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Abstract

Programmers typically organize executable
source code using high-level coding patterns
or idiomatic structures such as nested loops,
exception handlers and recursive blocks, rather
than as individual code tokens. In contrast,
state of the art (SOTA) semantic parsers still
map natural language instructions to source
code by building the code syntax tree one node
at a time. In this paper, we introduce an it-
erative method to extract code idioms from
large source code corpora by repeatedly col-
lapsing most-frequent depth-2 subtrees of their
syntax trees, and train semantic parsers to ap-
ply these idioms during decoding. Apply-
ing idiom-based decoding on a recent context-
dependent semantic parsing task improves the
SOTA by 2.2% BLEU score while reducing
training time by more than 50%. This im-
proved speed enables us to scale up the model
by training on an extended training set that
is 5× larger, to further move up the SOTA
by an additional 2.3% BLEU and 0.9% exact
match. Finally, idioms also significantly im-
prove accuracy of semantic parsing to SQL on
the ATIS-SQL dataset, when training data is
limited.

1 Introduction

When programmers translate Natural Language
(NL) specifications into executable source code,
they typically start with a high-level plan of the
major structures required, such as nested loops,
conditionals, etc. and then proceed to fill in spe-
cific details into these components. We refer to
these high-level structures (Figure 1 (b)) as code
idioms (Allamanis and Sutton, 2014). In this pa-
per, we demonstrate how learning to use code id-
ioms leads to an improvement in model accuracy
and training time for the task of semantic parsing,
i.e., mapping intents in NL into general purpose
source code (Iyer et al., 2017; Ling et al., 2016).
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Figure 1: (a) Syntax tree based decoding for seman-
tic parsing uses as many as 11 rules (steps) to pro-
duce the outer structure of a very frequently used
if-then-else code snippet. (b) Direct application of
an if-then-else idiom during decoding leads to im-
proved accuracy and training time.

State-of-the-art semantic parsers are neural
encoder-decoder models, where decoding is
guided by the target programming language gram-
mar (Yin and Neubig, 2017; Rabinovich et al.,
2017; Iyer et al., 2018) to ensure syntactically
valid programs. For general purpose program-
ming languages with large formal grammars, this
can easily lead to long decoding paths even for
short snippets of code. For example, Figure 1
shows an intermediate parse tree for a generic
if-then-else code snippet, for which the de-
coder requires as many as eleven decoding steps
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before ultimately filling in the slots for the if con-
dition, the then expression and the else expres-
sion. However, the if-then-else block can be
seen as a higher level structure such as shown in
Figure 1 (b) that can be applied in one decoding
step and reused in many different programs. In
this paper, we refer to frequently recurring sub-
trees of programmatic parse trees as code idioms,
and we equip semantic parsers with the ability to
learn and directly generate idiomatic structures as
in Figure 1 (b).

We introduce a simple iterative method to ex-
tract idioms from a dataset of programs by re-
peatedly collapsing the most frequent depth-2 sub-
trees of syntax parse trees. Analogous to the byte
pair encoding (BPE) method (Gage, 1994; Sen-
nrich et al., 2016) that creates new subtokens of
words by repeatedly combining frequently occur-
ring adjacent pairs of subtokens, our method takes
a depth-2 syntax subtree and replaces it with a
tree of depth-1 by removing all the internal nodes.
This method is in contrast with the approach using
probabilistic tree substitution grammars (pTSG)
taken by Allamanis and Sutton (2014), who use
the explanation quality of an idiom to prioritize id-
ioms that are more interesting, with an end goal to
suggest useful idioms to programmers using IDEs.
Once idioms are extracted, we greedily apply them
to semantic parsing training sets to provide super-
vision for learning to apply idioms.

We evaluate our approach on two semantic pars-
ing tasks that map NL into 1) general-purpose
source code, and 2) executable SQL queries, re-
spectively. On the first task, i.e., context depen-
dent semantic parsing (Iyer et al., 2018) using the
CONCODE dataset, we improve the state of the
art (SOTA) by 2.2% of BLEU score. Furthermore,
generating source code using idioms results in a
more than 50% reduction in the number of decod-
ing steps, which cuts down training time to less
than half, from 27 to 13 hours. Taking advan-
tage of this reduced training time, we further push
the SOTA on CONCODE to an EM of 13.4 and
a BLEU score of 28.9 by training on an extended
version of the training set (with 5× the number
of training examples). On the second task, i.e.,
mapping NL utterances into SQL queries for a
flight information database (ATIS-SQL; Iyer et al.
(2017)), using idioms significantly improves de-
notational accuracy over SOTA models, when a
limited amount of training data is used, and also

marginally outperforms the SOTA when the full
training set is used (more details in Section 7).

2 Related Work

Neural encoder-decoder models have proved ef-
fective in mapping NL to logical forms (Dong
and Lapata, 2016) and also for directly produc-
ing general purpose programs (Iyer et al., 2017,
2018). Ling et al. (2016) use a sequence-to-
sequence model with attention and a copy mech-
anism to generate source code. Instead of di-
rectly generating a sequence of code tokens, recent
methods focus on constrained decoding mecha-
nisms to generate syntactically correct output us-
ing a decoder that is either grammar-aware or has
a dynamically determined modular structure par-
alleling the structure of the abstract syntax tree
(AST) of the code (Rabinovich et al., 2017; Kr-
ishnamurthy et al., 2017; Yin and Neubig, 2017).
Iyer et al. (2018) use a similar decoding approach
but use a specialized context encoder for the task
of context-dependent code generation. We aug-
ment these neural encoder-decoder models with
the ability to decode in terms of frequently oc-
curring higher level idiomatic structures to achieve
gains in accuracy and training time.

Another different but related method to pro-
duce source code is using sketches, which are code
snippets containing slots in the place of low-level
information such as variable names, method argu-
ments, and literals. Dong and Lapata (2018) gen-
erate such sketches using programming language-
specific sketch creation rules and use them as
intermediate representations to train token-based
seq2seq models that convert NL to logical forms.
Hayati et al. (2018) retrieve sketches from a large
training corpus and modify them for the current
input; Murali et al. (2018) use a combination
of neural learning and type-guided combinatorial
search to convert existing sketches into executable
programs, whereas Nye et al. (2019) additionally
also generate the sketches before synthesising pro-
grams. Our idiom-based decoder learns to produce
commonly used subtrees of programming syntax-
trees in one decoding step, where the non-terminal
leaves function as slots that can be subsequently
expanded in a grammer-aware fashion. Code id-
ioms can be roughly viewed as a tree-structured
generalization of sketches, that can be automat-
ically extracted from large code corpora for any
programming language, and unlike sketches, can
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also be nested with other idioms or grammar rules.
More closely related to the idioms that we

use for decoding is Allamanis and Sutton (2014),
who develop a system (HAGGIS) to automatically
mine idioms from large code bases. They focus
on finding interesting and explainable idioms, e.g.,
those that can be included as preset code tem-
plates in programming IDEs. Instead, we learn
frequently used idioms that can be easily associ-
ated with NL phrases in our dataset. The produc-
tion of large subtrees in a single step directly trans-
lates to a large speedup in training and inference.

Concurrent with our research, Shin et al. (2019)
also develop a system (PATOIS) for idiom-based
semantic parsing and demonstrate its benefits on
the Hearthstone (Ling et al., 2016) and Spider (Yu
et al., 2018) datasets. While we extract idioms by
collapsing frequently occurring depth-2 AST sub-
trees and apply them greedily during training, they
use non-parametric Bayesian inference for idiom
extraction and train neural models to either apply
entire idioms or generate its full body.

3 Idiom Aware Encoder-Decoder Models

We aim to train semantic parsers having the ability
to use idioms during code generation. To do this,
we first extract frequently used idioms from the
training set, and then provide them as supervision
to the semantic parser’s learning algorithm.

Formally, if a semantic parser decoder is guided
by a grammar G = (N,Σ, R), where N and Σ
are the sets of non-terminals and terminals respec-
tively, and R is the set of production rules of the
form A → β,A ∈ N, β ∈ {N ∪ Σ}∗, we would
like to construct an idiom set I with rules of the
form B → γ,B ∈ N, γ ∈ {N ∪ Σ}∗, such that

B
≥2

=⇒ γ under G , i.e., γ can be derived in two
or more steps from B under G . For the example
in Figure 1, R would contain rules for expanding
each non-terminal, such as Statement → if Par-
Expr Statement IfOrElse and ParExpr→{ Expr },
whereas I would contain the idiomatic rule State-
ment→ if ( Expr ) { Expr ; } else { Expr ; } .

The decoder builds trees from Ĝ = (N,Σ, R ∪
I). Although the set of valid programs under both
G and Ĝ are exactly the same, this introduction
of ambiguous rules into G in the form of idioms
presents an opportunity to learn shorter deriva-
tions. In the next two sections, we describe the
idiom extraction process, i.e., how I is chosen,
and the idiom application process, i.e., how the de-

coder is trained to learn to apply idioms.

1 Procedure Extract-Idioms(D , G , n)
Input: D → Training Programs
Input: G → Parsing Grammar
Input: n→ Number of idioms

2 T ← {} . Stores all parse trees
3 for d ∈ D do
4 T ← T ∪ Parse-Tree(d,G )
5 end
6 I ← {}
7 for i← 1 to K do
8 s←Most-frequent

Depth-2-Subtree(T )
9 for t ∈ T do

10 t← Collapse-Subtree(t, s)
11 end
12 I ← I ∪ {s}
13 end
14 end
15 Procedure Collapse-Subtree(t, s)

Input: t→ parse-tree
Input: s→ Depth 2 subtree

16 while s subtree-of t do
17 Replace s in t with Collapse(s)
18 end
19 end
20 Procedure Collapse(s)

Input: s→ Depth 2 subtree
21 frontier← leaves(s)
22 return Tree(root(s),frontier)
23 end

Algorithm 1: Idiom Extraction.

4 Idiom Extraction

Algorithm 1 describes the procedure to add id-
iomatic rules, I , to the regular production rules,
R. Our goal is to populate the set I by identi-
fying frequently occurring idioms (subtrees) from
the programs in training set D . Since enumer-
ating all subtrees of every AST in the training
set is infeasible, we observe that all subtrees s′

of a frequently occurring subtree s are just as or
more frequent than s, so we take a bottom-up ap-
proach by repeatedly collapsing the most frequent
depth-2 subtrees. Intuitively, this can be viewed
as a particular kind of generalization of the BPE
(Gage, 1994; Sennrich et al., 2016) algorithm for
sequences, where new subtokens are created by re-
peatedly combining frequently occurring adjacent
pairs of subtokens. Note that subtrees of parse
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New Idiom Rule:

Statement if ( Expr ) { return Expr ; }

{ Statement }

if   (   Expr   )   Statement if   (   Expr   )   { Statement }

Statement

if   (   Expr   )   { Statement }

return   Expr   ;

if   (   Expr   )   { return  Expr  ; }

Figure 2: Two steps of the idiom extraction process
described in Algorithm 1. (a) First, we find the most
frequent depth-2 syntax subtree under Grammar G in
dataset D , collapse it to produce a new production rule
(b), and replace all occurrences in the dataset with the
collapsed version. Next, (c) is the most frequent depth-
2 subtree which now happens to contain (b) within it.
(c) is collapsed to form an idiom (d), which is effec-
tively a depth-3 idiom.

trees have an additional constraint, i.e., either all
or none of the children of non-terminal nodes are
included, since a grammar rule has to be used en-
tirely or not at all.

We perform idiom extraction in an iterative
fashion. We first populate T with all parse trees of
programs in D using grammar G (Step 4). Each
iteration then comprises retrieving the most fre-
quent depth-2 subtree s from T (Step 8), followed
by post-processing T to replace all occurrences of
s in T with a collapsed (depth-1) version of s (Step
10 and 17). The collapse function (Step 20) sim-
ply takes a subtree, removes all its internal nodes
and attaches its leaves directly to its root (Step 22).
The collapsed version of s is a new idiomatic rule
(a depth-1 subtree), which we add to our set of id-
ioms, I (Step 12). We illustrate two iterations of
this algorithm in Figure 2 ((a)-(b) and (c)-(d)). As-
suming (a) is the most frequent depth-2 subtree in
the dataset, it is transformed into the idiomatic rule
in (b). Larger idiomatic trees are learned by com-
bining several depth-2 subtrees as the algorithm
progresses. This is shown in Figure 2 (c) which
contains the idiom extracted in (b) within it owing
to the post-processing of the dataset after idiom (b)
is extracted (Step 10 of Algorithm 1) which effec-
tively makes the idiom in (d), a depth-3 idiom. We
perform idiom extraction for K iterations. In our
experiments we vary the value of K based on the
number of idioms we would like to extract.

Statement

{ Statement }

if   (   Expr   )   Statement

return   Expr   ;

{ Statement }

if   (   Expr   )   Statement

Statement

if   (   Expr   )   { Statement }

return   Expr   ;

if   (   Expr   )   { Statement }

(i)

(ii)

Statement

if   (   Expr   )   { Statement }

if   (   Expr   )   { return  Expr  ; }

(iii)

Figure 3: (i) Application of the two idioms extracted
in Figure 2 on a new training example. (ii) We first
perform two applications of the idiom in Figure 2b, (iii)
followed by an application of the idiom in Figure 2d.
The resulting tree can be represented with just 2 parsing
rules instead of 5.

5 Model Training with Idioms

Once a set of idioms I is obtained, we next train
semantic parsing models to apply these idioms
while decoding. We do this by supervising gram-
mar rule generation in the decoder using a com-
pressed set of rules for each example, using the id-
iom set I (see Algorithm 2). More concretely, we
first obtain the parse tree ti (or grammar rule set
pi) for each training program yi under grammar
G (Step 3) and then greedily collapse each depth-
2 subtree in ti corresponding to every idiom in I
(Step 5). Once ti cannot be further collapsed, we
translate ti into production rules ri based on the
collapsed tree, with |ri| ≤ |pi| (Step 7).

1 Procedure Compress(D ,G , I)
Input: D → Training Programs
Input: G → Parsing Grammar
Input: I → Idiom set

2 for d ∈ D do
3 t← Parse-Tree(d,G )
4 for i ∈ I do
5 t← Collapse-Subtree(t, i)
6 end
7 Train decoder using

Production-Rules(t)
8 end
9 end
Algorithm 2: Training Example Compression.

This process is illustrated in Figure 3 where we
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Adds a scalar to this vector in placeNL query:

Variables: [Type, Name]

double[] vecElements
double[] weights
Methods: [Return Type, Name]

void inc ( )
float dotProduct ( )
float multiply ( ) Context

public void add(final double arg0) {

    for (int i = 0; i < vecElements.length(); i++){

  vecElements[i] += arg0;

}

 }

MemberDeclaration       MethodDeclaration

MethodDeclaration     

    TypeTypeOrVoid IdentifierNT FormalParameters 

     MethodBody

TypeTypeOrVoid       void

IdentifierNT       add

FormalParameters       ( FormalParameterList )

FormalParameterList       FormalParameter

   … 

Primary       IdentifierNT

IdentifierNT       arg0

Source code:

AST Derivation:

(a)

(b)

Figure 4: Context dependent code generation task of
Iyer et al. (2018) that involves mapping an NL query to-
gether with a set of context variables and methods (each
having an identifier name and data type) (a) into source
code, represented as a sequence of grammar rules (b).

perform two applications of the first idiom from
Figure 2 (b), followed by one application of the
second idiom from Figure 2 (d), after which the
tree cannot be further compressed using those two
idioms. The final tree can be represented using
|ri| = 2 rules instead of the original |pi| = 5
rules. The decoder is then trained similar to pre-
vious approaches (Yin and Neubig, 2017) using
the compressed set of rules. We observe a rule set
compression of more than 50% in our experiments
(Section 7).

6 Experimental Setup

We apply our approach on 1) the context depen-
dent encoder-decoder model of Iyer et al. (2018)
on the CONCODE dataset, where we outperform
an improved version of their best model, and 2)
the task of mapping NL utterances to SQL queries
on the ATIS-SQL dataset (Iyer et al., 2017) where
an idiom-based model using the full training set
outperforms the SOTA, also achieving significant

List all flights from Denver to Seattle

SELECT DISTINCT flight_1.flight_id FROM
flight f1, airport_service as1 , city c1,
airport_service as2 , city c2 WHERE
f1.from_airport = as1.airport_code
AND as1.city_code = c1.city_code
AND c1.city_name = "Denver"
AND f1.to_airport = as2.airport_code
AND as2.city_code = c2.city_code
AND c2.city_name = "Seattle";

Figure 5: Example NL utterance with its corresponding
executable SQL query from the ATIS-SQL dataset.

gains when using a reduced training set.

6.1 Context Dependent Semantic Parsing

The CONCODE task involves mapping an NL
query together with a class context comprising a
list of variables (with types) and methods (with re-
turn types), into the source code of a class mem-
ber function. Figure 4 (a) shows an example where
the context comprises variables and methods (with
types) that would normally exist in a class that
implements a vector, such as vecElements and
dotProduct(). Conditioned on this context, the
task involves mapping the NL query Adds a scalar
to this vector in place into a sequence of parsing
rules to generate the source code in Figure 4 (b).

Formally, the task is: Given a NL utterance q, a
set of context variables {vi} with types {ti}, and
a set of context methods {mi} with return types
{ri}, predict a set of parsing rules {ai} of the tar-
get program. Their best performing model is a
neural encoder-decoder with a context-aware en-
coder and a decoder that produces a sequence of
Java grammar rules.

Baseline Model We follow the approach of Iyer
et al. (2018) with three major modifications in
their encoder, which yields improvements in both
speed and accuracy (Iyer-Simp). First, in addi-
tion to camel-case splitting of identifier tokens,
we use byte-pair encoding (BPE) (Sennrich et al.,
2016) on all NL tokens, identifier names and types
and embed all these BPE tokens using a single
embedding matrix. Next, we replace their RNN
that contextualizes the subtokens of identifiers and
types with an average of the subtoken embed-
dings instead. Finally, we consolidate their three
separate RNNs for contextualizing NL, variable
names with types, and method names with types,
into a single shared RNN, which greatly reduces
the number of model parameters. Formally, let



5431

{qi} represent the set of BPE tokens of the NL,
and {tij}, {vij}, {rij} and {mij} represent the
jth BPE token of the ith variable type, variable
name, method return type, and method name re-
spectively. First, all these elements are embedded
using a BPE token embedding matrix B to give us
qi, tij, vij, rij and mij. Using Bi-LSTM f , the
encoder then computes:

h1, · · · , hz = f(q1, . . . ,qz) (1)

vi = Avg(vi1, . . . ,vij) (2)

Similarly, compute mi, ti, ri (3)

t̂i, v̂i = f(ti,vi) (4)

r̂i, m̂i = f(ri,mi) (5)

Then, h1, . . . , hz , and t̂i, v̂i, r̂i, m̂i are passed to
the attention mechanism in the decoder, exactly as
in Iyer et al. (2018). The decoder remains the same
as described in Iyer et al. (2018), and produces a
probability distribution over grammar rules at each
time step (full details in Supplementary Materi-
als). This forms our baseline model (Iyer-Simp).

Idiom Aware Training To utilize idioms, we
augment this decoder by retrieving the top-K most
frequent idioms from the training set (Algorithm
1), followed by post-processing the training set
by greedily applying these idioms (Algorithm 2;
we denote this model as Iyer-Simp-K). We eval-
uate all our models on the CONCODE dataset
which was created using Java source files from
github.com. It contains 100K tuples of (NL,
code, context) for training, 2K tuples for develop-
ment, and 2K tuples for testing. We use a BPE vo-
cabulary of 10K tokens (for matrix B) and get the
best validation set results using the original hyper-
parameters used by Iyer et al. (2018). Since idiom
aware training is significantly faster than without
idioms, it enables us to train on an additional 400K
training examples that Iyer et al. (2018) released as
part of CONCODE. We report exact match accu-
racy, corpus level BLEU score (which serves as a
measure of partial credit) (Papineni et al., 2002),
and training time for all these configurations.

6.2 Semantic Parsing to SQL

This task involves mapping NL utterances into
executable SQL queries. We use the ATIS-SQL
dataset (Iyer et al., 2017) that contains NL ques-
tions posed to a flight database, together with
their SQL queries and a database with 25 tables

Model Exact BLEU

Seq2Seq† 3.2 (2.9) 23.5 (21.0)
Seq2Prod† 6.7 (5.6) 21.3 (20.6)
Iyer et al. (2018)† 8.6 (7.1) 22.1 (21.3)

Iyer-Simp 12.5 (9.8) 24.4 (23.2)
Iyer-Simp + 200 idioms 12.2 (9.8) 26.6 (24.0)

Table 1: Exact Match and BLEU scores for our simpli-
fied model (Iyer-Simp) with and without idioms, com-
pared with results from Iyer et al. (2018)† on the test
(validation) set of CONCODE. Iyer-Simp achieves sig-
nificantly better EM and BLEU score and reduces train-
ing time from 40 hours to 27 hours. Augmenting the
decoding process with 200 code idioms further pushes
up BLEU and reduces training time to 13 hours.

Model Exact BLEU Training
Time (h)

Seq2Seq† 2.9 21.0 12
Seq2Prod† 5.6 20.6 36
Iyer et al. (2018)† 7.1 21.3 40

Iyer-Simp 9.8 23.2 27
+ 100 idioms 9.8 24.5 15
+ 200 idioms 9.8 24.0 13
+ 300 idioms 9.6 23.8 12
+ 400 idioms 9.7 23.8 11
+ 600 idioms 9.9 22.7 11

Table 2: Variation in Exact Match, BLEU score, and
training time on the validation set of CONCODE with
number of idioms used. After top-200 idioms are used,
accuracies start to reduce, since using more specialized
idioms can hurt model generalization. Training time
plateaus after considering top-600 idioms.

to execute them against (Figure 5 shows an ex-
ample). The dataset is split into 4,379 training,
491 validation, and 448 testing examples follow-
ing Kwiatkowski et al. (2011).

The SOTA by Iyer et al. (2017) is a Seq2Seq
model with attention and achieves a denotational
accuracy of 82.5% on the test set. Since using our
idiom-based approach requires a model that uses
grammar-rule based decoding, we use a modified
version of the Seq2Prod model described in Iyer
et al. (2018) (based on Yin and Neubig (2017)) as
a baseline model (Seq2Prod), and augment the de-
coder with SQL idioms (Seq2Prod-K).

Seq2Prod is an encoder-decoder model, where
the encoder executes an n-layer bi-LSTM over
NL embeddings and passes the final layer LSTM

github.com
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Model Exact BLEU

1× Train 12.0 (9.7) 26.3 (23.8)
2× Train 13.0 (10.3) 28.4 (25.2)
3× Train 13.3 (10.4) 28.6 (26.5)
5× Train 13.4 (11.0) 28.9 (26.6)

Table 3: Exact Match and BLEU scores on the test
(validation) set of CONCODE by training Iyer-Simp-
400 on the extended training set released by Iyer et al.
(2018). Significant improvements in training speed
after incorporating idioms makes training on large
amounts of data possible.

hidden states to an attention mechanism in the
decoder. Note that the Seq2Prod encoder de-
scribed in Iyer et al. (2018) encodes a concate-
nated sequence of NL and context, but ATIS-SQL
instances do not include contextual information.
Thus, if qi represents each lemmatized token of
the NL, they are first embedded using a token em-
bedding matrix B to give us qi. Using Bi-LSTM
f , the encoder then computes:

h1, · · · , hz = f(q1, . . . ,qz) (6)

Then, h1, . . . , hz are passed to the attention mech-
anism in the decoder.

The sequential LSTM-decoder uses attention
and produces a sequence of grammar rules {at}.
The decoder hidden state at time t, st, is com-
puted based on an embedding of the current non-
terminal nt to be expanded, an embedding of the
previous production rule at−1, an embedding of
the parent production rule, par(nt), that produced
nt, the previous decoder state st−1, and the de-
coder state of the LSTM cell that produced nt, de-
noted as snt .

st = LSTMf (nt, at−1, par(nt), st−1, snt) (7)

st is then used for attention and finally, produces a
distribution over grammar rules.

We make two modifications in this decoder.
First, we remove the dependence of LSTMf on the
parent LSTM cell state snt . Second, instead of us-
ing direct embeddings of rules at−1 and par(nt) in
LSTMf , we use another Bi-LSTM across the left
and right sides of the rule (using separator sym-
bol SEP) and use the final hidden state as inputs
to LSTMf instead. More concretely, if a grammar

Model Accuracy

Iyer et al. (2017)† 82.5
Seq2Prod 79.1
Seq2Prod + 400 idioms 83.2

Table 4: Denotational Accuracy for Seq2Prod with and
without idioms, compared with results from Iyer et al.
(2017)† on the test set of ATIS using SQL queries. Re-
sults averaged over 3 runs.

Figure 6: Accuracy of the Seq2Seq baseline (Iyer et al.,
2017) compared with Seq2Prod-K, on the test set of
ATIS-SQL for varying fractions of training data. Id-
ioms significantly boost accuracy when training data is
scarce. (Mean and Std. Dev. computed across 3 runs).
20-40% use 100 idioms and the rest use 400 idioms.

rule is represented as A→ B1 . . . Bn, then:

Emb(A→ B1 . . . Bn) =

LSTMg({A, SEP, B1, . . . , Bn})
st = LSTMf (nt,Emb(at−1),Emb(par(nt)),

st−1) (8)

This modification can help the LSTMf cell
locate the position of nt within rules at−1 and
par(nt), especially for lengthy idiomatic rules. We
present a full description of this model with all hy-
perparameters in the supplementary materials.

Idiom Aware Training As before, we augment
the set of decoder grammar rules with top-K id-
ioms extracted from ATIS-SQL. To represent SQL
queries as grammar rules, we use the python
sqlparse package.

7 Results and Discussion

Table 1 presents exact match and BLEU scores on
the original CONCODE train/validation/test split.
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Expr
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Expr < Expr

Statement

Expr   ;

Expr ( ExprList )

Expr

Primary

LIteral

StringLiteral

Expr   .  ExprCont
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Primary

Identifier

System

Expr new Identifier 
     ( ExprList )

Idiom:

Statement

try Block 
catch ( Identifier Identifier ) 
Block

Idiom:

Statement
for ( int VariableDeclarators ; 
     Expr < Expr ; Expr ++ )  Statement

Idiom:

Statement
Idiom:

Statement
if ( ParExpr ) 
{ throw new 
      Identifier (“String“) ; }

Idiom:

Figure 7: Examples of idioms learned from CONCODE. (a)-(c) represent idioms for instantiation of a new object,
exception handling and integer-based looping respectively. (d) represents an idiom for applying a very commonly
used library method (System.out.println). (e) is a combination of various idioms viz. an if-then idiom, an
idiom for throwing exceptions and finally, reusing idiom (a) for creating new objects.

Iyer-Simp yields a large improvement of 3.9 EM
and 2.2 BLEU over the best model of Iyer et al.
(2018), while also being significantly faster (27
hours for 30 training epochs as compared to 40
hours). Using a reduced BPE vocabulary makes
the model memory efficient, which allows us to
use a larger batch size that in turn speeds up train-
ing. Furthermore, using 200 code idioms further
improves BLEU by 2.2% while maintaining com-
parable EM accuracy. Using the top-200 idioms
results in a target AST compression of more than
50%, which results in fewer decoder RNN steps
being performed. This reduces training time fur-
ther by more than 50%, from 27 hours to 13 hours.

In Table 2, we illustrate the variations in EM,
BLEU and training time with the number of id-
ioms. We find that 200 idioms performs best over-
all in terms of balancing accuracy and training
time. Adding more idioms continues to reduce
training time, but accuracy also suffers. Since we
permit idioms to contain identifier names to cap-
ture frequently used library methods, having too
many idioms hurts generalization, especially since
the test set is built using repositories disjoint from

the training set. Finally, the amount of compres-
sion, and therefore the training time, plateaus after
the top-600 idioms are incorporated.

Compared to the model of Iyer et al. (2018), our
significantly reduced training time enables us to
train on their extended training set. We run Iyer-
Simp using 400 idioms (taking advantage of even
lower training time) on up to 5 times the amount
of data, while making sure that we do not include
in training any NL from the validation or the test
sets. Since the original set of idioms learned from
the original training set are quite general, we di-
rectly use them rather than relearn the idioms from
scratch. We report EM and BLEU scores for dif-
ferent amounts of training data on the same valida-
tion and test sets as CONCODE in Table 3. In gen-
eral, accuracies increase with the amount of data
with the best model achieving a BLEU score of
28.9 and EM of 13.4.

Figure 7 shows example idioms extracted from
CONCODE: (a) is an idiom to construct a new ob-
ject with arguments, (b) represents a try-catch
block, and, (c) is an integer-based for loop. In
(e), we show how small idioms are combined to
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form larger ones; it combines an if-then idiom
with a throw-exception idiom, which throws an
object instantiated using idiom (a). The decoder
also learns idioms to directly generate common
library methods such as System.out.println(
StringLiteral ) in one decoding step (d).

For the NL to SQL task, we report denotational
accuracy in Table 4. We observe that Seq2Prod
underperforms the Seq2Seq model of Iyer et al.
(2017), most likely because a SQL query parse
is much longer than the original query. This is
remedied by using top-400 idioms, which com-
presses the decoded sequence size, marginally out-
performing the SOTA (83.2%). Finegan-Dollak
et al. (2018) observed that the SQL structures in
ATIS-SQL are repeated numerous times in both
train and test sets, thus facilitating Seq2seq mod-
els to memorize these structures without explicit
idiom supervision. To test a scenario with limited
repetition of structures, we compare Seq2Seq with
Seq2Prod-K for limited training data (increments
of 20%) and observe that (Figure 6) idioms are ad-
ditionally helpful with lesser training data, consis-
tent with our intuition.

8 Conclusions

We presented a general approach to make seman-
tic parsers aware of target idiomatic structures,
by first identifying frequently used idioms, fol-
lowed by providing models with supervision to
apply these idioms. We demonstrated this ap-
proach on the task of context dependent code gen-
eration where we achieved a new SOTA in EM ac-
curacy and BLEU score. We also found that de-
coding using idioms significantly reduces training
time and allows us to train on significantly larger
datasets. Finally, our approach also outperformed
the SOTA for a semantic parsing to SQL task on
ATIS-SQL, with significant improvements under a
limited training data regime.
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