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Abstract
Existing recurrent neural language models
often fail to capture higher-level structure
present in text: for example, rhyming patterns
present in poetry. Much prior work on poetry
generation uses manually defined constraints
which are satisfied during decoding using ei-
ther specialized decoding procedures or rejec-
tion sampling. The rhyming constraints them-
selves are typically not learned by the gener-
ator. We propose an alternate approach that
uses a structured discriminator to learn a po-
etry generator that directly captures rhyming
constraints in a generative adversarial setup.
By causing the discriminator to compare po-
ems based only on a learned similarity ma-
trix of pairs of line ending words, the pro-
posed approach is able to successfully learn
rhyming patterns in two different English po-
etry datasets (Sonnet and Limerick) without
explicitly being provided with any phonetic in-
formation.

1 Introduction

Many existing approaches to text generation rely
on recurrent neural networks trained using likeli-
hood on sequences of words or characters. How-
ever, such models often fail to capture overall
structure and coherency in multi-sentence or long-
form text (Bosselut et al., 2018; Holtzman et al.,
2018). To rectify this, prior work has proposed
losses which encourage overall coherency or other
desired behavior (Li et al., 2016; Zhang and Lap-
ata, 2017; Bosselut et al., 2018). However, most of
these approaches rely on manually provided defi-
nitions of what constitutes a good or suitable struc-
ture, thereby limiting their applicability. In this pa-
per we propose a method for English poetry gen-
eration that directly learns higher-level rhyming
constraints as part of a generator without requiring
strong manual intervention. Prior works on poetry
generation (Oliveira, 2017; Ghazvininejad et al.,

2018) have focused mostly on ad-hoc decoding
procedures to generate reasonable poetry, often re-
lying on pruning from a set of candidate outputs
to encourage desired behavior such as presence of
explicitly-defined rhyming patterns.

We propose an adversarial approach to poetry
generation that, by adding structure and inductive
bias into the discriminator, is able to learn rhyming
constraints directly from data without prior knowl-
edge. The role of the discriminator is to try to dis-
tinguish between generated and real poems during
training. We propose to add inductive bias via the
choice of discriminator architecture: We require
the discriminator to reason about poems through
pairwise comparisons between line ending words.
These learned word comparisons form a similar-
ity matrix for the poem within the discriminator’s
architecture. Finally, the discriminator evaluates
the poem through a 2D convolutional classifier ap-
plied directly to this matrix. This final convo-
lution is naturally biased to identify spatial pat-
terns across word comparisons, which, in turn, bi-
ases learned word comparisons to pick up rhyming
since rhymes are typically the most salient spatial
patterns.

Recent work by Lau et al. (2018) proposes a
quatrain generation method that relies on specific
domain knowledge about the dataset to train a
classifier for learning the notion of rhyming: that a
line ending word always rhymes with exactly one
more ending word in the poem. This limits the
applicability of their method to other forms of po-
etry with different rhyming patterns. They train
the classifier along with a language model in a
multi-task setup. Further, at generation time, they
heavily rely on rejection sampling to produce qua-
trains which satisfy any valid rhyming pattern. In
contrast, we find that generators trained using our
structured adversary produce samples that satisfy
rhyming constraints with much higher frequency.
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Figure 1: Model Overview: We propose a structured discriminator to learn a poetry generator in a generative adversarial
setup. Similarities between pairs of end-of-line words are obtained by computing cosine similarity between their corresponding
representations, produced by a learned character-level LSTM encoder. The discriminator operates on the resulting matrix S
representing pair-wise similarities of end words. The proposed discriminator learns to identify rhyming word pairs as well as
rhyming constraints present in the dataset without being provided phonetic information in advance.

Our main contributions are as follows: We in-
troduce a novel structured discriminator to learn
a poetry generation model in a generative adver-
sarial setup. We show that the discriminator in-
duces an accurate rhyming metric and the genera-
tor learns natural rhyming patterns without being
provided with phonetic information. We success-
fully demonstrate the applicability of our proposed
approach on two datasets with different structural
rhyming constraints. Our poem generation model
learned with the structured discriminator is more
sampling efficient compared to prior work – many
fewer generation attempts are required in order to
obtain an valid sample which obeys the rhyming
constraints of the corresponding poetry dataset.

2 Method

Many forms of poetry make use of rhyming
patterns on line-ending words (Oliveira, 2017).
Therefore, to characterize a rhyming poem, a
model needs (1) to know what it means to rhyme
(2) to identify the specific permissible rhyming
patterns for a particular poem type. For example,
a limerick is a 5 line poem with a rhyming con-
straint of the type AABBA, i.e. the ends of the
first, second, and fifth lines rhyme. We consider
an adversarial learning setup with a hierarchical
language model and a structured discriminator,
such that the discriminator is trained to distin-
guish between generated examples and training
examples, and the generator is trained to fool the
discriminator. Our novel structured discriminator
operates on a matrix which encodes a learned
pair-wise similarity function of the line ending
words. We refer to our model as RHYME-GAN.

2.1 Neural Generation Model

Our generator is a hierarchical neural language
model (Figure 1) that first generates a sequence
of line-ending words, and thereafter generates the
poem’s lines conditioned on the ending words.
We use recurrent neural networks for ending word
generation as well line generation conditioned on
ending words. Following prior work (Lau et al.,
2018), we generate words in each line in reverse
order (i.e. right to left), and begin generation with
the last line first. Let x̂ represent a sample from
the current generator distribution, denoted by pθ,
where θ represents the generator parameters. We
initialize the word embeddings in the generator
with pre-trained word embeddings (Lau et al.,
2018) trained on a separate non-sonnet corpus.

2.2 Structured Discriminator

We introduce a structured discriminator, denoted
by function fφ(x), which outputs the probability
that x is a sample from the dataset as opposed to
generated. Our architecture defines an intermedi-
ate matrix S ∈ RT×T , where T denotes the num-
ber of lines in the poem, which encodes pair-wise
similarities between line ending words in order
to capture rhyming structure. The discriminator’s
output is determined by a two layer 2D convolu-
tional neural network applied to S. Convolutional
neural networks have been shown to capture local
as well as global patterns in 2D data – for exam-
ple, images. Thus, our discriminator is composed
of two main components: computation of a ma-
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trix S, and a convolutional neural network to clas-
sify the computed matrix S. The pair-wise com-
putation provides a useful inductive bias to iden-
tify the notion of rhyming, whereas the convolu-
tional network is a suitable choice to capture over-
all rhyming patterns.

More specifically, let the words at the ends of
lines in x be denoted by e. The number of end-
ing words will be same as the number of lines in
x, which we denote as T . We encode each end-
ing word using a character-level LSTM (Hochre-
iter and Schmidhuber, 1997) denoted by gφg , and
use the last hidden state of the LSTM as a vector
representation of the word. We let Sij be the co-
sine similarity between the representations of end-
ing words ei, ej , given by following equation:

Sij =
g(ei)g(ej)

|g(ei)||g(ej)|
(1)

The matrix S is passed through a convolutional
neural network composed with a linear layer, to-
gether denoted by cφc . The final output is passed
through a sigmoid non-linearity, so that fφ(x) ∈
[0, 1]. The value of fφ(x) represents the discrim-
inator’s assessment of the probability that datum
x belongs to the real dataset, rather than being a
generated sample. The discriminator’s objective
will train it to distinguish between a sample x from
training data X , and a generated sample x̂, in a bi-
nary classification setup. Specifically, we define
the discriminator loss for x, x̂ as follows:

d(x, x̂;φ) = − log(fφ(x))− log(1− fφ(x̂)) (2)

2.3 Learning
Generator parameters θ and discriminator param-
eters φ are trained together under following objec-
tive:

min
θ

[
Ex∈X

[
− log pθ(x) + λmax

φ
Ex̂∼pθ [−d(x, x̂)]

]]
(3)

Note, in addition to using a traditional adversar-
ial objective, we also include a likelihood term to
help stabilize the generator. λ is a hyperparame-
ter which controls the relative weight of the two
terms. Since sampling of x̂ from generator in-
volves discrete choices, we use the REINFORCE
(Williams, 1992) algorithm to train the genera-
tor using learning signal from the adversarial loss
term. The generator simultaneously gets an ex-
act gradient from the likelihood portion of the ob-
jective. We observe training is more stable when

Model Expected #Samples
SONNET LIMERICK

DEEP-SPEARE 153.8 N/A
RHYME-LM 169.5 500

RHYME-GAN-NS 4.8 26.6
RHYME-GAN 3.7 4.7

Table 1: Sampling efficiency: We obtain 10K samples of
poetry without additional intervention during decoding, and
report the expected samples as inverse of the fraction of sam-
ples satisfying valid rhyming patterns for the corresponding
dataset. Lower values are better.

we pretrain the LSTM word encoder gφg(.) part of
the discriminator, along with a separate LSTM de-
coder, using an auto-encoding objective on words
in the vocabulary.

3 Experiments and Results

3.1 Datasets

We work with the Shakespeare SONNET dataset
(Lau et al., 2018) and a new LIMERICK corpus.
Each sonnet in the Sonnet dataset is made up of
3 quatrains of 4 lines each, and a couplet. The
dataset consists of 2685 sonnets in train, and 335
each in validation and test splits. The quatrains
typically have one of the following rhyming struc-
tures: AABB, ABAB, ABBA, though some devi-
ations are observed in the dataset. This may be
because rhyming patterns are not always strictly
followed in writing quatrains, and there are pos-
sible inaccuracies in the word pronunciation dic-
tionaries used (e.g. some words can have multiple
different pronunciations based on context).

A limerick is a form of verse with five lines.
Limericks typically follow a rhyming pattern of
AABBA. We collect limericks from an online col-
lection1. Due to a large vocabulary in the full col-
lection, we filter the dataset to retain only those
limericks whose all the words are in a subset of
9K most frequent words. Our final dataset con-
sists of 10, 400 limericks in train and 1300 each in
validation and test splits. We train and evaluate the
models separately on each corpus.

3.2 Poem Generator

Sampling efficiency We compute the expected
number of samples needed before we sample a
quatrain which satisfies one of the hand-defined
rhyming patterns. Towards this end, we get 10K
samples from each model without any constraints
(except avoiding UNK - unknown tokens). Fol-

1http://hardsoft.us. Accessed May 2019.

http://hardsoft.us
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lowing prior work (Lau et al., 2018), words are
sampled with a temperature value between 0.6 and
0.8. We use CMU dictionary (Weide, 1998) to
look up the phonetic representation of a word, and
extract the sequence of phonemes from the last
stressed syllable onward. Two words are consid-
ered to be rhyming if their extracted sequences
match (Parrish, 2015). We consider a generated
quatrain to have an acceptable pattern if the four
ending words follow one of the three rhyming pat-
terns: AABB, ABBA, ABAB. Similarly for LIM-
ERICK, we consider only those samples to be ac-
ceptable which have line endings of the rhyming
form AABBA.

We consider a baseline RHYME-LM, which has
the same generator architecture as RHYME-GAN

but is trained without the discriminator. We also
compare with RHYME-GAN-NS which uses a
simpler non-structured discriminator. Specifically,
it uses a discriminator which first runs a character-
level encoder for each ending word - similar to
RHYME-GAN - but then instead of computing pair-
wise similarity matrix, it utilizes a LSTM on the
sequence of the computed representations.

As can be observed from Table 1, RHYME-
GAN needs fewer samples than other methods
to produce an acceptable quatrain or a limerick,
indicating that it has learned natural rhyming
structures more effectively from data. Note we
do not report DEEP-SPEARE on Limerick due
to their SONNET specific assumption that for
a given end-of-line word there is exactly one
more rhyming word among other end-of-line
words. Additionally, RHYME-GAN-NS performs
worse than RHYME-GAN, and the difference in
performance is more prominent in LIMERICK

– demonstrating that the proposed structure
in the discriminator provided useful inductive
bias. Note that compared to 4 line quatrains in
SONNET, LIMERICK has 5 line poems and has ar-
guably more complex rhyming pattern constraints.

Likelihood on held out data We report negative
log likelihood (NLL) on test splits (Table 2). For
SONNET, RHYME-GAN achieves a test set NLL
of 3.98. Our model without adversarial learning
i.e. RHYME-LM, achieves a test set NLL of 3.97.
DEEP-SPEARE reports a test set NLL of 4.38.
Note that our language model is hierarchical while
DEEP-SPEARE has a linear model. The NLL for
RHYME-LM and RHYME-GAN are very similar,

Model NLL
SONNET LIMERICK

DEEP-SPEARE 4.38 N/A
RHYME-LM 3.97 3.48
RHYME-GAN 3.98 3.49

Table 2: Held out negative log likelihood per token for po-
ems in test split.

though RHYME-GAN gets much better sampling
efficiency scores than RHYME-LM.

Our generator implementation is largely based
on that of Lau et al. (2018). The main difference
is that we first generate all the line-ending words
and then condition on them to generate the remain-
ing words. The change was made to make it more
amenable to our proposed discriminator. How-
ever, our hierarchical language model (RHYME-
LM) performs worse than DEEP-SPEARE as per
sampling efficiency. Therefore, structured dis-
criminator is the driving factor behind the ob-
served improvement with RHYME-GAN. How-
ever, committing to the ending words of all lines
before completing preceding lines can be a limi-
tation, and addressing it is a possible future direc-
tion.

3.3 Analyzing Learned Discriminator

We probe the the word representations g(.) to
check if rhyming words are close-by in the learned
manifold. We consider all pairs of words among
the ending words in a quatrain/limerick, and label
each pair to be rhyming or non-rhyming based on
previously stated definition of rhyming. If the co-
sine similarity score between the representations
of pairs of words is above a certain threshold,
we predict that word pair as rhyming, else it is
predicted as non-rhyming. We report F1 scores
for the binary classification setup of predicting
word-pairs to be rhyming or not. We consider
some additional baselines: RHYM-EM (Reddy
and Knight, 2011) uses latent variables to model
rhyming schemes, and train parameters using EM.
GRAPHEME-K baselines predict a word pair as
rhyming only if the last K = {1, 2, 3} characters
of the two words are same.

For SONNET data, we observe that RHYME-
GAN obtains a F1 score of 0.90 (Table 3) on the
test split (threshold chosen to maximize f1 on
dev split). We repeat the above analysis on the
LIMERICK dataset and observe an F1 of 0.92 for
RHYME-GAN. DEEP-SPEARE model reports F1
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Model SONNET LIMERICK
GRAPHEME-1 0.71 0.79
GRAPHEME-2 0.78 0.79
GRAPHEME-3 0.69 0.67

RHYM-EM 0.71 0.73
DEEP-SPEARE/MAX-MARGIN 0.91 0.81

RHYME-GAN-NS 0.85 0.87
RHYME-GAN 0.90 0.92

Table 3: Rhyming probe: We use the cosine similarity
score of the learned representations to predict a word pair
as rhyming or not, and report F1 score for this classification
task. RHYM-EM is an unsupervised rhyming pattern discov-
ery method. GRAPHEME-K baselines predict based on exact
match of last k characters.

of 0.91 on SONNET. As stated earlier, DEEP-
SPEARE’S model is not amenable to LIMERICK -
we do compare though with the max-margin clas-
sifier in DEEP-SPEARE model trained on LIMER-
ICK which gets F1 score of 0.81. The scores are
understandably lower since the AABBA pattern in
limericks is not amenable to SONNET specific as-
sumptions made in DEEP-SPEARE model. On the
other hand, RHYME-GAN achieves high F1 scores
for both the datasets without incorporating any do-
main specific rhyming pattern information.

RHYME-GAN performs much better than
RHYM-EM and GRAPHEME-K baselines. RHYM-
EM does not perform well - probably because
it operates at word-level and fails to generalize.
Note that RHYME-GAN-NS gets F1 score of 0.85
in case of SONNET dataset and 0.87 for LIMER-
ICK. These values are lower than corresponding
scores for RHYME-GAN, demonstrating that the
proposed structure in the discriminator was useful
in learning the notion of rhyming.

3.4 Human Evaluations

Following prior work (Lau et al., 2018), we re-
quested human annotators to identify the human-
written poem when presented with two samples at
a time - a quatrain from the Sonnet corpus and
a machine-generated quatrain, and report the an-
notator accuracy on this task. Note that a lower
accuracy value is favorable as it signifies higher
quality of machine-generated samples. Using 150
valid samples (i.e. samples belonging to one of the
allowed rhyming patterns), we observe 56.0% an-
notator accuracy for RHYME-GAN, and 53.3% for
DEEP-SPEARE – indicating that the post-rejection
sampling outputs from the two methods are of
comparable quality (the difference in annotator ac-
curacy is not statistically significant as per McNe-
mar’s test under p < 0.05). If we use pre-rejection

samples, we observe 60.0% annotator accuracy for
RHYME-GAN, and 81.3% for DEEP-SPEARE (the
difference being statistically significant as per Mc-
Nemar’s test under p < 0.05) – indicating that un-
filtered samples from RHYME-GAN are of higher
quality compared to DEEP-SPEARE.

4 Related Work

Early works on poetry generation mostly used rule
based methods (Gervás, 2000; Wu et al., 2009;
Oliveira, 2017). More recently, neural models
for poetry generation have been proposed (Zhang
and Lapata, 2014; Ghazvininejad et al., 2016,
2017; Hopkins and Kiela, 2017; Lau et al., 2018;
Liu et al., 2019). Yan et al. (2013) retrieve
high ranking sentences for a given user query,
and repeatedly swap words to satisfy poetry con-
straints. Ghazvininejad et al. (2018) worked on
poetry translation using an unconstrained machine
translation model and separately learned Finite
State Automata for enforcing rhythm and rhyme.
Similar to rhyming and rhythm patterns in po-
etry, certain types of musical compositions show-
case rhythm and repetition patterns, and some
prior works model such patterns in music gener-
ation (Walder and Kim, 2018; Jhamtani and Berg-
Kirkpatrick, 2019). Generative adversarial learn-
ing (Goodfellow et al., 2014) for text generation
has been used in prior works (Fedus et al., 2018;
Wang et al., 2018, 2019; Rao and Daumé III,
2019), though has not been explored with regard
to the similarity structure proposed in this paper.

5 Conclusions

In this paper we have proposed a novel structured
discriminator to learn a poem generator. The gen-
erator learned utilizing the structured adversary is
able to identify rhyming structure patterns present
in data, as demonstrated through the improved
sampling efficiency. Through the rhyming classi-
fication probe, we demonstrate that the proposed
discriminator is better at learning the notion of
rhyming compared to baselines.
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