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Abstract

This paper investigates the problem of learn-
ing cross-lingual representations in a contex-
tual space. We propose Cross-Lingual BERT
Transformation (CLBT), a simple and effi-
cient approach to generate cross-lingual con-
textualized word embeddings based on pub-
licly available pre-trained BERT models (De-
vlin et al., 2018). In this approach, a lin-
ear transformation is learned from contextual
word alignments to align the contextualized
embeddings independently trained in different
languages. We demonstrate the effectiveness
of this approach on zero-shot cross-lingual
transfer parsing. Experiments show that our
embeddings substantially outperform the pre-
vious state-of-the-art that uses static embed-
dings. We further compare our approach with
XLM (Lample and Conneau, 2019), a recently
proposed cross-lingual language model trained
with massive parallel data, and achieve highly
competitive results. !

1 Introduction

One of the most promising directions for cross-
lingual dependency parsing, which also remains a
challenge, is to bridge the gap of lexical features.
Prior works (Xiao and Guo, 2014; Guo et al.,
2015) have shown that cross-lingual word embed-
dings are able to significantly improve the trans-
fer performance compared to delexicalized mod-
els (McDonald et al., 2011, 2013). These cross-
lingual word embeddings are static in the sense
that they do not change with the context.”
Recently, contextualized word embeddings de-
rived from large-scale pre-trained language mod-
els (McCann et al., 2017; Peters et al., 2017, 2018;

*Email corresponding
'Our code is released at https://github.com/
WangYuxuan93/CLBT
*In this paper, we refer to these embeddings as stafic as
opposed to contextualized ones.
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(Change to Channel 4) He loves the movie
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Figure 1: A toy illustration of the method, where con-
textualized embeddings of the word canal from Span-
ish is transformed to the semantic space of English.

Devlin et al., 2018) have demonstrated dramatic
superiority over traditional static word embed-
dings, establishing new state-of-the-arts in various
monolingual NLP tasks (Ili¢ et al., 2018; Schus-
ter et al., 2018). The success has also been rec-
ognized in dependency parsing (Che et al., 2018).
The great potential of these contextualized embed-
dings has inspired us to extend its power to cross-
lingual scenarios.

Several recent works have been proposed to
learn contextualized cross-lingual embeddings
by training cross-lingual language models from
scratch with parallel data as supervision, and
has been demonstrated effective in several down-
stream tasks (Schuster et al., 2018; Mulcaire et al.,
2019; Lample and Conneau, 2019). These meth-
ods are typically resource-demanding and time-
consuming.> In this paper, we propose Cross-
Lingual BERT Transformation (CLBT), a sim-
ple and efficient off-line approach that learns a
linear transformation from contextual word align-
ments. With CLBT, contextualized embeddings

3For instance, XLM was trained on 64 Volta GPUs (Lam-
ple and Conneau, 2019). While the time of training is not
described in the paper, we may take the statistics from BERT
as areference, e.g., BERTgAsE was trained on 4 Cloud TPUs
for 4 days (Devlin et al., 2018).
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from pre-trained BERT models in different lan-
guages are projected into a shared semantic space.
The learned transformation is then used on top of
the BERT encodings for each sentence, which are
further fed as input to a parser.

Our approach utilizes the semantic equivalence
in word alignments, and thus is supposed to be
word sense-preserving. Figure 1 illustrates our ap-
proach, where contextualized embeddings of the
Spanish word “canal” are transformed to the cor-
responding semantic space in English.

Experiments on the Universal Dependencies
(UD) treebanks (v2.2) (Nivre et al., 2018) show
that our approach substantially outperforms pre-
vious models that use static cross-lingual embed-
dings, with an absolute gain of 2.91% in aver-
aged LAS. We further compare to XLM (Lam-
ple and Conneau, 2019), a recently proposed
large-scale cross-lingual language model. Results
demonstrate that our approach requires signifi-
cantly fewer training data, computing resources
and less training time than XLM, yet achieving
highly competitive results.

2 Related Work

Static cross-lingual embedding learning methods
can be roughly categorized as on-line and off-line
methods. Typically, on-line approaches integrate
monolingual and cross-lingual objectives to learn
cross-lingual word embeddings in a joint manner
(Klementiev et al., 2012; Kodisky et al., 2014; Guo
et al., 2016), while off-line approaches take pre-
trained monolingual word embeddings of different
languages as input and retrofit them into a shared
semantic space (Xing et al., 2015; Lample et al.,
2018; Chen and Cardie, 2018).

Several approaches have been proposed re-
cently to connect the rich expressiveness of con-
textualized word embeddings with cross-lingual
transfer. Mulcaire et al. (2019) based their model
on ELMo (Peters et al., 2018) and proposed a
polyglot contextual representation model by cap-
turing character-level information from multilin-
gual data. Lample and Conneau (2019) adapted
the objectives of BERT (Devlin et al., 2018) to
incorporate cross-lingual supervision from paral-
lel data to learn cross-lingual language models
(XLMs), which have obtained state-of-the-art re-
sults on several cross-lingual tasks. Similar to our
approach, Schuster et al. (2019) also aligned pre-
trained contextualized word embeddings through

linear transformation in an off-line fashion. They
used the averaged contextualized embeddings as
an anchor for each word type, and learn a transfor-
mation in the anchor space. Our approach, how-
ever, learns this transformation directly in the con-
textual space, and hence is explicitly designed to
be word sense-preserving.

3 Cross-Lingual BERT Transformation

This section describes our proposed approach,
namely CLBT, to transform pre-trained monolin-
gual contextualized embeddings to a shared se-
mantic space.

3.1 Contextual Word Alignment

Traditional methods of learning static cross-
lingual word embeddings have been relying on
various sources of supervision such as bilingual
dictionaries (Lazaridou et al., 2015; Smith et al.,
2017), parallel corpus (Guo et al., 2015) or on-
line Google Translate (Mikolov et al., 2013; Xing
etal., 2015). To learn contextualized cross-lingual
word embeddings, however, we require supervi-
sion at word token-level (or context-level) rather
than type-level (i.e. dictionaries). Therefore, we
assume a parallel corpus as our supervision, anal-
ogous to on-line methods such as XLLM (Lample
and Conneau, 2019).

In our approach, unsupervised bidirectional
word alignment is first applied to the parallel cor-
pus to obtain a set of aligned word pairs with their
contexts, or contextual word pairs for short. For
one-to-many and many-to-one alignments, we use
the left-most aligned word,* such that all the re-
sulting word pairs are one-to-one. In practice,
since WordPiece embeddings (Wu et al., 2016) are
used in BERT, all the parallel sentences are tok-
enized using BERT’s wordpiece vocabulary before
being aligned.

3.2 Off-Line Transformation

Given a set of contextual word pairs, their BERT
representations {x;, y;}/; can be easily obtained
from pre-trained BERT models,’ where x; € R%
is the contextualized embedding of token ¢ in the

“Preliminary experiments indicate that this way works
better than keeping all the alignments.

In this work, we use the English BERT (enBERT) for
the source language (English) and the multilingual BERT
(mBERT), which is trained on 102 languages without cross-
lingual supervision, for all the target languages.
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target language, and y; € R% is the representation
of its alignment in the source language.

In our experiments, a parser is trained on source
language data and applied directly to all the tar-
get languages. Therefore, we propose to project
the embeddings of target languages to the space of
the source language, instead of the opposite direc-
tion. Specifically, we aim at finding an appropriate
linear transformation W, such that Wx; approx-
imates y;.° This can be achieved by solving the
following optimization problem:

n

min Wx; —y; 2,

1y ;H yill
where W € R%1*% i5 a parameter matrix.

Previous works on static cross-lingual embed-

dings have shown that an orthogonal W (i.e.
W'TW = I) is helpful for the word translation
task (Xing et al., 2015). In this case, an analyti-
cal solution can be found through singular value
decomposition (SVD) of Y T X:

W = VU, where USV' = SVD(Y ' X).

Here X € R™*? and Y € R"*? are the con-
textualized embedding matrices, where n is the
number of aligned contextual word pairs, d is the
dimension of monolingual contextualized embed-
dings. Each pair of rows (x;,y;) indicates an
aligned contextual word pair.

Although this can be computed in CPUs within
several minutes, more memories will be required
with the growth of the amount of training data.
Therefore, we present an approximate solution,
where W is optimized with gradient decent (GD)
and is not constrained to be orthogonal.” This GD-
based approach can be trained on a single GPU
and typically converges in several hours.

To validate the effectiveness of our approach
in cross-lingual dependency parsing, we first ob-
tain the CLBT embeddings with the proposed ap-
proach, and then use them as input to a modern
graph-based neural parser (described in next sec-
tion), in replacement of the pre-trained static em-
beddings. Note that BERT produces embeddings
in wordpiece-level, so we only use the left-most
wordpiece embedding of each word.?

®We also investigated non-linear transformation in our ex-
periments, but didn’t observe any improvements.

"We found the orthogonal constraint doesn’t help for GD.

8We tried alternative strategies such as averaging, using

the middle or right-most wordpiece, but observed no signifi-
cant difference.

4 Experiments

4.1 Data and Settings

In our experiments, the contextual word pairs are
obtained from the Europarl corpora (Koehn, 2005)
using the fast_align toolkit (Dyer et al., 2010).
Only 10,000 sentence pairs are used for each target
language. For the parsing datasets, we use the Uni-
versal Dependencies(UD) Treebanks (v2.2) (Nivre
et al., 2018),” following the settings of the previ-
ous state-of-the-art system (Ahmad et al., 2018).
From the 31 languages they have analyzed, we
select 18 whose Europarl data is publicly avail-
able.!® Statistics of the selected languages and
treebanks can be found in the Appendix. We em-
ploy the Biaffine Graph-based Parser of Dozat and
Manning (2017) and adopt their hyper-parameters
for all of our models.

In all the experiments, English is used as the
source language, and the other 17 languages as tar-
gets. The model is trained on the English treebank
and applied directly to target languages with the
transformed contextualized embeddings. We train
our models using the Adam optimizer (Kingma
and Ba, 2015), and most of the them converge
within a few thousand epochs in several hours.
More implementation details are reported in the
Appendix.

4.2 Baseline Systems

We compare our method with the following three
baseline models:

o mBERT (contextualized). Embeddings gen-
erated by the mBERT model are directly used
in the training and testing procedures.

e FT-SVD (Ahmad et al., 2018, off-line,
static). SVD-based transformation (Smith
et al., 2017) is applied on 300-dimensional
FastText embeddings (Bojanowski et al.,
2017) to obtain cross-lingual static embed-
dings, which represents the previous state-of-
the-art. We report results from their paper of
the RNNGraph model which used the same
architecture as ours.

e XLM (Lample and Conneau, 2019, on-line,
contextualized). A strong method which
learns contextualized cross-lingual embed-
dings from scratch with cross-lingual data.

’hdl.handle.net/11234/1-2837
0For languages with multiple treebanks, we use the same
combinations as they did.
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Static Contextualized Lan. XLM CLBT (SVD) ‘ CLBT (GD)
Lan. FI-SVD | mBERT CLBT CLBT en | 917.8§/§9.7927 || 7927871*!97193:“ 77777
(SVD) | (GD) de 74.65/65.31 || 73.72/64.47 | 71.08/62.14

en 88.31 90.71 91.03* fr 79.62/73.41 80.01/74.70* 80.85%/76.59*
“de 13931 |Te3ar T 6447 | 6214 es 75.41/67.43 || 75.52/67.14% | 75.70%/68.33*

da 68.81 70.57 71.60% 71.66* bg 81.07/69.45 82.14%/70.26 81.51/70.75%

SV 73.49 70.09 73.33% 75.95% AVG. | 77.69/68.90 || 77.85/69.14 77.29/69.45
onl_ | 6011 | 6566 | 6545 | 6386 Data | 02-13.1M | 10K

fr 73.46 72.97 74.70* 76.59*

it 76.23 79.02 79.46 78.98 Table 2: Results (UAS%/LLAS%) on test sets. The last

es 66.91 65.43 67.14% | 68.33* row shows the training data used in each language by

pt 67.98 67.11 69.12*% | 69.25% sentence. AVG. means the average of results from 4 tar-

o 52.11 46.40 55.14*% | 55.84% get languages. Statistically significant differences be-
"k 15698 5076 | 5946+ | 59.92% tween our methods and the XLLM are marked with an

pl 58.59 63.10 65.37* 65.80% asterisk, with p-value < 0.05 under McNemar’s test.

bg 66.68 71.20 70.26 70.75

sl 54.57 56.78 57.42% 57.21%

cs 52.80 45.20 52.00% | 52.99% using a shared multilingual wordpiece vocabulary
i | 4874 | 4956 | 51.00% | 52.61% works surprisingly well in some languages, espe-

et | 44.40 46.64 47.79% | 48.52% cially in those linguistically close to English. Sim-

lv 49.59 45.11 48.59* | 49.78* ilar observations have also been identified in other

AVG. | 60.63 60.53 63.09 | 63.54 works (Pires et al., 2019; Wu and Dredze, 2019).

Table 1: Results (LAS%) on test sets. Languages are
split by language families with dashed lines. AVG.
means the average of results from all target languages.
Statistically significant differences between our meth-
ods and the mBERT model are marked with *, with
p-value < 0.05 under McNemar'’s test.

For the XLM model, we employ the XNLI-15
model'! they released to generate embeddings and
apply them to cross-lingual dependency parsing in
the same way as we do with our own model. We
compare with them in the 4 overlapped languages
both works have researched on.

4.3 Comparison with Off-Line Methods

Results on the test sets are shown in Table
Languages are grouped by language families.
Overall, our approach with either SVD or GD
outperforms both FT-SVD and mBERT by a sub-
stantial margin (+2.91% in averaged LAS), among
which GD turns out to be slightly better than
SVD in most of the languages. When combined
with FT-SVD, the performances can be further im-
proved by 0.33% in LAS for the GD method and
0.51% for SVD (see the Appendix for more de-
tails). Interestingly, the mBERT model which is
trained without any cross-lingual supervision but

1‘12

Ugithub.com/facebookresearch/XLM

I2UAS results are listed in the Appendix due to space limit.
Note that since we have no access to the parsed files of the
FT-SVD model, we only report statistical significant tests be-
tween our methods and the mBERT model, which is highly
comparable to the FT-SVD model on average.

4.4 Comparison with On-Line Methods

Comparison of our approach and a cross-lingual
language model pre-training (XLM) method
(Lample and Conneau, 2019) in the 4 overlapped
languages is shown in Table 2. CLBT outperforms
XLM in 3 out of the 4 languages but lower in Ger-
man (de). The amount of training data used in each
method is also shown in the bottom: the number of
parallel sentences used by XLLM ranges from 0.2
million (10 million tokens) for Bulgarian to 13.1
million (682 million tokens) for French. In com-
parison, only 10,000 parallel sentences (0.4 mil-
lion tokens) are used for each language in CLBT,
demonstrating the data-efficiency of our approach.
Moreover, given the efficiency in both data and
training, CLBT can be readily scaled to new lan-
guage pairs in hours.

4.5 Analysis

4.5.1 Transformation of Cross-lingual BERT
Embedding

In order to investigate the properties of contex-
tualized representations before and after the lin-
ear transformation, we employ the SENSEVAL?2
data (Edmonds and Cotton, 2001),!3 where words
from different languages are tagged by their word
senses in different contexts.

We took contextualized representations of the
English word nature and its Spanish transla-

Byww.hipposmond.com/senseval2/
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Figure 2: t-SNE visualization of the English word na-
ture and its Spanish translation naturaleza in different
contexts by the contextualized representations before
(a) and after (b) the linear transformation. Points are
colored by word senses. Example contexts are given in
(a). Translations of Spanish sentences are in brackets.

tion naturaleza in different contexts from pre-
trained English and multilingual BERT respec-
tively and visualize their distributions in Fig-
ure 2(a), where we can observe obvious clus-
tering of word senses. Specifically, words with
sense nature-1 and naturaleza-1 mean the phys-
ical world, whereas nature-2 and naturaleza-2
mean inherent features. We then apply our GD-
based method to embeddings of naturaleza and
depict the resulting cross-lingual embeddings in
Figure 2(b). The distance between embeddings
from English and Spanish is effectively reduced
after the transformation. And it is apparent that
embeddings of Spanish words are closer to those
with similar meanings from English, which indi-
cates the effectiveness of our approach.

4.5.2 Effect of Training Data Size

We select several languages from each language
family, and investigate the effect of the amount
of training data on the performances of zero-shot
cross-lingual dependency parsing. Specifically,

80

Al

de da sy nl fr it es 1o sk bg sl fi Iv

8100 0500 1,000 85,000 @10,000 @50,000

Figure 3: Effects of the amount of training data on dif-
ferent languages. (y-axis represents the LAS.)

we take the SVD-based approach, since it is faster
than the GD-based one, and trained different trans-
formation models with different amount of parallel
sentences from Europarl dataset on each of the 13
selected languages.

As shown in Figure 3, for most of the lan-
guages, the best performance is achieved with only
5000 parallel sentences. It is also worth noting
that for most of Germanic (e.g. German, Danish,
Swedish and Dutch) and Romance (e.g. French,
Italian, Spanish and Romanian) languages, which
are typologically closer to English, a rather small
training set of merely 100 sentences is capable of
achieving comparative results.

5 Conclusion

We propose the Cross-Lingual BERT Transforma-
tion (CLBT) approach for contextualized cross-
lingual embedding learning, which substantially
outperforms the previous state-of-the-art in zero-
shot cross-lingual dependency parsing. By ex-
ploiting publicly available pre-trained BERT mod-
els, our approach provides a fast and data-efficient
solution to learning cross-lingual contextualized
embeddings. Compared to the XLLM, our method
requires much fewer parallel data and less training
time, yet achieving comparable performance.

For future work, we are interested in unsuper-
vised cross-lingual alignment, inspired by prior
success on static embeddings (Lample et al., 2018;
Alvarez-Melis and Jaakkola, 2018), which de-
mands a deeper understanding to the geometry of
the multilingual contextualized embedding space.
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