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Abstract

Text adventure games, in which players must
make sense of the world through text descrip-
tions and declare actions through text descrip-
tions, provide a stepping stone toward ground-
ing action in language. Prior work has demon-
strated that using a knowledge graph as a
state representation and question-answering to
pre-train a deep Q-network facilitates faster
control policy learning. In this paper, we
explore the use of knowledge graphs as a
representation for domain knowledge transfer
for training text-adventure playing reinforce-
ment learning agents. Our methods are tested
across multiple computer generated and hu-
man authored games, varying in domain and
complexity, and demonstrate that our transfer
learning methods let us learn a higher-quality
control policy faster.

1 Introduction

Text adventure games, in which players must
make sense of the world through text descrip-
tions and declare actions through natural language,
can provide a stepping stone toward more real-
world environments where agents must communi-
cate to understand the state of the world and af-
fect change in the world. Despite the steadily in-
creasing body of research on text-adventure games
(Bordes et al., 2010; He et al., 2016; Narasimhan
et al., 2015; Fulda et al., 2017; Haroush et al.,
2018; Coté et al., 2018; Tao et al., 2018; Am-
manabrolu and Riedl, 2019), and in addition to the
ubiquity of deep reinforcement learning applica-
tions (Parisotto et al., 2016; Zambaldi et al., 2019),
teaching an agent to play text-adventure games re-
mains a challenging task. Learning a control pol-
icy for a text-adventure game requires a signifi-
cant amount of exploration, resulting in training
runs that take hundreds of thousands of simula-
tions (Narasimhan et al., 2015; Ammanabrolu and
Riedl, 2019).
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One reason that text-adventure games require so
much exploration is that most deep reinforcement
learning algorithms are trained on a task without
a real prior. In essence, the agent must learn ev-
erything about the game from only its interactions
with the environment. Yet, text-adventure games
make ample use of commonsense knowledge (e.g.,
an axe can be used to cut wood) and genre themes
(e.g., in a horror or fantasy game, a coffin is likely
to contain a vampire or other undead monster).
This is in addition to the challenges innate to the
text-adventure game itself—games are puzzles—
which results in inefficient training.

Ammanabrolu and Riedl (2019) developed a re-
inforcement learning agent that modeled the text
environment as a knowledge graph and achieved
state-of-the-art results on simple text-adventure
games provided by the TextWorld (Coté et al.,
2018) environment. They observed that a simple
form of transfer from very similar games greatly
improved policy training time. However, games
beyond the toy TextWorld environments are be-
yond the reach of state-of-the-art techniques.

In this paper, we explore the use of knowl-
edge graphs and associated neural embeddings as
a medium for domain transfer to improve train-
ing effectiveness on new text-adventure games.
Specifically, we explore transfer learning at mul-
tiple levels and across different dimensions. We
first look at the effects of playing a text-adventure
game given a strong prior in the form of a knowl-
edge graph extracted from generalized textual
walk-throughs of interactive fiction as well as
those made specifically for a given game. Next,
we explore the transfer of control policies in deep
Q-learning (DQN) by pre-training portions of a
deep Q-network using question-answering and by
DQN-to-DQN parameter transfer between games.
We evaluate these techniques on two different
sets of human authored and computer generated
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games, demonstrating that our transfer learning
methods enable us to learn a higher-quality con-
trol policy faster.

2 Background and Related Work

Text-adventure games, in which an agent must in-
teract with the world entirely through natural lan-
guage, provide us with two challenges that have
proven difficult for deep reinforcement learning
to solve (Narasimhan et al., 2015; Haroush et al.,
2018; Ammanabrolu and Riedl, 2019): (1) The
agent must act based only on potentially incom-
plete textual descriptions of the world around it.
The world is thus partially observable, as the agent
does not have access to the state of the world at
any stage. (2) the action space is combinatorially
large—a consequence of the agent having to de-
clare commands in natural language. These two
problems together have kept commercial text ad-
venture games out of the reach of existing deep
reinforcement learning methods, especially given
the fact that most of these methods attempt to train
on a particular game from scratch.

Text-adventure games can be treated as par-
tially observable Markov decision processes
(POMDPs). This can be represented as a 7-tuple
of (S,T,A,Q,0,R,v): the set of environment
states, conditional transition probabilities between
states, words used to compose text commands, ob-
servations, conditional observation probabilities,
the reward function, and the discount factor re-
spectively (Coté et al., 2018).

Multiple recent works have explored the chal-
lenges associated with these games (Bordes et al.,
2010; He et al., 2016; Narasimhan et al., 2015;
Fulda et al., 2017; Haroush et al., 2018; Coté
et al., 2018; Tao et al., 2018; Ammanabrolu and
Riedl, 2019). Narasimhan et al. (2015) introduce
the LSTM-DQN, which learns to score the ac-
tion verbs and corresponding objects separately
and then combine them into a single action. He
et al. (2016) propose the Deep Reinforcement Rel-
evance Network that consists of separate networks
to encode state and action information, with a fi-
nal Q-value for a state-action pair that is computed
between a pairwise interaction function between
these. Haroush et al. (2018) present the Action
Elimination Network (AEN), which restricts ac-
tions in a state to the top-k most likely ones, us-
ing the emulator’s feedback. Hausknecht et al.
(2019b) design an agent that uses multiple mod-

ules to identify a general set of game play rules for
text games across various domains. None of these
works study how to transfer policies between dif-
ferent text-adventure games in any depth and so
there exists a gap between the two bodies of work.

Transferring policies across different text-
adventure games requires implicitly learning a
mapping between the games’ state and action
spaces. The more different the domain of the
two games, the harder this task becomes. Previ-
ous work (Ammanabrolu and Riedl, 2019) intro-
duced the use of knowledge graphs and question-
answering pre-training to aid in the problems of
partial observability and a combinatorial action
space. This work made use of a system called
TextWorld (Coté et al., 2018) that uses grammars
to generate a series of similar (but not exact same)
games. An oracle was used to play perfect games
and the traces were used to pre-train portions of
the agent’s network responsible for encoding the
observations, graph, and actions. Their results
show that this form of pre-training improves the
quality of the policy at convergence it does not
show a significant improvement in the training
time required to reach convergence. Further, it
is generally unrealistic to have a corpus of very
similar games to draw from. We build on this
work, and explore modifications of this algorithm
that would enable more efficient transfer in text-
adventure games.

Work in transfer in reinforcement learning has
explored the idea of transferring skills (Konidaris
and Barto, 2007; Konidaris et al., 2012) or trans-
ferring value functions/policies (Liu and Stone,
2006). Other approaches attempt transfer in
model-based reinforcement learning (Taylor et al.,
2008; Nguyen et al., 2012; Gasic et al., 2013;
Wang et al., 2015; Joshi and Chowdhary, 2018),
though traditional approaches here rely heavily
on hand crafting state-action mappings across do-
mains. Narasimhan et al. (2017) learn to play
games by predicting mappings across domains us-
ing a both deep Q-networks and value iteration
networks, finding that that grounding the game
state using natural language descriptions of the
game itself aids significantly in transferring useful
knowledge between domains.

In transfer for deep reinforcement learning,
Parisotto et al. (2016) propose the Actor-Mimic
network which learns from expert policies for a
source task using policy distillation and then ini-



tializes the network for a target task using these
parameters. Yin and Pan (2017) also use policy
distillation, using task specific features as inputs
to a multi-task policy network and use a hierarchi-
cal experience sampling method to train this multi-
task network. Similarly, Rusu et al. (2016) attempt
to transfer parameters by using frozen parameters
trained on source tasks to help learn a new set
of parameters on target tasks. Rajendran et al.
(2017) attempt something similar but use atten-
tion networks to transfer expert policies between
tasks. These works, however, do not study the re-
quirements for enabling efficient transfer for tasks
rooted in natural language, nor do they explore the
use of knowledge graphs as a state representation.

3 Knowledge Graphs for DQNs

A knowledge graph is a directed graph formed
by a set of semantic, or RDF, triples in the
form of (subject,relation, object)—for exam-
ple, (vampires,are,undead). We follow the
open-world assumption that what is not in our
knowledge graph can either be true or false.
Ammanabrolu and Riedl (2019) introduced the
Knowledge Graph DQN (KG-DQN) and touched
on some aspects of transfer learning, show-
ing that pre-training portions of the deep Q-
network using question answering system on per-
fect playthroughs of a game increases the qual-
ity of the learned control policy for a generated
text-adventure game. We build on this work and
use KG-DQN to explore transfer with both knowl-
edge graphs and network parameters. Specifically
we seek to transfer skills and knowledge from
(a) static text documents describing game play and
(b) from playing one text-adventure game to a sec-
ond complete game in in the same genre (e.g., hor-
ror games). The rest of this section describes KG-
DQN in detail and summarizes our modifications.’
For each step that the agent takes, it automat-
ically extracts a set of RDF triples from the re-
ceived observation through the use of OpenlE
(Angeli et al., 2015) in addition to a few rules
to account for the regularities of text-adventure
games. The graph itself is more or less a map of
the world, with information about objects’ affor-
dances and attributes linked to the rooms that they
are place in in a map. The graph also makes a dis-
tinction with respect to items that are in the agent’s

'We use the implementation of KG-DQN found at
https://github.com/rajammanabrolu/KG-DQN
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Figure 1: The KG-DQN architecture.

possession or in their immediate surrounding en-
vironment. We make minor modifications to the
rules used in Ammanabrolu and Riedl (2019) to
better achieve such a graph in general interactive
fiction environments.

The agent also has access to all actions accepted
by the game’s parser, following Narasimhan et al.
(2015). For general interactive fiction environ-
ments, we develop our own method to extract this
information. This is done by extracting a set of
templates accepted by the parser, with the objects
or noun phrases in the actions replaces with a OBJ
tag. An example of such a template is “place OBJ
in OBJ”. These OBJ tags are then filled in by look-
ing at all possible objects in the given vocabulary
for the game. This action space is of the order
of A = O(|V] x |O|?) where V is the number
of action verbs, and O is the number of distinct
objects in the world that the agent can interact
with. As this is too large a space for a RL agent to
effectively explore, the knowledge graph is used
to prune this space by ranking actions based on
their presence in the current knowledge graph and
the relations between the objects in the graph as
in Ammanabrolu and Riedl (2019).

The architecture for the deep Q-network con-
sists of two separate neural networks—encoding
state and action separately—with the final )-value
for a state-action pair being the result of a pair-
wise interaction function between the two (Fig-
ure 1). We train with a standard DQN training
loop; the policy is determined by the ()-value of a
particular state-action pair, which is updated using
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the Bellman equation (Sutton and Barto, 2018):

Qt+1(5t41,0t41) = |

E[ris1 +ymax Q¢ (s, a)|st, al M
a€A:

where ~y refers to the discount factor and 7441 is

the observed reward. The whole system is trained

using prioritized experience replay Lin (1993), a

modified version of e-greedy learning, and a tem-

poral difference loss that is computed as:

L(0) =rg+1+
v max Q(st,a;0) — Q(s¢,as; 0) 2)

acAki1

where Ay 1 represents the action set at step k +
1 and s¢, a; refer to the encoded state and action
representations respectively.

4 Knowledge Graph Seeding

In this section we consider the problem of trans-
ferring a knowledge graph from a static text re-
source to a DQN—which we refer to as seeding.
KG-DQN uses a knowledge graph as a state repre-
sentation and also to prune the action space. This
graph is built up over time, through the course of
the agent’s exploration. When the agent first starts
the game, however, this graph is empty and does
not help much in the action pruning process. The
agent thus wastes a large number of steps near the
beginning of each game exploring ineffectively.
The intuition behind seeding the knowledge
graph from another source is to give the agent a
prior on which actions have a higher utility and
thereby enabling more effective exploration. Text-
adventure games typically belong to a particular
genre of storytelling—e.g., horror, sci-fi, or soap
opera—and an agent is at a distinct disadvantage
if it doesn’t have any genre knowledge. Thus, the
goal of seeding is to give the agent a strong prior.
This seed knowledge graph is extracted from
online general text-adventure guides as well as
game/genre specific guides when available.> The
graph is extracted from this the guide using a sub-
set of the rules described in Section 3 used to
extract information from the game observations,
with the remainder of the RDF triples coming
from OpenlE. There is no map of rooms in the en-
vironment that can be built, but it is possible to

2An example of a guide we use is found here http://
www.microheaven.com/IFGuide/step3.html

Figure 2: Select partial example of what a seed knowl-
edge graph looks like. Ellipses indicate other similar
entities and relations not shown.

extract information regarding affordances of fre-
quently occurring objects as well as common ac-
tions that can be performed across a wide range of
text-adventure games. This extracted graph is thus
potentially disjoint, containing only this generaliz-
able information, in contrast to the graph extracted
during the rest of the exploration process. An ex-
ample of a graph used to seed KG-DQN is given
in Fig. 2. The KG-DQN is initialized with this
knowledge graph.

5 Task Specific Transfer

The overarching goal of transfer learning in text-
adventure games is to be able to train an agent on
one game and use this training on to improve the
learning capabilities of another. There is grow-
ing body of work on improving training times
on target tasks by transferring network parameters
trained on source tasks (Rusu et al., 2016; Yin and
Pan, 2017; Rajendran et al., 2017). Of particular
note is the work by Rusu et al. (2016), where they
train a policy on a source task and then use this
to help learn a new set of parameters on a target
task. In this approach, decisions made during the
training of the target task are jointly made using
the frozen parameters of the transferred policy net-
work as well as the current policy network.

Our system first trains a question-answering
system (Chen et al., 2017) using traces given by
an oracle, as in Section 4. For commercial text-
adventure games, these traces take the form of
state-action pairs generated using perfect walk-
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through descriptions of the game found online as
described in Section 4.

We use the parameters of the question-
answering system to pre-train portions of the deep
Q-network for a different game within in the same
domain. The portions that are pre-trained are the
same parts of the architecture as in Ammanabrolu
and Riedl (2019). This game is referred to as the
source task. The seeding of the knowledge graph
is not strictly necessary but given that state-of-the-
art DRL agents cannot complete real games, this
makes the agent more effective at the source task.

We then transfer the knowledge and skills ac-
quired from playing the source task to another
game from the same genre—the target task. The
parameters of the deep Q-network trained on the
source game are used to initialize a new deep Q-
network for the target task. All the weights indi-
cated in the architecture of KG-DQN as shown in
Fig. 1 are transferred. Unlike Rusu et al. (2016),
we do not freeze the parameters of the deep Q-
network trained on the source task nor use the two
networks to jointly make decisions but instead just
use it to initialize the parameters of the target task
deep Q-network. This is done to account for the
fact that although graph embeddings can be trans-
ferred between games, the actual graph extracted
from a game is non-transferable due to differences
in structure between the games.

6 Experiments

We test our system on two separate sets of
games in different domains using the Jericho and
TextWorld frameworks (Hausknecht et al., 2019a;
Coté et al., 2018). The first set of games is “slice of
life” themed and contains games that involve mun-
dane tasks usually set in textual descriptions of
normal houses. The second set of games is “hor-
ror” themed and contains noticeably more diffi-
cult games with a relatively larger vocabulary size
and action set, non-standard fantasy names, etc.
We choose these domains because of the avail-
ability of games in popular online gaming com-
munities, the degree of vocabulary overlap within
each theme, and overall structure of games in each
theme. Specifically, there must be at least three
games in each domain: at least one game to train
the question-answering system on, and two more
to train the parameters of the source and target task
deep Q-networks. A summary of the statistics for
the games is given in Table 1. Vocabulary overlap

is calculated by measuring the percentage of over-
lap between a game’s vocabulary and the domain’s
vocabulary, i.e. the union of the vocabularies for
all the games we use within the domain. We ob-
serve that in both of these domains, the complex-
ity of the game increases steadily from the game
used for the question-answering system to the tar-
get and then source task games.

We perform ablation tests within each domain,
mainly testing the effects of transfer from seed-
ing, oracle-based question-answering, and source-
to-target parameter transfer. Additionally, there
are a couple of extra dimensions of ablations that
we study, specific to each of the domains and
explained below. All experiments are run three
times using different random seeds. For all the
experiments we report metrics known to be impor-
tant for transfer learning tasks (Taylor and Stone,
2009; Narasimhan et al., 2017): average reward
collected in the first 50 episodes (init. reward), av-
erage reward collected for 50 episodes after con-
vergence (final reward), and number of steps taken
to finish the game for 50 episodes after conver-
gence (steps). For the metrics tested after conver-
gence, we set € = (.1 following both Narasimhan
et al. (2015) and Ammanabrolu and Riedl (2019).
We use similar hyperparameters to those reported
in (Ammanabrolu and Riedl, 2019) for training the
KG-DQN with action pruning, with the main dif-
ference being that we use 100 dimensional word
embeddings instead of 50 dimensions for the hor-
ror genre.

6.1 Slice of Life Experiments

TextWorld uses a grammar to generate simi-
lar games. Following Ammanabrolu and Riedl
(2019), we use TextWorld’s “home” theme to gen-
erate the games for the question-answering sys-
tem. TextWorld is a framework that uses a gram-
mar to randomly generate game worlds and quests.
This framework also gives us information such as
instructions on how to finish the quest, and a list
of actions that can be performed at each step based
on the current world state. We do not let our agent
access this additional solution information or ad-
missible actions list. Given the relatively small
quest length for TextWorld games—games can be
completed in as little as 5 steps—we generate 50
such games and partition them into train and test
sets in a 4:1 ratio. The traces are generated on the
training set, and the question-answering system is



Table 1: Game statistics

Slice of life Horror

QA/Source  Target QA Source Target

TextWorld 9:05 | Lurking Horror  Afflicted  Anchorhead
Vocab size 788 297 773 761 2256
Branching factor 122 677 - 947 1918
Number of rooms 10 7 25 18 28
Completion steps 5 25 289 20 39
Words per obs. 65.1 45.2 68.1 81.2 114.2
New triples per obs. 6.4 4.1 - 12.6 17.0
% Vocab overlap 19.70 21.45 22.80 14.40 66.34
Max. aug. reward 5 27 - 21 43

soiled
clothing

Bedroom
This bedroom is extremely spare, with dirty laundry scattered
haphazardly all over the floor. Cleaner clothing can be found in the
dresser. A bathroom lies to the south, while a door to the east leads to the
living room. On the end table are a telephone, a wallet and some keys.
>inventory
You are carrying:

some soiled clothing (being worn)

a gold watch (being worn)
>go south
Bathroom
This is a far from luxurious but still quite functional bathroom, with a
sink. toilet and shower. The bedroom lies to the north.

Figure 3: Partial unseeded knowledge graph example
given observations and actions in the game 9:05.

evaluated on the test set.

We then pick a random game from the test set to
train our source task deep Q-network for this do-
main. For this training, we use the reward function
provided by TextWorld: +1 for each action taken
that moves the agent closer to finishing the quest;
-1 for each action taken that extends the minimum
number of steps needed to finish the quest from
the current stage; O for all other situations.

We choose the game, 9:05% as our target task
game due to similarities in structure in addition to
the vocabulary overlap. Note that there are multi-
ple possible endings to this game and we pick the
simplest one for the purpose of training our agent.

*https://ifdb.tads.org/viewgame?id=
qzftg338nh5£344i2

corner of ...
twisting

outside
the real
estate

totter
oppressively

narrow,
transom style
window

Outside the Real Estate Office

A grim little cul-de-sac, tucked away in a corner of the claustrophobic
tangle of narrow, twisting avenues that largely constitute the older portion
of Anchorhead. Like most of the streets in this city, it is ancient, shadowy,
and leads essentially nowhere. The lane ends here at the real estate agent's
office, which lies to the east, and winds its way back toward the center of
town to the west. A narrow, garbage-choked alley opens to the southeast.
>go southeast

Alley

This narrow aperture between two buildings is nearly blocked with piles of
rotting cardboard boxes and overstuffed garbage cans. Ugly, half-
crumbling brick walls to either side totter oppressively over you. The alley
ends here at a tall, wooden fence. High up on the wall of the northern
building there is a narrow, transom-style window.

Figure 4: Partial unseeded knowledge graph example
given observations and actions in the game Anchor-
head.

6.2

For the horror domain, we choose Lurking Hor-
ror* to train the question-answering system on.
The source and target task games are chosen as Af-
flicted® and Anchorhead® respectively. However,
due to the size and complexity of these two games
some modifications to the games are required for
the agent to be able to effectively solve them.

Horror Experiments

*nttps://ifdb.tads.org/viewgame?id=
jhbd0kjalt57uop

Shttps://ifdb.tads.org/viewgame?id=
epldg2933rczoo9x

®https://ifdb.tads.org/viewgame?id=
opOuwlgnlt jgmjt7
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Figure 5: Reward curve for select experiments in the
slice of life domain.

We partition each of these games and make them
smaller by reducing the final goal of the game
to an intermediate checkpoint leading to it. This
checkpoints were identified manually using walk-
throughs of the game; each game has a natural in-
termediate goal. For example, Anchorhead is seg-
mented into 3 chapters in the form of objectives
spread across 3 days, of which we use only the
first chapter. The exact details of the games after
partitioning is described in Table 1. For Lurking
Horror, we report numbers relevant for the oracle
walkthrough. We then pre-prune the action space
and use only the actions that are relevant for the
sections of the game that we have partitioned out.
The majority of the environment is still available
for the agent to explore but the game ends upon
completion of the chosen intermediate checkpoint.

6.3 Reward Augmentation

The combined state-action space for a commer-
cial text-adventure game is quite large and the
corresponding reward function is very sparse in
comparison. The default, implied reward signal
is to receive positive value upon completion of
the game, and no reward value elsewhere. This
is problematic from an experimentation perspec-
tive as text-adventure games are too complex for
even state-of-the-art deep reinforcement learning
agents to complete. Even using transfer learning
methods, a sparse reward signal usually results in
ineffective exploration by the agent.

To make experimentation feasible, we augment
the reward to give the agent a dense reward sig-
nal. Specifically, we use an oracle to generate
state-action traces (identical to how as when train-

54
Trg-seed-D Full

0 Trg-QA-D

50 60 70 80 90 100 110 120 130
Episodes

Figure 6: Reward curve for select experiments in the
horror domain.

ing the question-answering system). An oracle is
an agent that is capable of playing and finishing a
game perfectly in the least number of steps pos-
sible. The state-action pairs generated using per-
fect walkthroughs of the game are then used as
checkpoints and used to give the agent additional
reward. If the agent encounters any of these state-
action pairs when training, i.e. performs the right
action given a corresponding state, it receives a
proportional reward in addition to the standard re-
ward built into the game. This reward is scaled
based on the game and is designed to be less than
the smallest reward given by the original reward
function to prevent it from overpowering the built-
in reward. We refer to agents using this technique
as having “dense” reward and “sparse” reward oth-
erwise. The agent otherwise receives no informa-
tion from the oracle about how to win the game.

7 Results/Discussion

The structure of the experiments are such that the
for each of the domains, the target task game is
more complex that the source task game. The slice
of life games are also generally less complex than
the horror games; they have a simpler vocabulary
and a more linear quest structure. Additionally,
given the nature of interactive fiction games, it
is nearly impossible—even for human players—
to achieve completion in the minimum number of
steps (as given by the steps to completion in Ta-
ble 1); each of these games are puzzle based and
require extensive exploration and interaction with
various objects in the environment to complete.
Table 2 and Table 3 show results for the slice of
life and horror domains, respectively. In both do-



Table 2: Results for the slice of life games. “KG-DQN Full” refers to KG-DQN when seeded first, trained on the
source, then transferred to the target. All experiment with QA indicate pre-training. S, D indicate sparse and dense

reward respectively.

Experiment | Init. Rwd. | Final Rwd. | Steps
Source Game (TextWorld)

KG-DQN no transfer 26+0.73 | 474+0.23 110.83 £4.92
KG-DQN w/ QA 2.8+ 0.61 | 4.9 +0.09 88.57 £3.45
KG-DQN seeded 324057 | 484+0.16 91.43 +1.89

Target Game (9:05)

KG-DQN untuned (D) - 2.5 +0.48 1479.0 +£22.3
KG-DQN no transfer (S) - - 1916.0 4 33.17
KG-DQN no transfer (D) | 0.8 £0.32 | 16.5 + 1.58 12672+ 7.5

KG-DQN w/ QA (S) - - 1428.0 + 11.26

KG-DQN w/ QA (D) 1.3+024 | 174 +1.84 | 1127.0 +31.22

KG-DQN seeded (D) 14+£035 | 16.7+2.41 | 1393.33 +26.5
KG-DQN Full (D) 27+0.65 | 19.7+2.0 | 27476 +21.45

Table 3: Results for horror games. Note that the reward type is dense for all results. “KG-DQN Full* refers to

KG-DQN seeded, transferred from source. All experiment with QA indicate pre-training.

Experiment | Init. Rwd. | Final Rwd. | Steps

Source Game (Afflicted)

KG-DQN no transfer | 3.0+ 1.3 | 14.1+ 1.73 | 1934.7 £+ 85.67
KG-DOQN w/ QA 43+ 134 | 151 +£1.60 | 1179 +£32.07
KG-DQN seeded 414+ 1.19 | 14.6 = 1.26 | 1125.3 +£49.57

Target Game (Anchorhead)

KG-DQN untuned - 3.8+0.23 -

KG-DQN no transfer | 1.0 +0.34 | 6.8 £0.42 -
KG-DQN w/ QA 3.6£091 | 248+0.6 4874 £+ 90.74
KG-DQN seeded 1.74+0.62 | 26.6 £0.42 | 4937 +4293

KG-DQN full 41409 | 39.9+0.53 | 43343 £56.13

mains seeding and QA pre-training improve per-
formance by similar amounts from the baseline on
both the source and target task games. A series
of t-tests comparing the results of the pre-training
and graph seeding with the baseline KG-DQN
show that all results are significant with p < 0.05.
Both the pre-training and graph seeding perform
similar functions in enabling the agent to explore
more effectively while picking high utility actions.

Even when untuned, i.e. evaluating the agent
on the target task after having only trained on the
source task, the agent shows better performance
than training on the target task from scratch using
the sparse reward. As expected, we see a further
gain in performance when the dense reward func-
tion is used for both of these domains as well. In
the horror domain, the agent fails to converge to
a state where it is capable of finishing the game
without the dense reward function due to the hor-
ror games being more complex.

When an agent is trained using on just the tar-
get task horror game, Anchorhead, it does not con-
verge to completion and only gets as far as achiev-
ing a reward of approximately 7 (max. observed
reward from the best model is 41). This corre-

sponds to a point in the game where the player is
required to use a term in an action that the player
has never observed before, “look up Verlac” when
in front of a certain file cabinet—"“Verlac* being
the unknown entity. Without seeding or QA pre-
training, the agent is unable to cut down the ac-
tion space enough to effectively explore and find
the solution to progress further. The relative effec-
tiveness of the gains in initial reward due to seed-
ing appears to depend on the game and the cor-
responding static text document. In all situations
except Anchohead, seeding provides comparable
gains in initial reward as compared to QA — there
is no statistical difference between the two when
performing similar t-tests.

When the full system is used—i.e. we seed
the knowledge graph, pre-train QA, then train the
source task game, then the target task game using
the augmented reward function—we see a signif-
icant gain in performance, up to an 80% gain in
terms of completion steps in some cases. The bot-
tleneck at reward 7 is still difficult to pass, how-
ever, as seen in Fig. 6, in which we can see that
the agent spends a relatively long time around this
reward level unless the full transfer technique is



used. We further see in Figures 5, 6 that transfer-
ring knowledge results in the agent learning this
higher quality policy much faster. In fact, we note
that training a full system is more efficient than
just training the agent on a single task, i.e. train-
ing a QA system then a source task game for 50
episodes then transferring and training a seeded
target task game for 50 episodes is more effective
than just training the target task game by itself for
even 150+ episodes.

8 Conclusions

We have demonstrated that using knowledge
graphs as a state representation enables effi-
cient transfer between deep reinforcement learn-
ing agents designed to play text-adventure games,
reducing training times and increasing the quality
of the learned control policy. Our results show that
we are able to extract a graph from a general static
text resource and use that to give the agent knowl-
edge regarding domain specific vocabulary, object
affordances, etc. Additionally, we demonstrate
that we can effectively transfer knowledge using
deep Q-network parameter weights, either by pre-
training portions of the network using a question-
answering system or by transferring parameters
from a source to a target game. Our agent trains
faster overall, including the number of episodes re-
quired to pre-train and train on a source task, and
performs up to 80% better on convergence than an
agent not utilizing these techniques.

We conclude that knowledge graphs enable
transfer in deep reinforcement learning agents
by providing the agent with a more explicit—and
interpretable-mapping between the state and ac-
tion spaces of different games. This mapping
helps overcome the challenges twin challenges of
partial observability and combinatorially large ac-
tion spaces inherent in all text-adventure games
by allowing the agent to better explore the state-
action space.
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