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Abstract

We explore the task of automatic assessment
of argument quality. To that end, we actively
collected 6.3k arguments, more than a factor
of five compared to previously examined data.
Each argument was explicitly and carefully an-
notated for its quality. In addition, 14k pairs
of arguments were annotated independently,
identifying the higher quality argument in each
pair. In spite of the inherent subjective nature
of the task, both annotation schemes led to sur-
prisingly consistent results. We release the la-
beled datasets to the community. Furthermore,
we suggest neural methods based on a recently
released language model, for argument rank-
ing as well as for argument-pair classification.
In the former task, our results are comparable
to state-of-the-art; in the latter task our results
significantly outperform earlier methods.

1 Introduction

Computational argumentation has been receiving
growing interest in the NLP community in recent
years (Reed, 2016). With this field rapidly expand-
ing, various methods have been developed for sub-
tasks such as argument detection (Lippi and Tor-
roni, 2016; Levy et al., 2014; Rinott et al., 2015),
stance detection (Bar-Haim et al., 2017) and argu-
ment clustering (Reimers et al., 2019).

Recently, IBM introduced Project Debater, the
first AI system able to debate humans on complex
topics. The system participated in a live debate
against a world champion debater, and was able to
mine arguments, use them for composing a speech
supporting its side of the debate, and also rebut its
human competitor.1 The underlying technology is
intended to enhance decision-making.

∗These authors equally contributed to this work.
1For more details: https://www.research.

ibm.com/artificial-intelligence/
project-debater/live/

More recently, IBM also introduced Speech by
Crowd, a service which supports the collection of
free-text arguments from large audiences on de-
batable topics to generate meaningful narratives.
A real-world use-case of Speech by Crowd is in
the field of civic engagement, where the aim is to
exploit the wisdom of the crowd to enhance deci-
sion making on various topics. There are already
several public organizations and commercial com-
panies in this domain, e.g., Decide Madrid2 and
Zencity.3 As part of the development of Speech by
Crowd, 6.3k arguments were collected from con-
tributors of various levels, and are released as part
of this work.

An important sub-task of such a service is the
automatic assessment of argument quality, which
has already shown its importance for prospec-
tive applications such as automated decision mak-
ing (Bench-Capon et al., 2009), argument search
(Wachsmuth et al., 2017b), and writing support
(Stab and Gurevych, 2014). Identifying argument
quality in the context of Speech by Crowd allows
for the top-quality arguments to surface out of
many contributions.

Assessing argument quality has driven practi-
tioners in a plethora of fields for centuries from
philosophers (Aristotle et al., 1991), through aca-
demic debaters, to argumentation scholars (Walton
et al., 2008). An inherent difficulty in this domain
is the presumably subjective nature of the task.
Wachsmuth et al. (2017a) proposed a taxonomy of
quantifiable dimensions of argument quality, com-
prised of high-level dimensions such as cogency
and effectiveness, and sub-dimensions such as rel-
evance and clarity, that together enable the assign-
ment of a holistic quality score to an argument.

Habernal and Gurevych (2016b) and Simpson

2https://decide.madrid.es
3https://zencity.io

https://www.research.ibm.com/artificial-intelligence/project-debater/live/
https://www.research.ibm.com/artificial-intelligence/project-debater/live/
https://www.research.ibm.com/artificial-intelligence/project-debater/live/
https://decide.madrid.es
https://zencity.io
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and Gurevych (2018) take a relative approach
and treat the problem as relation classification.
They focus on convincingness – a primary dimen-
sion of quality – and determine it by compar-
ing pairs of arguments with similar stance. In
this view, the convincingness of an individual ar-
gument is a derivative of its relative convincing-
ness: arguments that are judged as more convinc-
ing when compared to others are attributed higher
scores. These works explore the labeling and au-
tomatic assessment of argument convincingness
using two datasets introduced by Habernal and
Gurevych (2016b): UKPConvArgRank (hence-
forth, UKPRank) and UKPConvArgAll, which
contain 1k and 16k arguments and argument-
pairs, respectively.

Gleize et al. (2019) also take a relative approach
to argument quality, focusing on ranking convinc-
ingness of evidence. Their solution is based on
a Siamese neural network, which outperforms the
results achieved in Simpson and Gurevych (2018)
on the UKP datasets, as well as several baselines
on their own dataset, IBM-ConvEnv.4

Here, we extend earlier work in several ways:
(1) introducing a large dataset of actively col-
lected arguments, carefully annotated for quality;
(2) suggesting a method for argument-pair classi-
fication, which outperforms state-of-the-art accu-
racy on available datasets; (3) suggesting a method
for individual argument ranking, which achieves
results comparable to the state of the art.

Our data was collected actively, via a dedicated
user interface. This is in contrast to previous
datasets, which were sampled from online debate
portals. We believe that our approach to data col-
lection is more controlled and reduces noise in the
data, thus making it easier to utilize it in the con-
text of learning algorithms (see Section 7).

Moreover, we applied various cleansing meth-
ods to ensure the high quality of the contributed
data and the annotations, as detailed in Section 3.

We packaged our data in the following datasets,
which are released to the research community5:

• IBM-ArgQ-6.3kArgs - the full dataset, com-
prised of all 6.3k arguments that were col-
lected and annotated with an individual qual-
ity score in the range [0, 1].

4As this work is relatively recent and was published after
our submission, we were not able to compare to it.

5https://www.research.ibm.com/
haifa/dept/vst/debating_data.shtml#
ArgumentQuality

• IBM-ArgQ-14kPairs - 14k argument pairs an-
notated with a relative quality label, indicat-
ing which argument is of higher quality.

• IBM-ArgQ-5.3kArgs - the subset of 5.3k
arguments from IBM-ArgQ-6.3kArgs that
passed our cleansing process. This set is used
in the argument ranking experiments in Sec-
tion 9.2, henceforth: IBMRank.

• IBM-ArgQ-9.1kPairs - the subset of 9.1k ar-
gument pairs from IBM-ArgQ-14kPairs that
passed our cleansing process, used in the
argument-pair classification experiments in
Section 9.1. Henceforth: IBMPairs.

The dataset IBMRank differs from UKPRank
in a number of ways. Firstly, IBMRank includes
5.3k arguments, which make it more than 5 times
larger than UKPRank. Secondly, the arguments in
IBMRank were collected actively from contribu-
tors. Thirdly, IBMRank includes explicit quality-
labeling of all individual arguments, which is ab-
sent from earlier data, enabling us to explore the
potential of training quality-prediction methods on
top of such labels, presumably easier to collect.

Finally, with the abundance of technologies
such as automated personal assistants, we envi-
sion automated argument quality assessment ex-
panding to applications that include oral commu-
nication. Such use-cases pose new challenges,
overlooked by prior work, that mainly focused on
written arguments. As an initial attempt to ad-
dress these issues, in the newly contributed data
we guided annotators to assess the quality of an
argument within the context of using the argument
as-is to generate a persuasive speech on the topic.
Correspondingly, we expect these data to reflect
additional quality dimensions – e.g., a quality pre-
mium on efficiently phrased arguments, and low
tolerance to blunt mistakes such as typos that may
lead to poorly stated arguments.

2 Argument Collection

As part of the development of Speech by Crowd,
online and on-site experiments have been con-
ducted, enabling to test the ability of the service
to generate a narrative based on collected argu-
ments. Arguments were collected from two main
sources: (1) debate club members, including all
levels, from novices to experts; and (2) a broad
audience of people attending the experiments.

https://www.research.ibm.com/haifa/dept/vst/debating_data.shtml#Argument Quality
https://www.research.ibm.com/haifa/dept/vst/debating_data.shtml#Argument Quality
https://www.research.ibm.com/haifa/dept/vst/debating_data.shtml#Argument Quality
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For the purpose of collecting arguments, we
first selected 11 well known controversial con-
cepts, common in the debate world, such as So-
cial Media, Doping in Sports and Flu vaccina-
tion. Using debate jargon, each concept is used to
phrase two “motions”, by proposing two specific
and opposing policies or views towards that con-
cept. For example, for the concept Autonomous
Cars, we suggested the motions We should pro-
mote Autonomous Cars and We should limit Au-
tonomous Cars.6 The full list of motions appears
in Table 1 with the number of arguments collected
for each.7

Guidelines Contributors were invited to a
dedicated user interface in which they were
guided to contribute arguments per concept, using
the following concise instructions:

You can submit as many arguments as you
like, both pro and con, using original language
and no personal information (i.e. information
about an identifiable person).

In addition, to exemplify the type of argu-
ments that we expect to receive, contributors were
shown an example of one argument related to the
motion, provided by a professional debater. The
arguments collected had to have 8 – 36 words,
aimed at obtaining efficiently phrased arguments
(longer/shorter arguments were rejected by the
UI). In total, we collected 6, 257 arguments.

3 Argument Quality Labeling

We explored two approaches to labeling argument
quality: (a) labeling individual arguments (abso-
lute approach): each individual argument is di-
rectly labeled for its quality; and (b) labeling ar-
gument pairs (relative approach): each argument
pair is labeled for which of the two arguments is
of higher quality. In this section we describe the
pros and cons of each approach as well as the as-
sociated labeling process.

Approaches to Argument Quality Labeling
The effort in labeling individual arguments scales
linearly with the number of arguments, compared
to the quadratic scaling of labeling pairs (within
the same motion); thus, it is clearly more feasible
when considering a large number of arguments.
However, the task of determining the quality of

6Habernal and Gurevych (2016b) uses the term topic for
what we refer to as motion.

7In Table 1, vvg stands for violent video games.

Motion #Args
Flu vaccination should be mandatory 204
Flu vaccination should not be mandatory 174
Gambling should be banned 342
Gambling should not be banned 382
Online shopping brings more harm than good 198
Online shopping brings more good than harm 215
Social media brings more harm than good 879
Social media brings more good than harm 686
We should adopt cryptocurrency 172
We should abandon cryptocurrency 160
We should adopt vegetarianism 221
We should abandon vegetarianism 179
We should ban the sale of vvg to minors 275
We should allow the sale of vvg to minors 240
We should ban fossil fuels 146
We should not ban fossil fuels 116
We should legalize doping in sport 212
We should ban doping in sport 215
We should limit autonomous cars 313
We should promote autonomous cars 480
We should support information privacy laws 355
We should discourage information privacy laws 93

Table 1: Motion list and statistics on data collection.

arguments in isolation is presumably more chal-
lenging; it requires to evaluate the quality of an
argument without a clear reference point (except
for the motion text). This is where the relative
approach has its strength, as it frames the label-
ing task in a specific context of two competing
arguments, and is expected to yield higher inter-
annotator agreement. Indeed, a comparative ap-
proach is widely used in many NLP applications,
e.g. in Chen et al. (2013) for assessing reading dif-
ficulty of documents and in Aranberri et al. (2017)
for machine translation. In light of these consider-
ations, here we decided to investigate and compare
both approaches. We used the Figure Eight plat-
form8, with a relatively large number of 15 − 17
annotators per instance, to improve the reliability
of the collected annotations.

3.1 Labeling Individual Arguments

The goal of this task is to assign a quality score
for each individual argument. Annotators were
presented with the following binary question per
argument:

Disregarding your own opinion on the topic,
would you recommend a friend preparing a
speech supporting/contesting the topic to use
this argument as is in the speech? (yes/no)

All arguments that were collected as described in

8http://figure-eight.com/

http://figure-eight.com/
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Section 2 were labeled in this task. We model the
quality of each individual argument as a real value
in the range of [0, 1], by calculating the fraction
of ‘yes’ answers. To ensure the annotators will
carefully read each argument, the labeling of each
argument started with a test question about the
stance of the argument towards the concept (pro
or con). The annotators’ performance on these test
questions was used in the quality control process
described in Section 4, and also in determining
which pairs of arguments to label.

3.2 Labeling Argument Pairs
In this task, annotators were presented with a pair
of arguments, having the same stance towards
the concept (to reduce bias due to the annotator’s
opinion), and were asked the following:

Which of the two arguments would have been
preferred by most people to support/contest the
topic?

Table 2 presents an example of such an ar-
gument pair in which the annotators unanimously
preferred the first argument.

Argument 1 Argument 2
Children emulate the
media they consume
and so will be more
violent if you don’t
ban them from violent
video games

These are less fun and
more harmful games
but specifically violent
games are played in
groups and exclude
softer souls

Table 2: An example of an argument pair for the mo-
tion We should ban the sale of violent video games to
minors. The first argument was unanimously preferred
by all annotators.

As mentioned, annotating all pairs in a large
collection of arguments is often not feasible. Thus,
we focused our attention on pairs that are presum-
ably most valuable to train a learning algorithm.
Specifically, we annotated 14k randomly selected
pairs, that satisfy the following criteria:

1. At least 80% of the annotators agreed on the
stance of each argument, aiming to focus on
clearly stated arguments.

2. Individual quality scores in each pair differ
by at least 0.2, aiming for pairs with a rela-
tively high chance of a clear winner.

3. The length of both arguments, as measured
by number of tokens, differs by ≤ 20%, aim-

ing to focus the task on dimensions beyond
argument length.

4 Quality Control

To monitor and ensure the quality of collected
annotations, we employed the following analyses:

Kappa Analysis –

1. Pairwise Cohen’s kappa (κ) (Cohen, 1960)
is calculated for each pair of annota-
tors that share at least 50 common argu-
ment/argument pairs judgments, and based
only on those common judgments.

2. Annotator-κ is obtained by averaging all pair-
wise κ for this annotator as calculated in Step
1, and if and only if this annotator had ≥ 5
pairwise κ values estimated. This is used to
ignore annotators as described later.

3. Averaging all Annotator-κ, calculated in Step
2, results in Task-Average-κ.9

Test Questions Analysis – Hidden embedded
test questions, based on ground truth, are often
valuable for monitoring crowd work. In our setup,
at least one fifth of the judgments provided by each
annotator are on test questions. When annotators
fail a test question, they are alerted. Thus, beyond
monitoring annotator’s quality, test questions also
provide annotators feedback on task expectations.
In addition, an annotator that fails more than a pre-
specified fraction (e.g., 20%) of the test questions
is removed from the task, and his judgments are
ignored.

High Prior Analysis – An annotator that al-
ways answers ’yes’ to a particular question should
obviously be ignored; more generally, we dis-
carded the judgments contributed by annotators
with a relatively high prior to answer positively on
the presented questions.

Note, if an annotator is discarded due to fail-
ure in any of the above analyses, he is further
discarded from the estimation of Annotator-κ and
Task-Average-κ.

9It is noted that some annotators remain without valid
Annotator-κ and cannot be filtered out based on their κ. Sim-
ilarly, those annotators do not contribute to the Task-Average-
κ. However, in both annotation tasks, those annotators con-
tributed only 0.01− 0.03 of the judgments collected.
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5 Data Cleansing

5.1 Cleansing of Individual Arguments
Judgments

To enhance the quality of the collected data, we
discard judgments by annotators who (1) failed
≥ 20% of the test-questions10; and/or (2) obtained
Annotator-κ ≤ 0.35 in the stance judgment task;
and/or (3) answered ‘yes’ for ≥ 80% of the qual-
ity judgment questions. Finally, we discarded ar-
guments that were left with less than 7 valid judg-
ments. This process left us with 5.3k arguments,
each with 11.4 valid annotations on average. The
Task-Average-κ was 0.69 on the stance question
and 0.1 on the quality question. We refer to the
full, unfiltered, set as IBM-ArgQ-6.3kArgs, and to
the filtered set as IBM-ArgQ-5.3kArgs (IBMRank).

For completeness, we also attempted to utilize
an alternative data cleansing tool, MACE (Hovy
et al., 2013). We ran MACE with a threshold k,
keeping the top k percent of arguments accord-
ing to their entropy. We then re-calculated Task-
Average-κ on the resulting dataset. We ran MACE
with k=0.95, as used in Habernal and Gurevych
(2016b), and with k=0.85, as this results in a
dataset similar in size to IBMRank. The result-
ing Task-Average-κ is 0.08 and 0.09, respectively,
lower than our reported 0.1. We thus maintain our
approach to data cleansing as described above.

The low average κ of 0.1 for quality judgments
is expected due to the subjective nature of the
task, but nonetheless requires further attention.
Based on the following observations, we argue
that the labels inferred from these annotations are
still meaningful and valuable: (1) the high Task-
Average-κ on the stance task conveys the annota-
tors carefully read the arguments before provid-
ing their judgments; (2) we report high agreement
of the individual quality labels with the argument-
pair annotations, to which much better κ values
were obtained (see Section 6.1); (3) we demon-
strate that the collected labels can be successfully
used by a neural network to predict argument rank-
ing (see section 9.2), suggesting these labels carry
a real signal related to arguments’ properties.

5.2 Cleansing of Argument Pair Labeling

To enhance the quality of the collected pairwise
data, we discard judgments by annotators who (1)

10Since quality judgments are relatively subjective, we fo-
cused the test questions on the stance question.

failed ≥ 30% of the test-questions; and/or (2) ob-
tained Annotator-κ ≤ 0.15 in this task. Here, the
test questions were directly addressing the (rela-
tive) quality judgment of pairs, and not the stance
of the arguments. In initial annotation rounds the
test questions were created based on the previ-
ously collected individual arguments labels - con-
sidering pairs in which the difference in individual
quality scores was ≥ 0.6.11 In following annota-
tion rounds, the test questions were defined based
on pairs for which≥ 90% of the annotators agreed
on the winning pair. Following this process we
were left with an average of 15.9 valid annotations
for each pair, and with Task-Average-κ of 0.42 on
the quality judgments – a relatively high value for
such a subjective task. As an additional cleans-
ing, for training the learning algorithms, we con-
sidered only pairs for which ≥ 70% of the anno-
tators agreed on the winner, leaving us with a total
of 9.1k pairs for training and evaluation. We refer
to the full, unfiltered, set as IBM-ArgQ-14kPairs,
and to the filtered set as IBM-ArgQ-9.1kPairs.

6 Data Consistency

6.1 Consistency of Labeling Tasks

Provided with both individual and pairwise qual-
ity labeling, we estimated the consistency of these
two approaches. For each pair of arguments,
we define the expected winning argument as the
one with the higher individual argument score,
and compare that to the actual winning argument,
namely the argument preferred by most annota-
tors when considering the pair directly. Overall,
in 75% of the pairs the actual winner was the ex-
pected one. Moreover, when focusing on pairs
in which the individual argument scores differ by
> 0.5, this agreement reaches 84.3% of pairs.

6.2 Reproducibility Evaluation

An important property of a valid annotation is
its reproducibility. For this purpose, a random
sample of 500 argument pairs from the IBMPairs
dataset was relabeled by the crowd. This relabel-
ing took place a few months after the main anno-
tation tasks, with the exact task and data cleans-
ing methods that were employed originally. For
measuring correlation, the following A score was
defined: the fraction of valid annotations selecting

11Note, that annotators have the option of contesting prob-
lematic test questions, and thus unfitting ones were disabled
during the task by our team.
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“argument A” in an argument pair (A,B) as hav-
ing higher quality, out of the total number of valid
annotations. Pearson’s correlation coefficient be-
tweenA score in initial and secondary annotation
of the defined sample was 0.81.

A similar process was followed with the indi-
vidual arguments quality labeling. Instead of re-
labeling, we split existing annotations to two even
groups. We chose only individual arguments in
which at least 14 valid annotations remained after
data cleansing (1, 154 such arguments). This re-
sulted in two sets of labels for the same data, each
based on at least 7 annotations. Pearson’s correla-
tion coefficient between quality scores of the two
sets was 0.53. We then divided the quality score,
which ranges between 0 to 1, to 10 equal bins. The
bin frequency counts between the two sets are dis-
played in the heatmap in Figure 1.

Figure 1: Counts of quality score bins between two
equally sized sets of annotators.

6.3 Transitivity Evaluation
Following Habernal and Gurevych (2016b), we
further examined to what extent our labeled pairs
satisfy transitivity. Specifically, a triplet of argu-
ments (A,B,C) in which A is preferred over B,
and B is preferred over C, is considered transi-
tive if and only if A is also preferred over C. We
examined all 892 argument triplets for which all
pair-wise combinations were labeled, and found
that transitivity holds in 96.2% of the triplets, fur-
ther strengthening the validity of our data.

7 Comparison of IBMRank and
UKPRank

A distinctive feature of our IBMRank dataset is
that it was collected actively, via a dedicated

user interface with clear instructions and en-
forced length limitations. Correspondingly, we
end up with cleaner texts, that are also more ho-
mogeneous in terms of length, compared to the
UKPRank that relies on arguments collected from
debate portals.

Text Cleanliness
We counted tokens representing a malformed span
of text in IBMRank and UKPRank. These are
HTML markup tags, links, excessive punctua-
tion12, and tokens not found in GloVE vocabulary
(Pennington et al., 2014). Our findings show that
94.78% of IBMRank arguments contain no mal-
formed text, 4.38% include one such token, and
0.71% include two such tokens. In the case of
UKPRank, only 62.36% of the arguments are free
of malformed text, 17.59% include one such to-
ken, and 20.05% include two or more tokens of
malformed text.

Text Length
As depicted in Figure 2, the arguments in IBM-
Rank are substantially more homogeneous in their
length compared to UKPRank. A potential draw-
back of the length limitation is that it possibly
prevents any learning system from being able to
model long arguments correctly. However, by im-
posing this restriction we expect our quality label-
ing to be less biased due to argument length, hold-
ing greater potential to reveal other properties that
contribute to argument quality. We confirmed this
intuition with respect to the argument pair labeling
as described in Section 9.1.

Data Size and Individual Argument Labeling
Finally, IBMRank covers 5, 298 arguments, com-
pared to 1, 052 in UKPRank. In addition, in
UKPRank no individual labeling is provided, and
individual quality scores are inferred from pairs la-
beling. In contrast, for IBMRank each argument is
individually labeled for quality, and we explicitly
demonstrate the consistency of these individual la-
beling with the provided pairwise labeling.

8 Methods

In this section we describe neural methods for
predicting the individual score and the pair-wise

12Sequences of three or more punctuation characters, e.g.
“?!?!?!”
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Figure 2: Histograms of argument length in IBMRank
and UKPRank. X-axis: length (token count). Y-axis:
the number of arguments at that length.

classification of arguments. We devise two meth-
ods corresponding to the two newly introduced
datasets. Our methods are based upon a powerful
language representational model named Bidirec-
tional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2018) which achieves
state-of-the-art results on a wide range of tasks in
NLP (Wang et al. (2018), Rajpurkar et al. (2016,
2018)). BERT has been extensively trained over
large corpora to perform two tasks: (1) Masked
Language Model - randomly replace words with a
predefined token, [MASK], and predict the miss-
ing word. (2) Next Sentence Prediction - given a
pair of sentences A and B, predict whether sen-
tence B follows sentence A. Due to its bidirectional
nature, BERT achieves remarkable results when
fine-tuned to different tasks without the need for
specific modifications per task. For further details
refer to Devlin et al. (2018).

8.1 Argument-Pair Classification

We fine-tune BERT’s Base Uncased English pre-
trained model for a binary classification task.13

13Initial experiments with BERT’s Large model showed
only minor improvements, so for the purpose of the exper-

The fine-tuning process is initialized with weights
from the general purpose pre-trained model and
a task specific weight matrix Wout ∈ R768×2 is
added to the 12-layer base network. Following
standard practice with BERT, given a pair of argu-
ments A and B, we feed the network with the fol-
lowing sequence ‘[CLS]A[SEP]B’. The [SEP]
token indicates to the network that the input is to
be treated as a pair and [CLS] is a token which
is used to obtain contextual embedding for the en-
tire sequence. The network is trained for 3 epochs
with a learning rate of 2−5. We refer to this model
as Arg-Classifier.

8.2 Argument Ranking
For training a model to output a score between
[0, 1] we obtain contextual embeddings from the
Arg-Classifier fine-tuned model. We concatenate
the last 4 layers of the model output to obtain an
embedding vector of size 4 × 768 = 3072. The
embedding vectors are used as input to a neural
network with a single output and one hidden layer
with 300 neurons. In order for the network to out-
put values in [0, 1], we use a sigmoid activation,
σsigmoid(x) =

1
1+e−x . Denote the weight matrices

W1 ∈ R3072×300 and W2 ∈ R300×1, the regres-
sor model, fR, is a 2-layered neural network with
σrelu(x) = max{0, x} activation. fR can be writ-
ten as:14

fR(x) = σsigmoid

(
W T

2 σrelu(W
T
1 x)

)
where x ∈ R3072 is the embedding vector repre-
senting an argument. We refer to this regression
model as Arg-Ranker.

9 Experiments

9.1 Argument-Pair Classification
In this section we evaluate the methods described
in Section 8. First, we evaluate the accuracy of
Arg-Classifier on our IBMPairs dataset and on
UKPConvArgStrict (henceforth, UKPStrict), the
filtered argument pairs dataset of Habernal and
Gurevych (2016b), in k-fold cross-validation.15

We calculate accuracy and ROC area under curve
(AUC) for each fold, and report the weighted av-
erages over all folds. We also evaluate Simp-
son and Gurevych (2018)’s GPPL median heuris-
tic method with GloVe + ling features in cross-

iments detailed in Section 9 we used the Base model.
14We omit bias terms for readability.
1522 and 32 folds respectively.
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validation on our IBMPairs dataset. For complete-
ness, we quote Simpson and Gurevych (2018)’s
figures of GPPL opt. and GPC on UKPStrict.16

We add a simple baseline classifying arguments
based on their token count (Arg-Length).

IBMPairs
Arg-Length Arg-Classifier GPPL

Acc. .55 .80 .71
AUC .59 .86 .78

UKPStrict
Arg-Length Arg-Classifier GPPL GPPL opt. GPC

Acc. .76 .83 .79 .80 .81
AUC .78 .89 .87 .87 .89

Table 3: Accuracy and AUC on IBMPairs and UKPStrict.

As can be seen in Tables 3, Arg-Classifier im-
proves on the GPPL method on both datasets
(p � .01 using two-tailed Wilcoxon signed-rank
test).17 We note that Arg-Classifier’s accuracy
on the UKPStrict set is higher than all methods
tested on this dataset in Habernal and Gurevych
(2016b); Simpson and Gurevych (2018). Interest-
ingly, all methods reach higher accuracy on UKP-
Strict compared to IBMPairs, presumably indicat-
ing that the data in IBMPairs is more challenging
to classify. With regards to Arg-Length, we can
see that it is inaccurate on IBMPairs but achieves a
respectable result on UKPStrict. This is in agree-
ment with Habernal and Gurevych (2016a) who
analyzed the reasons that annotators provided for
their labeling. In most cases the reason indicated
preference for arguments with more information –
which is what longer arguments tend to be better
at. This further strengthens the value of creating
IBMPairs and IBMRank as much more homoge-
neous datasets in terms of argument length.

9.2 Argument Ranking

We proceed to evaluate the Arg-Ranker on the
IBMRank and UKPRank datasets in k-fold cross-
validation, and report weighted correlation mea-
sures. We also evaluate the Arg-Ranker by feeding
it vanilla BERT embeddings, instead of the fine-
tuned embeddings generated by the Arg-Classifier
model. We refer to this version as Arg-Ranker-

16We were unable to reproduce the results reported in
Simpson and Gurevych (2018) by running the GPPL opt.
and GPC algorithms on the UKPStrict dataset. We have ap-
proached the authors and reported the issue, which was not
solved by the time this paper was published, and hence we
only quote the figures as reported there.

17The results per fold in both tasks are included in the sup-
plementary material.

base. In both Arg-Ranker and Arg-Ranker-base
evaluations we report the mean of 3 runs.18

IBMRank UKPRank
Arg-Ranker-base Arg-Ranker Arg-Ranker-base Arg-Ranker GPPL

r .41 .42 .44 .49 .45
ρ .38 .41 .57 .59 .65

Table 4: Pearson’s (r) and Spearman’s (ρ) correla-
tion of Arg-Ranker-base, Arg-Ranker and GPPL on the
IBMRank and UKPRank datasets.

As can be seen in Table 4, on the UKPRank
dataset, Arg-Ranker is slightly better than GPPL
for Pearson’s correlation, but slightly worse for
Spearman’s correlation. Additionally, using direct
BERT embeddings provides worse correlation19

than using the Arg-Classifier embeddings for both
datasets, justifying its use. Finally, similarly to the
findings in the argument-pair classification task,
the IBMRank dataset is harder to predict.20

10 Error Analysis

We present a qualitative analysis of examples that
the Arg-Classifier and Arg-Ranker models did not
predict correctly. For each of the argument-pair
and ranking tasks, we analyzed 50 − 100 argu-
ments from three motions on which the perfor-
mance of the respective model was poor. For each
motion we selected the arguments in which the
model was most confident in the wrong direction.

A prominent insight from this analysis, com-
mon to both models, is that the model tends to
fail when the argument persuasiveness outweighs
its delivery quality (such as bad phrasing or ty-
pos). An example of this is shown in row 1 of
Table 5. In this case, Argument2 is labeled as hav-
ing a higher quality, even though it contains multi-
ple typos, and thus is typical to arguments that the
model was trained to avoid selecting.

Another phenomenon that both our models fail
to address is arguments that are off-topic, too
provocative or not grounded. An example of this,
from the argument-pair task, is shown in row 2 -
Argument2 is presumably considered harsh by an-
notators, even though it is fine in terms of gram-

18The GPPL regressor of Simpson and Gurevych (2018)
relies on pair-wise (relative) labeling of arguments and as a
result it cannot be used for predicting the individual (abso-
lute) labeling of arguments, as in IBMRank.

19Significantly for the IBMRank data on both measures,
and for the UKPRank on Pearson’s correlation, p� .05.

20For the experiments on IBMRank, we included by mis-
take a small fraction of arguments which actually should have
been filtered. The effect on the results is minimal.
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Motion Type Argument1 Argument2
We should ban
fossil fuels

Impact over
delivery

the only way to provide any space for
energy alternatives to enter the market
is by artificially decreasing the power of
fossil fuels through a ban.

fossil fuels are bad for the environ-
ment, they have so2 in them that is
the thing that maks acid rain and it is
today harming the environment and
will only be wors.

Flu vaccination
should not be
mandatory

Provocative
or not
grounded

the only responsible persons for kids
are their parents. if they dont think
that their kids should get the vaccine
its their own decision.

the body has an automatic vaccination
due to evolution, those who got sick and
died are the weakest link and we are
better off without them

We should
abandon vege-
tarianism

Consistent
annotator
preference

it’s harder to get all the things you
need for a balanced diet while being
vegetarian.

animals deserve less rights than hu-
mans, and it is legitimate for humans to
prioritize their enjoyment over the suf-
fering of animals.

Table 5: Examples of argument pairs for which there is a high difference between the argument selected by the
annotators, marked in bold, and the argument predicted to be of higher quality by the model, marked in italics.

matical structure and impact on the topic. These
types of arguments are becoming more important
to recognize, especially in the “fake-news” era.
We leave dealing with them for future work.

Finally, we also notice certain arguments were
consistently preferred by annotators, regardless of
the quality of the opposing argument. This is a
pattern relevant only to the Arg-Classifier model,
shown in row 3.

11 Conclusions and Future Work

A significant barrier in developing automatic
methods for estimating argument quality is the
lack of suitable data. An important contribution
of this work is a newly introduced data composed
of 6.3k carefully annotated arguments, compared
to 1k arguments in previously considered data.
Another barrier is the inherent subjectivity of the
manual task for determining argument quality. To
overcome this issue, we employed a relatively
large set of crowd annotators to consider each in-
stance, associated with various measures to ensure
the quality of the annotations associated with the
released data. In addition, while previous work
focused on arguments collected from web debate
portals, here we collected arguments via a dedi-
cated interface, enforcing length limitations, and
providing contributors with clear guidance. More-
over, previous work relied solely on annotating
pairs of arguments, and used these annotations to
infer the individual ranking of arguments; in con-
trast, here, we annotated all individual arguments
for their quality, and further annotated 14k pairs.
This two–fold approach allowed us, for the first
time, to explicitly examine the relation between
relative (pairwise) annotation and explicit (indi-

vidual) annotation of argument quality. Our anal-
ysis suggests that these two schemes provide rela-
tively consistent results. In addition, these annota-
tion efforts may complement each other. As pairs
of arguments with a high difference in individual
quality scores appear to agree with argument-pair
annotations, one may deduce the latter from the
former. Thus, it may be beneficial to dedicate
the more expensive pair-wise annotation efforts to
pairs in which the difference in individual qual-
ity scores is small, reminiscent of active learning
(Settles, 2009). In future work we intend to fur-
ther investigate this approach, as well as explore in
more detail the low fraction of cases where these
two schemes led to clearly different results.

The second contribution of this work is suggest-
ing neural methods, based on Devlin et al. (2018),
for argument ranking as well as for argument-
pair classification. In the former task, our re-
sults are comparable to state-of-the-art; in the lat-
ter task they significantly outperform earlier meth-
ods (Habernal and Gurevych, 2016b).

Finally, to the best of our knowledge, current
approaches do not deal with argument pairs of rel-
atively similar quality. A natural extension is to
develop a ternary-class classification model that
will be trained and evaluated on such pairs, as we
intend to explore in future work.
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