UER: An Open-Source Toolkit for Pre-training Models
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Abstract

Existing works, including ELMO and BERT,
have revealed the importance of pre-training
for NLP tasks. While there does not exist a
single pre-training model that works best in
all cases, it is of necessity to develop a frame-
work that is able to deploy various pre-training
models efficiently.  For this purpose, we
propose an assemble-on-demand pre-training
toolkit, namely Universal Encoder Represen-
tations (UER). UER is loosely coupled, and
encapsulated with rich modules. By assem-
bling modules on demand, users can either re-
produce a state-of-the-art pre-training model
or develop a pre-training model that remains
unexplored. With UER, we have built a model
700, which contains pre-trained models based
on different corpora, encoders, and targets (ob-
jectives). With proper pre-trained models, we
could achieve new state-of-the-art results on a
range of downstream datasets.

1 Introduction

Pre-training has been well recognized as an es-
sential step for NLP tasks since it results in re-
markable improvements on a range of downstream
datasets (Devlin et al., 2018). Instead of train-
ing models on a specific task from scratch, pre-
training models are firstly trained on general-
domain corpora, then followed by fine-tuning on
downstream tasks. Thus far, a large number of
works have been proposed for finding better pre-
training models. Existing pre-training models
mainly differ in the following three aspects:

1) Model encoder.

Commonly-used encoders include RNN
(Hochreiter and Schmidhuber, 1997), CNN (Kim,
2014), AttentionNN (Bahdanau et al., 2014), and
their combinations (Zhou et al., 2016). Recently,
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Transformer (a structure based on attentionNN)
is shown to be a more powerful feature extractor
compared with other encoders (Vaswani et al.,
2017).

2) Pre-training target (objective).

Using proper target is one of the keys to the suc-
cess of pre-training. While the language model
is most commonly used (Radford et al., 2018),
many works focus on seeking better targets such as
masked language model (cloze test) (Devlin et al.,
2018) and machine translation (McCann et al.,
2017).

3) Fine-tuning strategy.

Using a proper fine-tuning strategy is also im-
portant to the performance of pre-training models
on downstream tasks. A commonly-used strategy
is to regard pre-trained models as feature extrac-
tors (Kiros et al., 2015).

Table 1 lists 8 popular pre-training models and
their main differences (Kiros et al., 2015; Lo-
geswaran and Lee, 2018; McCann et al., 2017;
Conneau et al., 2017; Peters et al., 2018; Howard
and Ruder, 2018; Radford et al., 2018; Devlin
et al., 2018). In additional to encoder, target, and
fine-tuning strategy, corpus is also listed in Table
1 as an important factor for pre-training models.

There are many open-source implementations
of pre-training models, such as Google BERT',
ELMO from AllenAI, GPT and BERT from Hug-
gingFace®. However, these works usually focus
on the designs of either one or a few pre-training
models. Due to the diversity of the downstream
tasks and the computational resources constraint,
there does not exist a single pre-training model
that works best in all cases. BERT is one of the
most widely used pre-training models. It exploits

"https://github.com/google-research/bert
Zhttps://github.com/allenai/bilm-tf
*https://github.com/huggingface
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Model Corpus Encoder Target
Skip-thoughts Bookcorpus GRU Conditioned LM
Quick-thoughts Bookcorpus+UMBCcorpus GRU Sentence prediction
CoVe English-German Bi-LSTM Machine translation
Infersent Natural language inference LSTM;GRU;CNN;LSTM+Attention Classification
ELMO 1billion benchmark Bi-LSTM Language model
ULMFIT Wikipedia LSTM Language model
GPT Bookcorpus; 1billion benchmark Transformer Language model
BERT Wikipedia+bookcorpus Transformer Cloze+sentence prediction

Table 1: 8 pre-training models and their differences. For space constraint of the table, fine-tuning strategies of different
models are described as follows: Skip-thoughts, quick-thoughts, and infersent regard pre-trained models as feature extractors.
The parameters before output layer are frozen. CoVe and ELMO transfer word embedding to downstream tasks, with other
parameters in neural networks uninitialized. ULMFit, GPT, and BERT fine-tune entire networks on downstream tasks.
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Figure 1: The architecture of UER (pre-training part).
We can combine modules in UER to implement BERT
model.

two unsupervised targets for pre-training. But in
some scenarios, supervised information is critical
to the performance of downstream tasks (Conneau
et al., 2017; McCann et al., 2017). Besides, in
many cases, BERT is excluded due to its efficiency
issue. Based on above reasons, it is often the case
that one should adopt different pre-training mod-
els in different application scenarios.

In this work, we introduce UER, a general
framework that is able to facilitate the develop-
ments of various pre-training models. UER main-
tains model modularity and supports research ex-
tensibility. It consists of 4 components: suben-
coder, encoder, target, and downstream task fine-
tuning. The architecture of UER (pre-training
part) is shown in Figure 1. Ample modules are im-
plemented in each component. Users could assem-
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ble different modules to implement existing mod-
els such as BERT (right part in Figure 1), or de-
velop a new pre-training model by implementing
customized modules. Clear and robust interfaces
allow users to assemble (or add) modules with as
few restrictions as possible.

With the help of UER, we build a Chinese pre-
trained model zoo based on different corpora, en-
coders, and targets. Different datasets have their
own characteristics. Selecting proper models from
the model zoo can largely boost the performance
of downstream datasets. In this work, we use
Google BERT as baseline model. We provide
some use cases that are based on UER, and the re-
sults show that our models can either achieve new
state-of-the-art performance, or achieve competi-
tive results with an efficient running speed.

UER is built on PyTorch and supports dis-
tributed training mode. Clear instructions and
documentations are provided to help users read
and use UER codes. The UER toolkit and the
model zoo are publicly available at https://
github.com/dbiir/UER-py.

2 Related Work

2.1 Pre-training for deep neural networks

Using word embedding to initialize neural net-
work’s first layer is one of the most commonly
used strategies for NLP tasks (Mikolov et al.,
2013; Kim, 2014). Inspired by the success of
word embedding, some recent works try to ini-
tialize entire networks (not just first layer) with
pre-trained parameters (Howard and Ruder, 2018;
Radford et al., 2018). They train a deep neural
network upon large corpus, and fine-tune the pre-
trained model on specific downstream tasks. One
of the most influential works among them is BERT
(Devlin et al., 2018). BERT extracts text fea-
tures with 12/24 Transformer layers, and exploits


https://github.com/dbiir/UER-py
https://github.com/dbiir/UER-py

masked language model task and sentence predic-
tion task as training targets (objectives). The draw-
back of BERT is that it requires expensive compu-
tational resources. Thankfully, Google makes its
pre-trained models publicly available. So we can
directly fine-tune on Google’s models to achieve
competitive results on many NLP tasks.

2.2 NLP toolkits

Many NLP models have tens of hyper-parameters
and various tricks, and some of which exert large
impacts on final performance. Sometimes it is un-
likely to report all details and their effects in re-
search paper. This may lead to a huge gap be-
tween research papers and code implementations.
To solve the above problem, some works are pro-
posed to implement a class of models in a frame-
work. This type of work includes OpenNMT
(Klein et al., 2017), fairseq (Ott et al., 2019) for
neural machine translation; glyph (Zhang and Le-
Cun, 2017) for classification; NCRF++ (Yang and
Zhang, 2018) for sequence labeling; Hyperwords
(Levy et al., 2015), ngram2vec (Zhao et al., 2017)
for word embedding, to name a few.

Recently, we witness many influential pre-
training works such as GPT, ULMFiT, and BERT.
We think it could be useful to develop a frame-
work to facilitate reproducing and refining those
models. UER provides the flexibility of building
pre-training models of different properties.

3 Architecture

In this section, we firstly introduce the core com-
ponents in UER and the modules that we have
implemented in each component. Figure 1 il-
lustrates UER’s framework and detailed modules
(pre-training part). Modularity design of UER
largely facilitates the use of pre-training models.
At the end of this section, we will give some case
studies to illustrate how to use UER effectively.

3.1 Subencoder

This layer learns word vectors from subword fea-
tures. For English, we use character as subword
features. For Chinese*, we use radical and pinyin
as subword features. As a result, the model can
be aware of internal structures of words. Sub-
word information has been explored in many NLP

*We don’t do word segmentation on Chinese corpus. We
regard each Chinese character as a word. Internal structures
such as radical and pinyin are regarded as Chinese subword
features.
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tasks such as text classification (Zhang and Le-
Cun, 2017) and word embedding (Joulin et al.,
2016). In the pre-training literature, ELMO ex-
ploits subencoder layer. In UER, we implement
RNN and CNN as subencoders, and use mean
pooling or max pooling upon hidden states to ob-
tain fixed-length word vectors.

3.2 Encoder

This layer learns features from word vectors. UER
implements a series of basic encoders, includ-
ing LSTM, GRU, CNN, GatedCNN, and Atten-
tionNN. Users can use these basic encoders di-
rectly, or use their combinations. The output of an
encoder can be fed into another encoder, forming
networks of arbitrary layers. UER provides ample
examples of combining basic encoders (e.g. CNN
+ LSTM). Users can also build their custom com-
binations with basic encoders in UER.

Currently, Transformer (a structure based on
multi-headed self-attention) becomes a popular
text feature extractor and is proven to be effec-
tive for many NLP tasks. We implement Trans-
former module and integrate it into UER. With
Transformer module, we can implement models
such as GPT and BERT easily.

3.3 Target (objective)

Using suitable target is the key to the success of
pre-training. Many papers in this field propose
their targets and show their advantages over other
ones. UER consists of a range of targets. Users
can choose one of them, or use multiple targets
and give them different weights. In this section
we introduce targets implemented in UER.

e Language model (LM). Language model is
one of the most commonly used targets. It
trains model to make it useful to predict cur-
rent word given previous words.

e Masked LM (MLM, also known as cloze
test). The model is trained to be useful to pre-
dict masked word given surrounding words.
MLM utilizes both left and right contexts to
predict words. LM only considers the left
context.

o Autoencoder (AE). The model is trained to
be useful to reconstruct input sequence as
close as possible.

The above targets are related with word predic-
tion. We call them word-level targets. Some works



show that introducing sentence-level task into tar-
gets can benefit pre-training models (Logeswaran
and Lee, 2018; Devlin et al., 2018).

e Next sentence prediction (NSP). The model
is trained to predict if the two sentences are
continuous. Sentence prediction target is
much more efficient than word-level targets.
It doesn’t involve sequentially decoding of
words and softmax layer over entire vocab-
ulary.

Above targets are unsupervised tasks (also
known as self-supervised tasks). However, super-
vised tasks can provide additional knowledge that
raw corpus can not provide.

e Neural machine translation (NMT). CoVe
(McCann et al., 2017) proposes to use NMT
to pre-train model. The implementation of
NMT target is similar with autoencoder. Both
of them involve encoding source sentences
and sequentially decoding words of target
sentences.

e Classification (CLS). Infersent (Conneau
et al., 2017) proposes to use natural language
inference task (three-way classification) to
pre-train model.

Most pre-training models use above targets in-
dividually. It is worth trying to use multiple targets
at the same time. Some targets are complementary
to each other, e.g. word-level target and sentence-
level target (Devlin et al., 2018), unsupervised tar-
get and supervised target. In experiments section,
we demonstrate that proper selection of target is
important. UER provides the flexibility to users in
trying different targets and their combinations.

3.4 Fine-tuning

UER exploits similar fine-tuning strategy with
ULMFiT, GPT, and BERT. Models on down-
stream tasks share structures and parameters with
pre-training models except that they have differ-
ent target layers. The entire models are fine-tuned
on downstream tasks. This strategy performs ro-
bustly in practice. We also find that feature ex-
tractor strategy produces inferior results on mod-
els such as GPT and BERT.

Most pre-training works involve 2 stages, pre-
training and fine-tuning. But UER supports 3
stages: 1) pre-training on general-domain corpus;

2) pre-training on downstream dataset; 3) fine-
tuning on downstream dataset. Stage 2 enables
models to get familiar with the distributions of
downstream datasets (Howard and Ruder, 2018;
Radford et al., 2018). It is also called semi-
supervised fine-tuning strategy in the work of Dai
and Le (2015) since stage 2 is unsupervised and
stage 3 is supervised.

3.5 Case Studies

In this section, we show how UER facilitates the
use of pre-training models. First of all, we demon-
strate that UER can build most pre-training mod-
els easily. As shown in the following code, only a
few lines are required to construct models with the
interfaces in UER.

1

2 embedding = BertEmbedding(args, vocab_size)
3 encoder = BertEncoder(args)

4 target = BertTarget(args, vocab_size)

5

6

7 embedding = BertEmbedding (args, vocab_size)
8 encoder = GptEncoder(args)

9 target = LmTarget(args, vocab_size)

12 embedding = Embedding(args,
13 encoder = GruEncoder(args)
14 target = NspTarget(args, None)

vocab_size)

17 embedding = Embedding(args,
18 encoder = LstmEncoder(args)
19 target = ClsTarget(args, None)

vocab_size)

In practice, users can assemble different suben-
coder, encoder, and target modules without any
code work. Users can specify modules through op-
tions —subencoder, —encoder, and —target. More
details are available in quickstart and instructions
of UER’s github project. UER provides ample
modules. Users can try different module combina-
tions according to their downstream datasets. Be-
sides trying modules implemented by UER, users
can also develop their customized modules and in-
tegrate them into UER seamlessly.

4 Experiments

To evaluate the performance of UER, experi-
ments are conducted on a range of datasets,
each of which falls into one of four categories:
sentence classification, sentence pair classifica-
tion, sequence labeling, and document-based QA.
BERT-base uncased English model and BERT-
base Chinese model are used as baseline models.
In section 4.1, UER is tested on several evalua-
tion benchmarks to demonstrate that it can pro-
duce models as intended. In section 4.2, we ap-
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Implementation | SST-2 | MRPC | STS-B | QQP MNLI QNLI | RTE | WNLI
HuggingFace 93.0 83.8 89.4 90.7 | 84.0/84.4 | 89.0 61.0 53.5
UER 92.4 83.0 89.3 91.0 | 84.0/84.0 | 915 66.8 56.3

Table 2: The performance of HuggingFace’s implementation and UER’s implementation on GLUE benchmark.

Implementation | XNLI | LCQMC | MSRA-NER | ChnSentiCorp | nlpcc-dbga
ERNIE 77.2 87.0 92.6 94.3 94.6
UER 77.5 86.6 93.6 94.3 94.6

Table 3: The performance of ERNIE’s implementation and UER’s implementation on ERNIE benchmark.

ply pre-trained models in our model zoo to dif-
ferent downstream datasets. Significant improve-
ments are witnessed when proper encoders and
targets are selected. For space constraint, we put
some contents in UER’s github project, including
dataset and corpus details, system speed, and part
of qualitative/quantitative evaluation results.

4.1 Reproducibility

This section uses English/Chinese benchmarks to
test BERT implementation of UER. For English,
we use sentence and sentence pair classification
datasets in GLUE benchmark (dev set) (Wang
et al., 2019). For Chinese, we use five datasets of
different types: sentiment analysis, sequence la-
beling, question pair matching, natural language
inference, and document-based QA (provided by
ERNIE®). Table 2 and 3 compare UER’s perfor-
mance to other publicly available systems. We can
observe that UER could match the performance
of HuggingFace’s and ERNIE’s implementations.
Results of HuggingFace and ERNIE are reported
on their github projects. Results of UER can be
reproduced by scripts in UER’s github project.

4.2 Influence of targets and encoders

In this section, we give some examples of select-
ing pre-trained models given downstream datasets.
Three Chinese sentiment analysis datasets are
used for evaluation. They are Douban book re-
view, Online shopping review, and Chnsenticorp
datasets.

First of all, we use UER to pre-train on large-
scale Amazon review corpus with different targets.
The parameters are initialized by BERT-base Chi-
nese model. The target of original BERT consists
of MLM and NSP. However, NSP is not suitable
for sentence-level reviews (we have to split re-
views into multiple parts). Therefore we remove
NSP target. In addition, Amazon reviews are at-

>https://github.com/PaddlePaddle/ERNIE
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tached with users’ ratings. To this end, we can
exploit CLS target for pre-training (similar with
InferSent). We fine-tune these pre-trained models
(with different targets) on downstream datasets.
The results are shown in Table 4. BERT base-
line (BERT-base Chinese) is pre-trained upon Chi-
nese Wikipedia. We can observe that pre-training
on Amazon review corpus can improve the results
significantly. Using CLS target achieves the best
results in most cases.

Dataset Douban. | Shopping. | Chn.
BERT baseline 87.5 96.3 94.3
MLM 88.1 97.0 95.0
CLS 88.3 97.0 95.8

Table 4: Performance of pre-training models with dif-
ferent targets.

BERT requires heavy computational resources.
To achieve better efficiency, we use UER to substi-
tute 12-layers Transformer encoder with a 2-layers
LSTM encoder (embedding size and hidden size
are 512 and 1024). We still use the above senti-
ment analysis datasets for evaluation. The model
is firstly trained on mixed large corpus with LM
target, and then trained on large-scale Amazon re-
view corpus with LM and CLS targets. Table 5
lists the results of different encoders. Compared
with BERT baseline, LSTM encoder can achieve
comparable or even better results when proper cor-
pora and targets are selected.

Dataset Douban. | Shopping. | Chn.
BERT baseline 87.5 96.3 94.3
LSTM 80.3 94.0 88.3
LSTM-+pre-training 86.5 96.9 94.5

Table 5: Performance of pre-training models with dif-
ferent encoders.

For space constraint, this section only uses sen-
timent analysis datasets as examples to analyze
the influence of different targets and encoders.
More tasks and pre-trained models are discussed



in UER’s github project.
5 Conclusion

This paper describes UER, an open-source toolkit
for pre-training on general-domain corpora and
fine-tuning on downstream tasks. We demonstrate
that UER can largely facilitate implementations
of different pre-training models. With the help
of UER, we pre-train models based on different
corpora, encoders, targets and make these mod-
els publicly available. By using proper pre-trained
models, we can achieve significant improvements
over BERT, or achieve competitive results with an
efficient training speed.
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