
Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 17–25
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

17

Scalable graph-based method for individual named entity identification

Sammy Khalife Michalis Vazirgiannis
LIX, CNRS, Ecole Polytechnique

Institut Polytechnique de Paris, 91128 Palaiseau, France
khalife@lix.polytechnique.fr
mvazirg@lix.polytechnique.fr

Abstract

In this paper, we consider the named entity
linking (NEL) problem. We assume a set of
queries, named entities, that have to be iden-
tified within a knowledge base. This know-
ledge base is represented by a text database
paired with a semantic graph, endowed with
a classification of entities (ontology). We
present state-of-the-art methods in NEL, and
propose a new method for individual identi-
fication requiring few annotated data samples.
We demonstrate its scalability and perform-
ance over standard datasets, for several on-
tology configurations. Our approach is well-
motivated for integration in real systems. In-
deed, recent deep learning methods, despite
their capacity to improve experimental preci-
sion, require lots of parameter tuning along
with large volume of annotated data.

1 Introduction

1.1 Basic concepts and definitions
The purpose of Named entity discovery (NED) in
information retrieval is two-fold. First, it aims at
extracting pre-defined sets of words from text doc-
uments: this corresponds to Named entity recog-
nition (NER). These words are representations of
named entities (such as names, places, locations,
...). Then, these entity mentions paired with their
context are seen as queries to be identified within
database: this corresponds to named entity linking
(NEL). NEL is also refered as named entity disam-
biguation. The interest in NEL has grown recently
in several fields: in bioinformatics, to obtain loc-
ations of viral sequences from databases (Weis-
senbacher et al., 2015), or to process biomedical
litterature (Zheng et al., 2015). It also revealed
to be useful in recruitment in order to identify
employer names in a database (Liu et al., 2018).
Firstly, it is important to stress that the subtask
of NED, Named entity recognition (NER), is not

trivial since we do not have an exhaustive list of
the possible spelling of named entities. Moreover
their text representation can change (for example,
“J. Kennedy" vs. “John Kennedy"). In this paper
we focus on the second task, Named entity linking
(NEL).

Named entity (and Mention/Query): An entity
is a real-world object and usually has a physical
existence. It is denoted with a proper name. In the
expression “Named Entity", the word “Named"
aims to restrict the possible set of entities to only
those for which one or many rigid designators
stands for the referent (Nadeau and Sekine, 2007).
When a named entity appears in a document, its
surface form can also be refered as a mention. Fi-
nally, a query refers to the mention, the context
where it appears, and a type of entity considered.

Ontology: In this paper, our definition of an on-
tology is represented as a tree of entity types. In
the following, the variable T represents the total
number of nodes of this tree minus one (we don’t
count the root node since it is uninformative). Ori-
ginally, entities had a very limited number of types
(Nadeau and Sekine, 2007), such as person (PER),
organization (ORG), and localization (GPE) (i.e
T = 3). These types play a central role for
named entity recognition and identification. An
example of ontology is in Fig. 1. More recently,
due to the increase in the volume of the web se-
mantics data, fine-grained classifications are avail-
able, with hundreds of entity types, similarly to
DBPedia ontology1 (Lehmann et al., 2015).

Knowledge base/graph: A Knowledge base is a
database providing supplementary descriptive and
semantic information about entities. The semantic
information is contained in a knowledge graph,
where a node represents an entity, and an edge rep-
resents a semantic relation. The knowledge graph

1http://wiki.dbpedia.org/services-resources/ontology

http://wiki.dbpedia.org/services-resources/ontology

18

Entity

PER

Politician
ORG

Political Party Association

GPE

City

Figure 1: Example of ontology, T = 7

E1 - Politician - John F. Kennedy
John F. Kennedy is served as

the 35th President of the U.S.A

E2 - Political Party - Demo-
cratic Party (United States)

The Democratic Party is a major con-
temporary political party in the U.S.A

E3 - City - Washington
Washington is the capital of the U.S.A

Figure 2: Representation of a unweighted directed se-
mantic graph (Wikipedia/NIST TAC-KBP Challenge
2010). An edge between two entities E1 and E2 rep-
resents a url link from E1 web page to E2 web page.

can be of any kind (directed, weighted, ...). See
Fig. 2 for an example.

Named entity linking (NEL): Given a named
entity query, the purpose of named entity linking
is to identify the corresponding ground truth entity
(gold entity) in a database (knowledge base). For
a detailed description of a concrete competition in
entity linking, we refer to (Ji et al., 2014).

Individual & collective linking: Linking can be
done individually or collectively. In the first case,
queries are independent. In the collective frame-
work, we consider a set of queries that usually ori-
ginates from the same document, and for which
gold entities (i.e ground truth entities) should have
some proximity, or coherence. In this work, we
propose individual linking approach.

1.2 Contributions

In this work, we provide a brief survey of exist-
ing methods for named entity linking. Then, we
investigate a method for individual named entity
linking. The first step of this method, refered as
entity filtering, reduces entity candidates to top K
entities for one query. The second step, refered
as entity identification, aims at identifying the true
entity among the remaining K candidates, based

on a new graph-based algorithm. We include an
experimental evaluation of our method with sev-
eral datasets, with an analysis of the impact of
parameter K, the ontology parameter T , and a de-
tailed comparison with existing approaches. The
implementation used for experiments is available
at our repository2. We do not include in this pa-
per work on Fine-grained named entity recogni-
tion (Ling and Weld, 2012). Moreover, we do not
include NIL-detection problem (detect if a query is
referring to an entity that is not in the knowledge
base, for instance (Ji et al., 2014)).

2 Related work

In the following subsections, we present three
families of algorithms for named entity linking.
Notations: E = {1, ..., E} ⊂ N: indexes of entit-
ies and Q = {1, ..., Q} ⊂ N: indexes of queries,
êi: system’s output entity index for query index qi.

2.1 Graphs for NED
Formulation: Given a scoring function defined
between queries and entities, let Wi,j the corres-
ponding score between the query i and the entity
j. For individual disambiguation, one wants to
perform independent query-entity attribution. A
straightforward formulation is:

êi = argmax
j∈E

Wi,j (1)

In this case, the total cost is separable in the vari-
able i, but the score Wi,j can use the knowledge
graph structure: this is the case in our approach.
For the sake of completeness, we give a descrip-
tion of the collective linking formulation. In this
framework the optimization formulation is differ-
ent: the underlying gold entities should respect
some arbitrary semantic coherence. The coher-
ence information is represented within a coher-
ence function ψ : EQ → R between the en-
tity candidates. Usually ψ is defined from the
knowledge graph structure. For example ψ can
be defined using the opposite sign of the shortest-
path function on the knowledge graph. With these
notations, the set of selected entities are formally
defined as:

ê1, ..., êQ = argmax
j1,..,jq∈EQ

[(

Q∑
l=1

Wl,jl)+ψ(j1, ..., jQ)]

(2)
2If needed, please send your request at khalife@lix.polytechnique.fr.

19

Eq. (2) can be formulated as a boolean integer
program. Its NP-hardness (Cucerzan, 2007) does
not allow to solve the general case for an important
number of queries. (Ratinov et al., 2011) evalu-
ated local and global approaches to find approxim-
ate solutions of an approximation of Eq. (2) with
Eq. (3), given a new coherence function ψ̃, and for
each query ql a disambiguation context of entities
Cl:

ê1, ..., êQ = argmax
j1,..,jq∈EQ

[(

Q∑
l=1

Wl,jl+
∑
k∈Cl

ψ̃(jl, jk))]

(3)
The formulation with Eq. (3) is halfway

between individual and collective linking: it sug-
gests to select a convenient set of disambiguation
contexts, and then solving locally for each query.
In the same time, it still enforces some coherence
among the predited entities. Collective linking
also has other formulations: (Han et al., 2011)
proposed a collective formulation for entity link-
ing decisions, in which evidence can be reinforced
into high-probability decisions.

For individual graph based linking, a rule based
on the importance of the entity node in the know-
ledge graph rule has been studied experimentally
(Guo et al., 2011).

a

b

e1

e2

e3

wa,e1

...

...

...
we1,e2

we2,e3

...
wb,e3

Figure 3: Directed query/entity bipartite weighted
graph. Nodes e1, e2, e3 are entities in the knowledge
base (same as Fig. 2). Nodes a and b are entity queries
extracted from text documents.

Dense subgraphs, PageRank: Other graph-
based approaches have been developed. (Hof-
fart et al., 2011), and (Alhelbawy and Gaizauskas,
2014) proposed to link efficiently a query to its
corresponding entity using the weighted undirec-
ted bipartite graph (Fig. 3). The idea is to extract
a dense subgraph in which every query node is
connected to exactly one entity, yielding the most
likely disambiguation. In general, this combin-

atorial optimization problem is NP-hard with re-
spect to the number of nodes, since they gener-
alize Steiner-tree problem (Hoffart et al., 2011).
However heuristics to solve this problem have
been experimented: (Hoffart et al., 2011) and (Al-
helbawy and Gaizauskas, 2014) proposed a dis-
carding algorithm using taboo search and local
similarities with polynomial complexity. Adapt-
ations of PageRank algorithm were carried out to
provide each entity a popularity score: (Usbeck
et al., 2014) built a weighted graph of all queries
and entities based on local and global similarit-
ies, and capitalize on the Hyperlink-Induced Topic
Search (HITS) algorithm to produce node author-
ity scores. Then, within similar entities to queries,
only entities with high authority will be retained.

2.2 Probabilistic graphical models
Another interesting idea is to consider named
entity queries as random variables and their
golden/true entities as hidden states. Unlike char-
acter recognition where |E| = |Ei| = 26 for latin
alphabet, the number of possible states S per en-
tity is large (usually S ≥ 106). Since Viterbi
algorithm has a O(N |S|2) complexity, where N
is the number of observations, inference is ineffi-
cient. To overcome this issue, (Alhelbawy and Ga-
izauskas, 2013) considers a reduced set of candid-
ates per query: ei ∈ Ei using query text informa-
tion. Using annotation, an Hidden Markov Model
(HMM) is trained on the reduced set of candid-
ates. Inference is made using message passing (Vi-
terbi algorithm) to find the most probable named
entity sequence. Another approach using prob-
abilistic graphical model has been provided by
(Ganea et al., 2016), with a factor graph that uses
popularity-based prior.

2.3 Embeddings and deep architectures
Recent advances in neural networks conception
suggested to use word embeddings and convolu-
tional neural networks to solve the named entity
linking problem. (Sun et al., 2015) proposed to
maximize a corrupted cosine similarity between a
query, its annotated gold entity and a false entity.
An example of learning representations for entities
using a neural architecture is achieved in (Yamada
et al., 2017), a linking system based on the simil-
arity of average of pre-trained entity embeddings
has been proposed (Yamada et al., 2016), with a
O(QE2) complexity. Finally other architectures
have been proposed (Sil et al., 2018; Raiman and

20

Raiman, 2018), the latter using a fine-grained on-
tology type system and reaching promising results
on several datasets.

3 Methodology

In this section we present a novel graph-based
method for NEL. As a preprocessing step, we pro-
pose a new but simple entity filtering method using
information retrieval techniques to obtain a lim-
ited number of entity candidates. The novelty of
our method lies in the second subsection where we
present a new graph-based method for final entity
identification. Source code is available at our re-
pository2.

3.1 Entity filtering

To discard wrong entity candidates, we use the
three sources of information in the query q =
(m, c, t̂): the mention name, the information con-
tained in the rest of document, and the entity type.
Obviously, the richer is the ontology (i.e the larger
is T), the easier the NEL problem (but harder is
the NER problem). In order to improve existing
entity filtering algorithms, we propose a routine
based on three main components below. The al-
gorithm is summarized in algorithm 1).

a - preProcess: For trivial queries having a
mention name equal to an existing entity name
and type, we implemented a naive match pre-
processing. If a mention has the same name and
the same type, its gold entity is labelled as the cor-
responding entity.

b - acronymDetection & acronymScore: Ac-
ronym detection and expansion is a common topic
in bioinformatics. We refer to (Ehrmann et al.,
2013) as a survey of acronym detection methods.
We implemented a simple rule-based decision for
acronym detection, following (Gusfield, 1997): a
string is tagged as an acronym if there are two or
more capital letters, and that consecutive distance
between two capital letters is always one. The sim-
ilarity score for acronym extension is chosen as the
length of longest common substring (Apostolico
and Guerra, 1987) between the acronym and cap-
ital letters of the target.

c - JN & contextScore: When the named en-
tity mention is not tagged as an acronym, compar-
ison with entity titles is performed by computing
N-grams for N ∈ {2, 3, 4}, and use Jaccard In-
dex of mention name and entity title. It is refered
as JN in algorithm 1. We also mesure similarity

between the context of the query and the text de-
scription of an entity in the knowledge base. We
experimented several techniques: TF-IDF, BM25 ,
BM25+ based on the probabilistic retrieval frame-
work developed in the 1970s and 1980s (we refer
to (Robertson et al., 2009) for a recent descrip-
tion). The experimental results were very similar
in term of recall. We present results obtained with
TFIDF (cf. Sec. 4).

Algorithm 1 Entity filtering (generation of entity
candidates)
Require: Parameter K, Query (q = (m, c, t̂)), Entities

(ej , tj)1≤j≤E

1: preProcess(q, (ej , tj)1≤j≤E)
2: ds = []
3: yacr ← acronymDetection(m)
4: for j = 1→ E do
5: if tj == t̂ then
6: if yacr == 1 then
7: sn = acronymScore(m, ej)
8: else
9: sn = JN(m, ej)

10: end if
11: st =

1
2
(sn + contextScore(c, ej))

12: Sorted insertion by value of {j : st} in ds
13: end if
14: end for
15: return ds[: K] (K top entities)

3.2 Graph-based identification

In this section, we present our graph-based method
for named entity identification. This graph-based
method uses enriched features extraction from the
knowledge graph, in order to re-rank top entity
candidates.

Feature extraction: Let q and e respectively a
query and an entity. T still represents the number
of distinct entity types in the ontology. Let s be
a scoring function between a query and an entity.
Let Nt(e) the set of entity neighbors of type t (cf.
Fig 4 for an example). By convention if Nt(e) =
∅, then s(q,Nt(e)) , 0. f(q, e) is the filtering
score obtained with algorithm 1. We define the
features vector associated with the couple (q, e),
Xq,e as the scores concatenation:

(Xq,e)0 = f(q, e)

∀t ∈ {1, ...,T }, (Xq,e)t = s(q,Nt(e))
(4)

The label of a couple (q, e) is defined as:

Y q,e =

{
1 if e is the gold entity of q
0 otherwise

(5)

21

Cambridge 1

Cambridgeshire

Fitzwilliam Museum

England

Wilf Mannion

Cambridge 2

Massachussets

United States

MIT Museum

Figure 4: Two homonyms: Cambridge cities. Each
color is assigned to a node in the ontology. If t1 is as-
sociated to the entity type Country, and t2 to Football
player, then
Nt1(Cambridge 1) = {England}
Nt2(Cambridge 1) = {Wilf Mannion}
Nt1(Cambridge 2) = {United States}
Nt2(Cambridge 2) = ∅

Supervised NEL: With this formulation, we
can train NEL standard regressors or classifiers in
a supervised learning framework. At inference,
the couple (q, ê) maximizing the prediction score
yields predicted entity ê. If same scores are re-
turned for different couples, we return the first
candidate. (This situation didn’t occur in prac-
tice). The feature extraction procedure and infer-
ence are summed up in algorithm 2 and algorithm
3 respectively.

Algorithm 2 Feature extraction using knowledge
graph and ontology
Require: Knowledge Graph G, Query q, Entity candidate e

with initial filtering score s0, Types (tj)1≤j≤T

1: Xq,e = [s0]
2: Get neighbor nodes of e
3: for j = 1 to T do
4: Aggregate text description of neighbors of type tj
5: Compute score stj betweenNtj (e) and the query q
6: Append stj to Xq,e

7: end for
8: return Score vectors (Xq,e)1≤j≤T+1

Algorithm 3 Named entity identification (Infer-
ence)
Require: Knowledge base B and its graph GB , queries

(qi)1≤i≤M , scoring threshold K, trained predictor F̂
1: for i = 1 to M do
2: Use filtering on query qi and B, return a list of K

top ranked entities (e1
h)1≤h≤K

3: Use algorithm 2 using GB , on K entity candidates,
return new score vectors

4: Evaluate F̂ on each vector score and use maximum a
posteriori to infer estimated gold entity ĝi

5: end for
6: return (ĝi)1≤i≤M (list of estimated gold entities)

Graph-based scoring functions: In the identi-

fication step, features defined from Eq. (4) require
the choice of a scoring function. First of all, sev-
eral representations for q and e are possible. In
our first experiment, we used the standard TFIDF
representation for the supervised learning proced-
ure described previously, and the corresponding
scoring function with cosine similarity. This al-
lowed to increase slightly empirical accuracy over
entity filtering.

In order to explore a broader class of scoring
functions, let us introduce graph of words (GoW)
representations. GoW is a representation built
over a sequence of objects in order to capture
sequential relationships. Given a window size,
nodes are added to the graph by their string rep-
resentation, and edges are added between nodes
in the same sliding window. This representa-
tion has proven its efficiency for several inform-
ation retrieval problems (Rousseau and Vazirgian-
nis, 2013).

Indeed, bag of words representations can be
considered as a special case of graph of words
representations, for which edge deleting opera-
tions have been applied. Here, we consider that
the query context and the entity description are
both composed of at least 10 words for GoW to
be meaningful. The final step to define a scor-
ing function as in Eq. (4), is to compare the two
graph structures (one from the query context and
the other from the entity description).

Given two graphs G and H, determining if G is
isomorphic H allows to measure graph similarit-
ies (Cordella et al., 2004). However, for several
applications, including the topic of this paper, iso-
morphic conditions are too rigid since two docu-
ments can be similar without isomorphic GoWs.
Also, we are interested in graph similarity meas-
ures taking in account structure (word relations)
and node attributes (words). For this reason, graph
kernels have been popularized as a powerful tool
to measure graph similarity in a continuous fash-
ion.

Following the notations of Sec. 3.2, and k a
graph kernel, we considered the family of scor-
ing functions: (q, e) 7→ k(GoWq, GoWNt(e)) in
our experiments. If Nt(e) contains more than one
node, we concatenate their text content and com-
pute a GoW. As mentioned previously, this family
of functions countains some of the bag-of-words
scoring functions, such as TFIDF. We obtained
better empirical results using standard graph ker-

22

nels (cf. next paragraph for examples). It should
be noted that we could not use graph kernels for
the first step (entity filtering), since the computa-
tion time would be too long. On the contrary, the
identification step takes as input a limited amount
of entity candidates, which makes the computation
time reasonable.

Graph-of-words window, graph kernels & re-
gressors: We selected as a graph-of-word win-
dow w = 4 (same results were obtained for w ∈
{3, 4, 5, 6}), with different graph kernels, includ-
ing Shortest-path kernel, Weisfeiler-Lehman Ker-
nel. The accuracy results for each graph kernel
were very close, but higher than with TFIDF scor-
ing (1% to 2% better). In Sec. 4, we report results
for the pyramid match graph kernel, for its low
complexity among standard kernels (Nikolentzos
et al., 2017). Finally, we used several standard
classifiers: regression trees, support vector ma-
chines, and logistic regression. We obtained bet-
ter results with logistic regression (reported in
Table 1).

Computational complexity: The total complex-
ity (filtering and identification) is: O(M(E +
KTG)). We report this in Table 2, along with
some experimental computing times.

4 Experimental setup and evaluation

The source code of our experiments along with
documentation, and datasets samples are available
at our repository2.

4.1 Datasets, entity types, and ontology:

We used CONLL and NIST TAC-KBP 2009-2010
as datasets. Each query contains its gold entity
id and type. TAC-KBP: the corresponding know-
ledge base is composed of 818741 entities. TAC09
contains 1675 test queries, and TAC10 1074 for
train and 1020 for test. CONLL/AIDA is com-
posed of 22516 queries for training and 4379 quer-
ies for test.

The other methods, mainly deep learning (DL)
in Table 1 use millions of training examples from
Wikipedia’s anchor links and corresponding entit-
ies. In our method, we did not use this additional
training data, but only those provided by the ori-
ginal challenges.

Also, we considered a more recent Knowledge
base (Wikipedia 2016 dump with 2880838 entit-
ies) since the original Wikipedia 2010 dump is not
available anymore. The ontology we considered

is available on DBPedia1. We provide the script
that builds the complete knowledge base and on-
tology in our repository. To generate fine-grained
ontology knowledge bases, we describe the pro-
cedure (along with the code) in our repository.
We must remind that our method does not include
fined-grained entity recognition from the queries:
we suppose this given as input in the data. For
the implementation of graph kernels, we used the
GraKeL software library (Siglidis et al., 2018).

4.2 Results:

We compare our methods with most performing
baselines. Table 1 sums up our experimental res-
ults (averaged P@1 is also referred as accuracy
(Sun et al., 2015)). We included standard devi-
ation of the accuracy, but could not include p-
significance of our method, due to the difficulty to
reproduce other baselines experiments (no source
code is publicly available, or filtering method
is not detailed). Our method yields remarkable
accuracy on TAC09 dataset, CONLL/AIDA and
TAC10 datasets. It performs better than any ex-
isting graph-based methods, outperforms all ex-
isting methods on two NIST TAC09 and TAC10,
and is competitive with state-of-the arts methods
on CONLL/AIDA. We also report impact of para-
meter K on average precision P@1 (accuracy).
Results are in Fig. 5. Low values of K, corres-
ponding to limited exploration, leading to decreas-
ing accuracy. High values of K yield too many en-
tity candidates and an imbalanced learning prob-
lem, resulting in a decrease of accuracy. Results
are similar for 5 ≤K ≤ 10, and allow a 2% to 3%
improvement over filtering. As expected, the pre-
cision is strictly increasing with respect to T but
the variation is bounded by 5% for T ∈ [3, 249].

Table 2: Computing times rounded to the minute. Q =
1000, E = 2.8× 106, G ≤ 200, K = 7, T = 249. Setup 1:
Single CPU with 32Gb Ram, 4-cores 2.40GHz. Setup 2: Dis-
tributed cluster with variety of 20 CPU processors equivalent
to setup 1 (Spark/Hadoop technology)

Component Complexity
Time (mn.)

Setup 1 Setup 2
Filtering O(ME) 196 15
Identification O(QKTG) 153 10

5 Conclusion

In this paper, we proposed a new methodology
concerning the problem of named entity linking.

23

Table 1: Comparison with state-of-the art methods for K = 7 and T = 249. PGMs stands for probabilistic
graphical model.

Method Nil detection Train. size
P@1 (Accuracy) ± std %

TAC09 TAC10 AIDA

(Ganea et al., 2016) PGM No ∼ 106 / / 87.39

(Ganea and Hofmann, 2017) PGM/DL No ∼ 106 / / 92.22

(Sun et al., 2015) DL No ∼ 106 82.26 83.92 /

(Yamada et al., 2016) DL No ∼ 106 / 85.2 93.1

(Yamada et al., 2017) DL No ∼ 106 / 87.7 94.3

(Globerson et al., 2016) DL Yes ∼ 106 / 87.2 92.7

(Sil et al., 2018) DL Not detailed ∼ 106 / 87.4 93.0

(Raiman and Raiman, 2018) DL Not detailed ∼ 106 / 90.85 94.87

(Guo et al., 2011) Graphs Yes ∼ 104 84.89 82.40 /

(Hoffart et al., 2011) Graphs No ∼ 104 / / 81.91

Our method Graphs No ∼ 103, 104 93.67±0.06 94.70±0.05 93.56±0.06

1 5 10 15 20
90

92

94

96

98

100

K

A
ve

ra
ge

ac
cu

ra
cy

(%
)

P@1 = f(K), T=249

TAC09
TAC10

CONLL AIDA

3 19 76 171 250

88

90

92

94

96

98

100

T

A
ve

ra
ge

ac
cu

ra
cy

(%
)

P@1 = g(T), K=7

TAC09
TAC10

CONLL AIDA

Figure 5: Impact of K and T on average P@1.

First, we presented an entity filtering algorithm to
return entity candidates that improves over trivial
association rules. Then, each entity candidate is
matched with a new representation built on a sub-
graph centered on their node. These representa-
tions use information contained in the ontology
of the knowledge base. Finally, we used stand-
ard supervised learning to identify entities in the
top candidates from filtering. We showed experi-
mentally with standard datasets that named entity
linking systematically improves over filtering us-
ing graph-based identification (for 2 ≤ K ≤ 10),
up to 3%. Our experiments show that our method
is competitive with state-of-the-art, and is stable
with respect to K and T , has a linear complex-
ity and reasonable experimental computing time.
Our linking system is relatively easy to implement,
with few hyper-parameters. Last but not least, it
does not require lots of data compared with deep
learning to reach good experimental performance:
only a few thousands of training samples were
used to reach these results.

References

Ayman Alhelbawy and Robert Gaizauskas. 2013.
Named entity disambiguation using hmms. In 2013
IEEE/WIC/ACM International Joint Conferences on
Web Intelligence (WI) and Intelligent Agent Techno-
logies (IAT), volume 3, pages 159–162. IEEE.

Ayman Alhelbawy and Robert Gaizauskas. 2014.
Graph ranking for collective named entity disambig-
uation. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 75–80.

24

A. Apostolico and C. Guerra. 1987. The longest com-
mon subsequence problem revisited. Algorithmica,
2(1):315–336.

Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and
Mario Vento. 2004. A (sub) graph isomorphism al-
gorithm for matching large graphs. IEEE transac-
tions on pattern analysis and machine intelligence,
26(10):1367–1372.

Silviu Cucerzan. 2007. Large-scale named entity dis-
ambiguation based on wikipedia data. In Proceed-
ings of the 2007 EMNLP-CoNLL, pages 708–716.

Maud Ehrmann, Leonida Della Rocca, Ralf Steinber-
ger, and Hristo Tanev. 2013. Acronym recogni-
tion and processing in 22 languages. arXiv preprint
arXiv:1309.6185.

Octavian-Eugen Ganea, Marina Ganea, Aurelien Luc-
chi, Carsten Eickhoff, and Thomas Hofmann. 2016.
Probabilistic bag-of-hyperlinks model for entity
linking. In Proceedings of the 25th International
Conference on World Wide Web, pages 927–938. In-
ternational World Wide Web Conferences Steering
Committee.

Octavian-Eugen Ganea and Thomas Hofmann. 2017.
Deep joint entity disambiguation with local neural
attention. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 2619–2629.

Amir Globerson, Nevena Lazic, Soumen Chakra-
barti, Amarnag Subramanya, Michael Ringaard, and
Fernando Pereira. 2016. Collective entity resolution
with multi-focal attention. In Proceedings of the
54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
volume 1, pages 621–631.

Yuhang Guo, Wanxiang Che, Ting Liu, and Sheng Li.
2011. A graph-based method for entity linking. In
Proceedings of 5th International Joint Conference
on Natural Language Processing, pages 1010–1018.

Dan Gusfield. 1997. Algorithms on strings, trees and
sequences: computer science and computational
biology. Cambridge university press.

Xianpei Han, Le Sun, and Jun Zhao. 2011. Collective
entity linking in web text: a graph-based method. In
Proceedings of the 34th international ACM SIGIR
conference on Research and development in Inform-
ation Retrieval, pages 765–774. ACM.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bor-
dino, Hagen Fürstenau, Manfred Pinkal, Marc Spa-
niol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. 2011. Robust disambiguation of named
entities in text. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 782–792. Association for Computa-
tional Linguistics.

Heng Ji, Joel Nothman, Ben Hachey, et al. 2014. Over-
view of tac-kbp2014 entity discovery and linking
tasks. In Proc. Text Analysis Conference (TAC2014),
pages 1333–1339.

Jens Lehmann, Robert Isele, Max Jakob, Anja
Jentzsch, Dimitris Kontokostas, Pablo N Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick
Van Kleef, Sören Auer, et al. 2015. Dbpedia–a
large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web, 6(2):167–195.

Xiao Ling and Daniel S Weld. 2012. Fine-grained en-
tity recognition. In Twenty-Sixth AAAI Conference
on Artificial Intelligence.

Qiaoling Liu, Josh Chao, Thomas Mahoney, Alan
Chern, Chris Min, Faizan Javed, and Valentin
Jijkoun. 2018. Lessons learned from developing and
deploying a large-scale employer name normaliza-
tion system for online recruitment. In Proceedings
of the 24th ACM SIGKDD, pages 556–565. ACM.

David Nadeau and Satoshi Sekine. 2007. A survey of
named entity recognition and classification. Lingv-
isticae Investigationes, 30(1):3–26.

Giannis Nikolentzos, Polykarpos Meladianos, and
Michalis Vazirgiannis. 2017. Matching Node Em-
beddings for Graph Similarity. In Proceedings of
the 31st AAAI Conference on Artificial Intelligence,
pages 2429–2435.

Jonathan Raphael Raiman and Olivier Michel Rai-
man. 2018. Deeptype: multilingual entity linking
by neural type system evolution. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Lev Ratinov, Dan Roth, Doug Downey, and Mike
Anderson. 2011. Local and global algorithms
for disambiguation to wikipedia. In Proceedings
of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies-Volume 1, pages 1375–1384. Associ-
ation for Computational Linguistics.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and bey-
ond. Foundations and Trends R© in Information Re-
trieval, 3(4):333–389.

François Rousseau and Michalis Vazirgiannis. 2013.
Graph-of-word and tw-idf: New approach to ad hoc
ir. In Proceedings of the 22Nd ACM International
Conference on Information & Knowledge Manage-
ment, CIKM ’13, pages 59–68, New York, NY,
USA. ACM.

Giannis Siglidis, Giannis Nikolentzos, Stratis Lim-
nios, Christos Giatsidis, Konstantinos Skianis,
and Michalis Vazirgiannis. 2018. Grakel: A
graph kernel library in python. arXiv preprint
arXiv:1806.02193.

https://doi.org/10.1007/BF01840365
https://doi.org/10.1007/BF01840365
https://doi.org/10.1145/2505515.2505671
https://doi.org/10.1145/2505515.2505671

25

Avirup Sil, Gourab Kundu, Radu Florian, and Wael
Hamza. 2018. Neural cross-lingual entity linking.
In Thirty-Second AAAI Conference on Artificial In-
telligence.

Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhenzhou
Ji, and Xiaolong Wang. 2015. Modeling mention,
context and entity with neural networks for entity
disambiguation. In IJCAI, pages 1333–1339.

Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Mi-
chael Röder, Daniel Gerber, Sandro Athaide Coelho,
Sören Auer, and Andreas Both. 2014. Agdistis-
graph-based disambiguation of named entities using
linked data. In International semantic web confer-
ence, pages 457–471. Springer.

Davy Weissenbacher, Tasnia Tahsin, Rachel Beard,
Mari Figaro, Robert Rivera, Matthew Scotch, and
Graciela Gonzalez. 2015. Knowledge-driven geo-
spatial location resolution for phylogeographic mod-
els of virus migration. Bioinformatics, 31(12):i348–
i356.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and
Yoshiyasu Takefuji. 2016. Joint learning of the em-
bedding of words and entities for named entity dis-
ambiguation. CoNLL 2016, page 250.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and
Yoshiyasu Takefuji. 2017. Learning distributed rep-
resentations of texts and entities from knowledge
base. Transactions of the Association for Compu-
tational Linguistics, 5:397–411.

Jin G Zheng, Daniel Howsmon, Boliang Zhang, Juer-
gen Hahn, Deborah McGuinness, James Hendler,
and Heng Ji. 2015. Entity linking for biomedical
literature. BMC medical informatics and decision
making, 15(1):S4.

