chopra
et al., 2016; Nallapati et al., 2016). See et al.
(2017) introduced Pointer Generator network that
implicitly combines the abstraction with the ex-
traction, using copy mechanism (Gu et al., 2016;
Zeng et al., 2016). More recently, there have
been several studies that have attempted to im-
prove the performance of the abstractive summa-
rization by explicitly combining them with ex-
tractive models. Some notable examples include
the use of inconsistency loss (Hsu et al., 2018),
key phrase extraction (Li et al., 2018; Gehrmann
et al., 2018), and sentence extraction with rewrit-
ing (Chen and Bansal, 2018). Our model improves
Sentence Rewriting with BERT as an extractor and
summary-level rewards to optimize the extractor.

Reinforcement learning has been shown to be
effective to directly optimize a non-differentiable
objective in language generation including text
summarization (Ranzato et al., 2016; Bahdanau
et al., 2017; Paulus et al., 2018; Celikyilmaz et al.,
2018; Narayan et al., 2018). Bahdanau et al.
(2017) use actor-critic methods for language gen-
eration, using reward shaping (Ng et al., 1999) to
solve the sparsity of training signals. Inspired by
this, we generalize it to sentence extraction to give
per step reward preserving optimality.

8 Conclusions

We have improved Sentence Rewriting approaches
for abstractive summarization, proposing a novel
extractor architecture exploiting BERT and a
novel training procedure which globally opti-
mizes summary-level ROUGE metric. Our ap-
proach achieves the new state-of-the-art on both
CNN/Daily Mail and New York Times datasets as
well as much better generalization on DUC-2002
test set.
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