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Abstract

The key to multilingual grammar induction

is to couple grammar parameters of differ-

ent languages together by exploiting the sim-

ilarity between languages. Previous work re-

lies on linguistic phylogenetic knowledge to

specify similarity between languages. In this

work, we propose a novel universal grammar

induction approach that represents language

identities with continuous vectors and employs

a neural network to predict grammar param-

eters based on the representation. Without

any prior linguistic phylogenetic knowledge,

we automatically capture similarity between

languages with the vector representations and

softly tie the grammar parameters of different

languages. In our experiments, we apply our

approach to 15 languages across 8 language

families and subfamilies in the Universal De-

pendency Treebank dataset, and we observe

substantial performance gain on average over

monolingual and multilingual baselines.

1 Introduction

Human languages bear striking resemblance at the

syntactic level in spite of their diversity on the

surface, as many studies have revealed (Green-

berg, 1963; Hawkins, 2014). This fact provides the

basis for multilingual grammar induction which

tries to simultaneously induce grammars of mul-

tiple languages. Intuitively, one can couple gram-

mar parameters of different languages with simi-

lar typology and learn them simultaneously. How-

ever, the lacking of measures of language similar-

ity prevents this idea from being further exploited

in practice.

Previous work in multilingual grammar induc-

tion either does not consider language similar-

ity measures (Iwata et al., 2010) or models lan-

∗The first and second authors contributed equally. The
third author contributed to this work when at ShanghaiTech
University. The fourth author is the corresponding author.

guage similarity based on linguistic phylogeny

(Berg-Kirkpatrick and Klein, 2010). The phylo-

genetic knowledge, however, could be mislead-

ing in measuring language similarity. For exam-

ple, English and German are both Germanic lan-

guages, but English exhibits dominant Subject-

Verb-Object (SVO) word order while German

does not.

In this paper, we propose a novel approach to

multilingual grammar induction. Our induction

model represents language identities as continu-

ous vectors (i.e., language embeddings) and em-

ploys a neural network to predict the grammar pa-

rameters of each language based on its embed-

ding. The neural network parameters are univer-

sally shared across languages, which softly tie the

grammar parameters of different languages. The

language embeddings and the neural network pa-

rameters are trained with a standard grammar in-

duction objective without any guidance from prior

linguistic phylogenetic knowledge. We also intro-

duce an auxiliary language identification task in

which we predict the language identities of input

sentences using the language embeddings.

We evaluate our approach on corpora of 15 lan-

guages across 8 language families and subfami-

lies. We observe that our approach achieves sub-

stantial performance gain on average over mono-

lingual and multilingual baselines.

2 Dependency Model with Valence and

Other Related Works

Dependency Model with Valence (DMV) (Klein

and Manning, 2004) is the best known genera-

tive model for dependency grammar induction.

The DMV generates a sentence and its depen-

dency tree following three types of grammar rules

(ATTACH, DECISION and ROOT). It firstly sam-

ples a token c from the ROOT distribution PROOT(c)
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and then recursively decides whether to generate

a new child token and what child token to gen-

erate by sampling from the DECISION and AT-

TACH distributions PDECISION(dec|h, dir, val) and

PATTACH(c|h, dir), where dir is a binary vari-

able representing the direction of generation (left

or right), val is a binary variable representing

whether the current head token already has a child

in the direction dir or not, dec is a binary vari-

able deciding whether to continue generation in

the current direction, c is the child token and h

is the head token.

Almost all previous methods of multilingual

grammar induction are based on DMV. Their fo-

cus is on designing various priors to couple DMV

parameters across languages: Cohen and Smith

(2009) propose a logistic normal prior while Berg-

Kirkpatrick and Klein (2010) design a hierarchical

Gaussian prior according to linguistic phylogeny.

The usage of continuous language embeddings

has been explored in other tasks. For example,

Ammar et al. (2016) and de Lhoneux et al. (2018)

apply language embeddings in supervised multi-

lingual dependency parsing.

3 Approach

We perform unlexicalized grammar induction in

which a sentence is represented as a sequence of

part-of-speech (POS) tags. We assume that all the

languages share the same set of POS tags.

3.1 Multilingual Grammar Model

Our multilingual grammar model adopts the

NDMV (Jiang et al., 2016), a monolingual model,

as the basic component. NDMV predicts grammar

rule probabilities using neural networks. In our

model, we add a continuous vector representation

of the language identity l (i.e., a language embed-

ding) as an additional input to the neural networks

in NDMV. Specifically, to predict an ATTACH rule

probability PATTACH(c|h, dir, val, l), we use a mul-

tilayer neural network that takes the embeddings

of the head token h, valence val and language

identity l as input, uses a weight matrix Wdir spe-

cific to the direction dir in the first layer, and uses

a weight matrix Wc consisting of all the child POS

tag vectors in the softmax output layer. The neu-

ral network structure is shown in the left part of

Figure 1. We predict the DECISION rule probabil-

ities in a similar way. We record the number of

ROOT rule probabilities instead of predicting them
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Figure 1: Model Architecture. The language embed-

ding matrix contains the embeddings of all the lan-

guages. l is a one-hot vector and ⊗ means matrix multi-

plication. Blue bars represent the embeddings of input

symbols; brown bars represent the hidden states of the

neural networks; green bars represent the logits which

are the inputs to the Softmax layers.

since there are only a small number of such rules.

The language embeddings are part of the model

parameters and are trained simultaneously with all

the other parameters. We hope that after training,

similar languages would have similar embeddings

and therefore similar grammar rule probabilities.

3.2 Auxiliary Task

To improve the learning of the language embed-

dings, we introduce an auxiliary language identi-

fication task: given an input sentence represented

by a sequence of POS tags {x1, x2, . . . , xn}, pre-

dict its language. We use a standard Bidirectional

Long Short-Term Memory (Bi-LSTM) to encode

the input sentence, and then a multilayer percep-

tron to classify the sentence into one of the lan-

guages. The weight matrix of the output layer of

the multilayer perceptron contains the embeddings

of all the languages. The model structure is shown

in the right part of Figure 1.

3.3 Training

Denote the set of model parameters as Θ, the set

of languages as L, the set of grammars of different

languages as G = {Gl, l ∈ L}, and the train-

ing data as D = {x(i), l(i)}Ni=1 where x
(i) is the

i-th training sentence and l(i) is its language iden-

tity. Our training objective function L(Θ) com-

bines two conditional probabilities for each train-

ing sentence x(i): P (x(i)|Gl(i)), the probability of

the training sentence x(i) being generated from the

corresponding grammar Gl(i) ; and P (l(i)|x(i)),
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the probability of correct language identification

of x(i).

L(Θ) =
∑

(x,l)∈D

(

logPΘ(x|Gl) + λ logPΘ(l|x)
)

where λ is a hyper-parameter and is set to 1 by

default. We follow the approach in NDMV to op-

timize the first term and use Adam (Kingma and

Ba, 2014) to optimize the second term.

Note that the language identification model is

only used during training to improve the learning

of language embeddings. During testing, we run

the multilingual grammar model to predict gram-

mar rule probabilities without the need to invoke

the language identification model.

4 Experiment

4.1 Setup

We selected 15 languages across 8 language fam-

ilies and subfamilies to ensure diversity. To en-

able comparisons with previous state-of-the-art

approaches (Jiang et al., 2017; Li et al., 2019), we

conducted our experiments on UD Treebank 1.4.

For each language, we show its language family

and the training corpus size in Table 1. We trained

our method on the training sentences with length

≤ 15 and tested our method on the testing sen-

tences with length ≤ 40 after removing all punc-

tuations. Since we are doing unsupervised learn-

ing, gold dependency trees were not used during

training. We use the directed dependency accu-

racy (DDA, the percentage of words in the testing

dataset which are assigned the correct head, same

to the unlabeled attachment score normally used

in supervised parsing) as the evaluation metric and

report the average DDA of 5 runs for each exper-

iment. All the parameters of neural networks in-

cluding language embeddings were randomly ini-

tialized and trained with learning rate 0.001, mini-

batch size 1000 and epoch 50. The dimension of

the head token embedding and the child token em-

bedding is set to 10. The shape of the weight ma-

trix Wdir is 20×10. The dimension of the valence

embedding and language identity embedding is set

to 5. For the auxiliary language identification task,

we use a Bi-LSTM with hidden vector dimension

of 10.1

1Our code is available at https://github.com/

WinnieHAN/mndmv.git.

Language UD Treebank Language Family Corpus Size

ET Estonian Finnic 11404

FI Finnish Finnic 9648

NL Dutch Germanic 8783

EN English Germanic 7674

DE German Germanic 7447

NO Norwegian Germanic 10017

GRC Ancient Greek Hellenic 9387

HI Hindi Indo-Irian 4997

JA Japanese Janponic 7441

FR French Romance 4976

IT Italian Romance 6492

LA Latin-ITTB Romance 10136

BG Bulgarian Slavonic 6507

SL Slovenian Slavonic 3800

EU Basque Vasconic 4271

Table 1: Languages and treebanks used in our experi-

ments.

CODE MONOLINGUAL MULTILINGUAL

DMV NDMV DMV NDMV G G+I

ET 51.8 52.9 43.1 45.3 56.0 56.4

FI 31.8 27.6 39.1 40.0 50.7 49.3

NL 42.4 35.6 46.5 47.8 50.4 50.6

EN 51.8 53.7 47.7 50.8 51.7 52.7

DE 52.8 50.4 55.5 57.2 59.6 61.4

NO 58.9 59.2 55.7 58.8 61.0 61.3

GRC 40.4 37.7 41.1 40.8 46.8 46.2

HI 52.6 53.9 29.2 31.1 47.4 46.8

JA 39.8 37.1 27.8 29.6 43.4 44.2

FR 58.8 38.1 59.6 59.4 58.4 60.1

IT 60.8 63.6 66.7 66.4 64.4 65.9

LA 32.6 36.3 39.8 42.0 45.1 45.0

BG 58.9 61.8 65.9 69.4 71.3 71.3

SL 70.7 67.5 62.1 63.3 68.3 68.6

EU 42.1 45.5 45.7 45.2 54.2 53.6

Avg 49.7 48.1 48.4 49.8 55.3 55.6

Table 2: DDA of monolingual and multilingual ap-

proaches. Each language is indicated by its ISO 639

code. G: our multilingual grammar model. I: our aux-

iliary language identification task. Ave: Average DDA

over 15 languages.

4.2 Results

We first compare our method with two baseline

methods, DMV and NDMV, which are similar to

our method2. The baseline methods are experi-

mented in both monolingual and multilingual set-

tings. For the monolingual setting we trained the

baseline models on each language independently.

For the multilingual setting we trained them on the

combined training data of all the 15 languages and

tested on one of the languages. Table 2 shows the

experimental results. It can be seen that our multi-

lingual grammar model (G) performs better on av-

erage than all the baselines. The improvement be-

2We re-implemented the DMV and the NDMV. We set
the ATTACH valence and DECISION valence to 2 and used
root constraints, similar to previous work (Gimpel and Smith,
2012; Bisk and Hockenmaier, 2013; Noji et al., 2016).

https://github.com/WinnieHAN/mndmv.git
https://github.com/WinnieHAN/mndmv.git
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comes more significant when our model is jointly

trained with the auxiliary language identification

task (G+I). Note that our approach performs worse

than the monolingual baseline on some languages,

and we speculate that it is partly caused by data

imbalance. In particular, the worst-performing

Hindi language has only 4997 training sentences,

much smaller than the average 7532. It would be

interesting to make training more balanced by as-

signing weights to training samples of different

languages, which we leave for future work.

To measure the statistical significance of the ad-

vantage of our method, we performed the nonpara-

metric Friedman’s test to support/reject the claim

(null hypothesis): there is no difference between

the G+I model and the NDMV model in a multi-

lingual setting. Based on the above sample data,

the P-value 7.8911 × 10−4 would result in rejec-

tion of the claim at the 0.05 significance level, thus

showing the significance in our performance gain.

In Table 3 we compare our method with recent

state-of-the-art approaches on the UD Treebank

dataset: Convex-MST (Grave and Elhadad, 2015),

LC-DMV (Noji et al., 2016) and D-J (Jiang et al.,

2017). For the three approaches we use the results

reported by Jiang et al. (2017). Our G+I model

performs better than Convex-MST and LC-DMV

on average, even though additional priors and del-

icate biases are integrated into the two methods

(e.g, the universal linguistic prior for Convex-

MST and the limited center-embedding for LC-

DMV). Our method also slightly outperforms D-J

on average, even though D-J combines Convex-

MST and LC-DMV and therefore utilizes even

more linguistic prior knowledge.

5 Analysis

5.1 Visualization of Language Embeddings

One of our main expectations is that our approach

can automatically learn language embeddings that

capture similarities in typology between different

languages. In order to verify our expectation, we

collected the learned language embeddings and vi-

sualized them on a 2D plane using the t-SNE algo-

rithm (Van der Maaten and Hinton, 2008).

Figure 2 shows the visualization result. It can be

seen that in most cases languages in the same lan-

guage family are close to each other. For example,

Finnish is close to Estonian (Finnic languages)

and Slovenian is close to Bulgarian (Slavonic lan-

guages). It is also interesting to note that some

CODE Convex MST LC-DMV D-J G G+I

ET 49.4 31.8 44.0 56.0 56.4

FI 44.7 26.9 43.5 50.7 49.3

NL 45.3 34.1 43.5 50.4 50.6

EN 54.0 56.0 60.1 51.7 52.7

DE 51.4 50.5 55.7 59.6 61.4

NO 55.3 45.5 60.8 61.0 61.3

GRC 43.4 33.1 44.9 46.8 46.2

HI 56.8 54.2 60.0 47.4 46.8

JA 44.8 43.8 45.8 43.4 44.2

FR 62.0 48.6 57.0 58.4 60.1

IT 69.1 71.1 70.3 64.4 65.9

LA 38.8 38.6 42.2 45.1 45.0

BG 61.6 62.4 73.8 71.3 71.3

SL 54.0 49.5 69.6 68.3 68.6

EU 50.0 45.4 55.7 54.2 53.6

Avg 52.0 46.1 55.1 55.3 55.6

Table 3: Comparison of the recent state-of-the-art ap-

proaches and G/G+I. Avg: Average DDA over 15 lan-

guages.
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Figure 2: Visualization of the language embeddings.

languages, such as English and Norwegian in the

Germanic family and Latin in the Romance fam-

ily, are closer to languages outside of their fami-

lies than to their family siblings. We attribute this

phenomenon to the difference in typology among

some in-family languages: the flexible word or-

der in German and Dutch is not shared by En-

glish and Norwegian; Latin, on the other hand,

seems to share more common typological features

with its classical counterpart, ancient Greek, than

with its modern phylogenetic relatives in the Ro-

mance family. Such differences cannot be inferred

from linguistic phylogeny, but our language em-

beddings have undoubtedly captured them.

5.2 In-family vs. Cross-family

In order to further examine the effectiveness of our

model in coupling grammar parameters between

languages regardless of their language families,

we design an additional experiment on a bilingual
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H J I V

ET FI NO NL EN DE LA IT FR BG SL GRC JA HI EU

ET -1.1 1.9 2.1 0.3 0.9 3.1 5.0 5.6 3.6 -1.2 0.9 29.6 3.2 13.8

FI -0.2 3.7 1.4 2.6 4.8 2.5 -3.4 0.7 9.5 6.4 2.0 10.3 2.0 2.0

NO 8.8 10.0 -3.2 0.4 1.0 2.7 -1.7 1.4 1.2 2.1 1.8 11.7 9.4 10.4

NL 5.3 -1.7 2.5 0.5 1.3 2.2 1.0 0.2 4.3 1.0 -1.0 0.2 4.6 4.8

EN 0.9 7.6 2.0 0.7 1.6 0.1 1.2 0.6 0.2 -1.0 2.3 18.3 1.2 0.6

DE -0.8 5.4 0.7 2.1 1.9 1.9 0.9 1.8 2.6 -0.4 2.0 1.8 17.5 8.6

LA 7.0 0.8 0.3 -5.2 -3.6 4.0 -2.0 -5.4 -3.5 -1.6 -2.2 12.3 22.8 3.7

IT 0.7 11.4 -0.3 0.4 2.8 -2.0 -1.3 -0.1 2.2 1.1 6.2 11.3 20.1 10.0

FR 0.9 -1.8 -1.1 0.6 1.4 0.2 0.8 -0.4 5.2 -0.5 3.7 -0.2 21.1 9.1

BG 9.0 13.3 1.2 -2.0 -0.9 2.3 0.1 -1.5 -4.1 1.3 0.9 18.2 25.8 12.7

SL 5.2 11.7 1.3 -4.3 1.0 -4.1 -0.2 -0.6 0.4 2.3 4.5 2.6 21.3 15.2
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Figure 3: Each cell shows the difference between the

DDA of our model and that of DMV evaluated on the

test data of the column language. Positive numbers are

shown in red and negative numbers in blue. Languages

are grouped by their families.

setup. Specifically, for each pair of languages, we

tested our approach and the baseline of training

DMV on the combined training set. Since in this

setting DMV is blind to the language identity, we

expect that it would perform poorly if the two lan-

guages come from different families and hence are

very likely to have large difference. On the other

hand, our model would not be as sensitive to the

difference between the two languages. In Figure 3,

we report the difference between the DDA of our

model and that of DMV. It shows that the advan-

tage of our model over DMV is more significant

for cross-family language pairs than for in-family

language pairs, which verifies our expectation.

6 Conclusion

In this paper, we incorporate continuous language

identity representations into multilingual gram-

mar induction, which softly tie grammar parame-

ters from different languages, resulting in substan-

tial performance gain over various baseline meth-

ods. Analysis of the language embeddings sug-

gests that our approach may capture information

about language similarity beyond linguistic phy-

logenetic knowledge.

While in this work we follow previous work

and perform unlexicalized parsing, the proposed

model can be extended for lexicalized parsing by

replacing POS tag embeddings with cross-lingual

word embeddings, which we leave for future work.
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