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Abstract

The ability to understand and work with num-
bers (numeracy) is critical for many complex
reasoning tasks. Currently, most NLP models
treat numbers in text in the same way as other
tokens—they embed them as distributed vec-
tors. Is this enough to capture numeracy? We
begin by investigating the numerical reason-
ing capabilities of a state-of-the-art question
answering model on the DROP dataset. We
find this model excels on questions that require
numerical reasoning, i.e., it already captures
numeracy. To understand how this capabil-
ity emerges, we probe token embedding meth-
ods (e.g., BERT, GloVe) on synthetic list max-
imum, number decoding, and addition tasks.
A surprising degree of numeracy is naturally
present in standard embeddings. For exam-
ple, GloVe and word2vec accurately encode
magnitude for numbers up to 1,000. Fur-
thermore, character-level embeddings are even
more preciss—ELMo captures numeracy the
best for all pre-trained methods—but BERT,
which uses sub-word units, is less exact.

1 Introduction

Neural NLP models have become the de-facto
standard tool across language understanding tasks,
even solving basic reading comprehension and
textual entailment datasets (Yu et al., 2018; Devlin
et al., 2019). Despite this, existing models are in-
capable of complex forms of reasoning, in partic-
ular, we focus on the ability to reason numerically.
Recent datasets such as DROP (Dua et al., 2019),
EQUATE (Ravichander et al., 2019), or Mathe-
matics Questions (Saxton et al., 2019) test numer-
ical reasoning; they contain examples which re-
quire comparing, sorting, and adding numbers in
natural language (e.g., Figure 2).

The first step in performing numerical reason-
ing over natural language is numeracy: the abil-
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Figure 1: We train a probing model to decode a num-
ber from its word embedding over a random 80% of the
integers from [-500, 500], e.g., “71” — 71.0. We plot
the model’s predictions for all numbers from [-2000,
2000]. The model accurately decodes numbers within
the training range (in blue), i.e., pre-trained embed-
dings like GloVe and BERT capture numeracy. How-
ever, the probe fails to extrapolate to larger numbers (in
red). The Char-CNN (e) and Char-LSTM (f) are trained
jointly with the probing model.

ity to understand and work with numbers in ei-
ther digit or word form (Spithourakis and Riedel,
2018). For example, one must understand that the
string “23” represents a bigger value than “twenty-
two”. Once a number’s value is (perhaps implic-
itly) represented, reasoning algorithms can then
process the text, e.g., extracting the list of field
goals and computing that list’s maximum (first
question in Figure 2). Learning to reason numer-
ically over paragraphs with only question-answer
supervision appears daunting for end-to-end mod-
els; our work seeks to understand if and how “out-
of-the-box” neural NLP models already learn this.

We begin by analyzing the state-of-the-art
NAQANet model (Dua et al., 2019) for DROP—
testing it on a subset of questions that evaluate nu-
merical reasoning (Section 2). To our surprise,
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the model exhibits excellent numerical reasoning
abilities. Amidst reading and comprehending nat-
ural language, the model successfully computes
list maximums/minimums, extracts superlative en-
tities (argmax reasoning), and compares numer-
ical quantities. For instance, despite NAQANet
achieving only 49 F1 on the entire validation set, it
scores 89 F1 on numerical comparison questions.
We also stress test the model by perturbing the val-
idation paragraphs and find one failure mode: the
model struggles to extrapolate to numbers outside
its training range.

We are especially intrigued by the model’s abil-
ity to learn numeracy, i.e., how does the model
know the value of a number given its embedding?
The model uses standard embeddings (GloVe and
a Char-CNN) and receives no direct supervision
for number magnitude/ordering. To understand
how numeracy emerges, we probe token embed-
ding methods (e.g., BERT, GloVe) using synthetic
list maximum, number decoding, and addition
tasks (Section 3).

We find that all widely-used pre-trained embed-
dings, e.g., ELMo (Peters et al., 2018), BERT (De-
vlin et al., 2019), and GloVe (Pennington et al.,
2014), capture numeracy: number magnitude is
present in the embeddings, even for numbers in
the thousands. Among all embeddings, character-
level methods exhibit stronger numeracy than
word- and sub-word-level methods (e.g., ELMo
excels while BERT struggles), and character-level
models learned directly on the synthetic tasks are
the strongest overall. Finally, we investigate why
NAQANet had trouble extrapolating—was it a
failure in the model or the embeddings? We repeat
our probing tasks and test for model extrapolation,
finding that neural models struggle to predict num-
bers outside the training range.

2 Numeracy Case Study: DROP QA

This section examines the state-of-the-art model
for DROP by investigating its accuracy on ques-
tions that require numerical reasoning.

2.1 DROP Dataset

DROP is a reading comprehension dataset that
tests numerical reasoning operations such as
counting, sorting, and addition (Dua et al., 2019).
The dataset’s input-output format is a superset
of SQuAD (Rajpurkar et al., 2016): the an-
swers are paragraph spans, as well as question

...JaMarcus Russell completed a 91-yard touchdown pass
to rookie wide receiver Chaz Schilens. The Texans would
respond with fullback Vonta Leach getting a 1-yard touch-
down run, yet the Raiders would answer with kicker Se-
bastian Janikowski getting a 33-yard and a 21-yard field
goal. Houston would tie the game in the second quarter
with kicker Kris Brown getting a 53-yard and a 24-yard
field goal. Oakland would take the lead in the third quar-
ter with wide receiver Johnnie Lee Higgins catching a 29-
yard touchdown pass from Russell, followed up by an 80-
yard punt return for a touchdown.

[ Q: How many yards was the longest field goal? A: 53 ]

(' Q: How long was the shortest touchdown pass? A: 29-yard |

[ Q: Who caught the longest touchdown? A: Chaz Schilens ]

Figure 2: Three DROP questions that require numer-
ical reasoning; the state-of-the-art NAQANet answers
every question correct. Plausible answer candidates to
the questions are underlined and the model’s predic-
tions are shown in bold.

spans, number answers (e.g., 35), and dates (e.g.,
03/01/2014). The only supervision provided is the
question-answer pairs, i.e., a model must learn to
reason numerically while simultaneously learning
to read and comprehend.

2.2 NAQANet Model

Modeling approaches for DROP include both
semantic parsing (Krishnamurthy et al., 2017)
and reading comprehension (Yu et al., 2018)
models. We focus on the latter, specifically
on Numerically-augmented QANet (NAQANet),
the current state-of-the-art model (Dua et al.,
2019).! The model’s core structure closely follows
QANet (Yu et al., 2018) except that it contains four
output branches, one for each of the four answer
types (passage span, question span, count answer,
or addition/subtraction of numbers.)

Words and numbers are represented as the con-
catenation of GloVe embeddings and the output
of a character-level CNN. The model contains
no auxiliary components for representing number
magnitude or performing explicit comparisons.
We refer readers to Yu et al. (2018) and Dua et al.
(2019) for further details.

2.3 Comparative and Superlative Questions

We focus on questions that NAQANet requires
numeracy to answer, namely Comparative and
Superlative questions.> Comparative questions

'Result as of May 21st, 2019.
2DROP addition, subtraction, and count questions do not
require numeracy for NAQANet, see Appendix A.
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Question Type Example

Reasoning Required

Comparative (Binary)
Comparative (Non-binary)
Superlative (Number)
Superlative (Span)

Which country is a bigger exporter, Brazil or Uruguay?
Which player had a touchdown longer than 20 yards?
How many yards was the shortest field goal?

Who kicked the longest field goal?

Binary Comparison
Greater Than

List Minimum
Argmax

Table 1: We focus on DROP Comparative and Superlative questions which test NAQANet’s numeracy.

probe a model’s understanding of quantities or
events that are “larger”, “smaller”, or “longer”
than others. Certain comparative questions ask
about “either-or” relations (e.g., first row of Ta-
ble 1), which test binary comparison. Other com-
parative questions require more diverse compara-
tive reasoning, such as greater than relationships
(e.g., second row of Table 1).

Superlative questions ask about the “shortest”,
“largest”, or “biggest” quantity in a passage.
When the answer type is a number, superlative
questions require finding the maximum or mini-
mum of a list (e.g., third row of Table 1). When
the answer type is a span, superlative questions
usually require an argmax operation, i.e., one must
find the superlative action or quantity and then ex-
tract the associated entity (e.g., fourth row of Ta-
ble 1). We filter the validation set to comparative
and superlative questions by writing templates to
match words in the question.

2.4 Emergent Numeracy in NAQANet

NAQANet’s accuracy on comparative and superla-
tive questions is significantly higher than its aver-
age accuracy on the validation set (Table 2).3
NAQANet achieves 89.0 F1 on binary (either-
or) comparative questions, approximately 40 F1
points higher than the average validation question
and within 7 F1 points of human test performance.
The model achieves a lower, but respectable, accu-
racy on non-binary comparisons. These questions
require multiple reasoning steps, e.g., the second
question in Table 1 requires (1) extracting all the
touchdown distances, (2) finding the distance that
is greater than twenty, and (3) selecting the player
associated with the touchdown of that distance.
We divide the superlative questions into ques-
tions that have number answers and questions with
span answers according to the dataset’s provided
answer type. NAQANet achieves nearly 70 F1
on superlative questions with number answers,
i.e., it can compute list maximum and minimums.

*We have a public NAQANet demo available https://
demo.allennlp.org/reading-comprehension.

Count EM F1
9622 924 96.0

9536 462 49.2
5842 443 444

Question Type
Human (Test Set)

Full Validation
Number Answers

Comparative 704 73.6 764
Binary (either-or) 477 86.0 89.0
Non-binary 227 47.6 498

Superlative Questions 861 64.6 67.7
Number Answers 475 68.8 69.2
Span Answers 380 59.7  66.3

Table 2: NAQANet achieves higher accuracy on ques-
tions that require numerical reasoning (Superlative and
Comparative) than on standard validation questions.
Human performance is reported from Dua et al. (2019).

The model answers about two-thirds of superlative
questions with span answers correctly (66.3 F1),
i.e., it can perform argmax reasoning.

Figure 2 shows examples of superlative ques-
tions answered correctly by NAQANet. The
first two questions require computing the maxi-
mum/minimum of a list: the model must recog-
nize which digits correspond to field goals and
touchdowns passes, and then extract the maxi-
mum/minimum of the correct list. The third ques-
tion requires argmax reasoning: the model must
first compute the longest touchdown pass and then
find the corresponding receiver “Chaz Schilens”.

2.5 Stress Testing NAQANet’s Numeracy

Just how far does the numeracy of NAQANet go?
Here, we stress test the model by automatically
modifying DROP validation paragraphs.

We test two phenomena: larger numbers and
word-form numbers. For larger numbers, we gen-
erate a random positive integer and multiply or add
that value to the numbers in each paragraph. For
word forms, we replace every digit in the para-
graph with its word form (e.g., “75” — “seventy-
five”). Since word-form numbers are usually small
in magnitude when they occur in DROP, we per-
form word replacements for integers in the range
[0, 100]. We guarantee the ground-truth answer is
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All Questions Superlative

Stress Test Dataset Fl A Fi A

Original Validation Set 49.2 - 67.7 -

Add [1, 20] 477 15 641 -3.6
Add [21, 100] 414 78 404 -273
Multiply [2, 10] 411  -81 393 -284
Multiply [11, 100] 38.8 -104 320 -35.7

Digits to Words [0, 20] 455 -377 638 -39
Digits to Words [21, 100] 419 -7.3 46.1 -21.6

Table 3: We stress test NAQANet’s numeracy by ma-
nipulating the numbers in the validation paragraphs.
Add or Multiply [x, y] indicates adding or multiplying
all of the numbers in the passage by a random integer in
the range [X, y]. Digits — Words [x, y] converts all in-
tegers in the passage within the range [X, y] to their cor-
responding word form (e.g., “75” — “seventy-five”).

still valid by only modifying NAQANet’s internal
representation (Appendix E).

Table 3 shows the results for different para-
graph modifications. The model exhibits a tiny
degradation in performance for small magnitude
changes (e.g., NAQANet drops 1.5 F1 overall
for Add [1,20]) but severely struggles on larger
changes (e.g., NAQANet drops 35.7 F1 on su-
perlative questions for Multiply [11,200]). Simi-
lar trends hold for word forms: the model exhibits
small drops in accuracy when converting small
numbers to words (3.9 degradation on Digits to
Words [0,20]) but fails on larger magnitude word
forms (21.6 F1 drop over [21,100]). These results
show that NAQANet has a strong understanding of
numeracy for numbers in the training range, but,
the model can fail to extrapolate to other values.

2.6 'Whence this behavior?

NAQANet exhibits numerical reasoning capabil-
ities that exceed our expectations. What enables
this behavior? Aside from reading and compre-
hending the passage/question, this kind of numeri-
cal reasoning requires two components: numeracy
(i.e., representing numbers) and comparison algo-
rithms (i.e., computing the maximum of a list).

Although the natural emergence of compari-
son algorithms is surprising, previous results show
neural models are capable of learning to count and
sort synthetic lists of scalar values when given
explicit supervision (Weiss et al., 2018; Vinyals
etal., 2016). NAQANet demonstrates that a model
can learn comparison algorithms while simultane-

ously learning to read and comprehend, even with
only question-answer supervision.

How, then, does NAQANet know numeracy?
The source of numerical information eventually
lies in the token embeddings themselves, i.e., the
character-level convolutions and GloVe embed-
dings of the NAQANet model. Therefore, we can
understand the source of numeracy by isolating
and probing these embeddings.

3 Probing Numeracy of Embeddings

We use synthetic numerical tasks to probe the nu-
meracy of token embeddings.

3.1 Probing Tasks

We consider three synthetic tasks to evaluate nu-
meracy (Figure 3). Appendix C provides further
details on training and evaluation.

List Maximum Given a list of the embeddings
for five numbers, the task is to predict the index
of the maximum number. Each list consists of
values of similar magnitude in order to evaluate
fine-grained comparisons (see Appendix C). As in
typical span selection models (Seo et al., 2017),
an LSTM reads the list of token embeddings, and
a weight matrix and softmax function assign a
probability to each index using the model’s hid-
den state. We use the negative log-likelihood of
the maximum number as the loss function.

Decoding The decoding task probes whether
number magnitude is captured (rather than the rel-
ative ordering of numbers as in list maximum).
Given a number’s embedding, the task is to regress
to its value, e.g., the embedding for the string
“five” has a target of 5.0. We consider a linear re-
gression model and a three-layer fully-connected
network with ReLLU activations. The models are
trained using a mean squared error (MSE) loss.

Addition The addition task requires number
manipulation—given the embeddings of two num-
bers, the task is to predict their sum. Our
model concatenates the two token embeddings
and feeds the result through a three-layer fully-
connected network with ReLLU activations, trained
using MSE loss. Unlike the decoding task, the
model needs to capture number magnitude inter-
nally without direct label supervision.

Training and Evaluation We focus on a numer-
ical interpolation setting (we revisit extrapolation
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Figure 3: Our probing setup. We pass numbers through a pre-trained embedder (e.g., BERT, GloVe) and train a
probing model to solve numerical tasks such as finding a list’s maximum, decoding a number, or adding two num-
bers. If the probing model generalizes to held-out numbers, the pre-trained embeddings must contain numerical
information. We provide numbers as either words (shown here), digits (“9”), floats (“9.17), or negatives (“-9”).

in Section 3.4): the model is tested on values that
are within the training range. We first pick a range
(we vary the range in our experiments) and ran-
domly shuffie the integers over it. We then split
80% of the numbers into a training set and 20%
into a test set. We report the mean and standard
deviation across five different random shuffles for
a particular range, using the exact same shuffles
across all embedding methods.

Numbers are provided as integers (“757),
single-word form (“seventy-five”), floats (“75.17),
or negatives (“-75”). We consider positive num-
bers less than 100 for word-form numbers to avoid
multiple tokens. We report the classification accu-
racy for the list maximum task (5 classes), and the
Root Mean Squared Error (RMSE) for decoding
and addition. Note that larger ranges will naturally
amplify the RMSE error.

3.2 Embedding Methods
We evaluate various token embedding methods.

Word Vectors We wuse 300-dimensional
GloVe (Pennington et al., 2014) and word2vec
vectors (Mikolov et al., 2018). We ensure all
values are in-vocabulary for word vectors.

Contextualized Embeddings We use ELMo (Pe-
ters et al., 2018) and BERT (Devlin et al., 2019)
embeddings.* ELMo uses character-level convo-

“Since our inputs are numbers, not natural sentences,
language models may exhibit strange behavior. We ex-
perimented with extracting the context-independent feature
vector immediately following the character convolutions for
ELMo but found little difference in results.

lutions of size 1-7 with max pooling. BERT rep-
resents tokens via sub-word pieces; we use lower-
cased BERT-base with 30k pieces.

NAQANet Embeddings We extract the GloVe
embeddings and Char-CNN from the NAQANet
model trained on DROP. We also consider an ab-
lation that removes the GloVe embeddings.

Learned Embeddings We use a character-level
CNN (Char-CNN) and a character-Level LSTM
(Char-LSTM). We use left character padding,
which greatly improves numeracy for character-
level CNNs (details in Appendix B).

Untrained Embeddings We consider two un-
trained baselines. The first baseline is random
token vectors, which trivially fail to generalize
(there is no pattern between train and test num-
bers). These embeddings are useful for measuring
the improvement of pre-trained embeddings. We
also consider a randomly initialized and untrained
Char-CNN and Char-LSTM.

Number’s Value as Embedding The final em-
bedding method is simple: map a number’s em-
bedding directly to its value (e.g., “seventy-five”
embeds to [75]). We found this strategy performs
poorly for large ranges; using a base-10 logarith-
mic scale improves performance. We report this
as Value Embedding in our results.’

SWe suspect the failures result from the raw values being
too high in magnitude and/or variance for the model. We
also experimented with normalizing the values to mean 0 and
variance 1; a logarithmic scale performed better.
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All pre-trained embeddings (all methods except
the Char-CNN and Char-LSTM) are fixed during
training. The probing models are trained on the
synthetic tasks on top of these embeddings.

3.3 Results: Embeddings Capture Numeracy

We find that all pre-trained embeddings contain
fine-grained information about number magnitude
and order. We first focus on integers (Table 4).

Word Vectors Succeed Both word2vec and
GloVe significantly outperform the random vec-
tor baseline and are among the strongest methods
overall. This is particularly surprising given the
training methodology for these embeddings, e.g., a
continuous bag of words objective can teach fine-
grained number magnitude.

Character-level Methods Dominate Models
which use character-level information have a clear
advantage over word-level models for encoding
numbers. This is reflected in our probing results:
character-level CNNs are the best architecture for
capturing numeracy. For example, the NAQANet
model without GloVe (only using its Char-CNN)
and ELMo (uses a Char-CNN) are the strongest
pre-trained methods, and a learned Char-CNN is
the strongest method overall. The strength of the
character-level convolutions seems to lie in the ar-
chitectural prior—an untrained Char-CNN is sur-
prisingly competitive. Similar results have been
shown for images (Saxe et al., 2011): random
CNNss are powerful feature extractors.

Sub-word Models Struggle BERT struggles for
large ranges (e.g., 52% accuracy for list maximum
for [0,9999]). We suspect this results from sub-
word pieces being a poor method to encode digits:
two numbers which are similar in value can have
very different sub-word divisions.

A Linear Subspace Exists For small ranges on
the decoding task (e.g., [0,99]), a linear model is
competitive, i.e., a linear subspace captures num-
ber magnitude (Appendix D). For larger ranges
(e.g., [0,999]), the linear model’s performance de-
grades, especially for BERT.

Value Embedding Fails The Value Embedding
method fails for large ranges. This is surprising as
the embedding directly provides a number’s value,
thus, the synthetic tasks should be easy to solve.
However, we had difficulty training models for

large ranges, even when using numerous architec-
ture variants (e.g., tiny networks with 10 hidden
units and tanh activations) and hyperparameters.
Trask et al. (2018) discuss similar problems and
ameliorate them using new neural architectures.

Words, Floats, and Negatives are Captured
Finally, we probe the embeddings on word-form
numbers, floats, and negatives. We observe simi-
lar trends for these inputs as integers: pre-trained
models exhibit natural numeracy and learned em-
beddings are strong (Tables 5, 6, and 10). The
ordering of the different embedding methods ac-
cording to performance is also relatively consis-
tent across the different input types. One notable
exception is that BERT struggles on floats, which
is likely a result of its sub-word pieces. We do
not test word2vec and GloVe on floats/negatives
because they are out-of-vocabulary.

3.4 Probing Models Struggle to Extrapolate

Thus far, our synthetic experiments evaluate on
held-out values within the same range as the train-
ing data (i.e., numerical interpolation). In Sec-
tion 2.5, we found that NAQANet struggles to
extrapolate to values outside the training range.
Is this an idiosyncrasy of NAQANet or is it a
more general problem? We investigate this using
a numerical extrapolation setting: we train models
on a specific integer range and test them on val-
ues greater than the largest training number and
smaller than the smallest training number.

Extrapolation for Decoding and Addition For
decoding and addition, models struggle to extrap-
olate. Figure 1 shows the predictions for mod-
els trained on 80% of the values from [-500,500]
and tested on held-out numbers in the range [-
2000, 2000] for six embedding types. The embed-
ding methods fail to extrapolate in different ways,
e.g., predictions using word2vec decrease almost
monotonically as the input increases, while pre-
dictions using BERT are usually near the highest
training value. Trask et al. (2018) also observe that
models struggle outside the training range; they at-
tribute this to failures in neural models themselves.

Extrapolation for List Maximum For the list
maximum task, accuracies are closer to those in
the interpolation setting, however, they still fall
short. Table 7 shows the accuracy for models
trained on the integer range [0,150] and tested on
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Interpolation List Maximum (5-classes) Decoding (RMSE) Addition (RMSE)
Integer Range [0,99] [0,999] [0,9999] 1[0,99] 1[0,999] 1[0,9999] 1[0,99] 1[0,999] [0,9999]
Random Vectors 0.16 0.23 0.21 29.86 292.88 2882.62 42.03 410.33 4389.39
Untrained CNN 0.97 0.87 0.84 2.64 9.67 44.40 1.41 14.43 69.14
Untrained LSTM  0.70 0.66 0.55 7.61 46.5 210.34 5.11 45.69 510.19
Value Embedding  0.99 0.88 0.68 1.20 11.23 275.50 0.30 15.98 654.33
Pre-trained
Word2Vec 0.90 0.78 0.71 2.34 18.77 333.47 0.75 21.23 210.07
GloVe 0.90 0.78 0.72 2.23 13.77 174.21 0.80 16.51 180.31
ELMo 0.98 0.88 0.76 2.35 13.48 62.20 0.94 15.50 45.71
BERT 0.95 0.62 0.52 3.21 29.00 431.78 4.56 67.81 454.78
Learned
Char-CNN 0.97 0.93 0.88 2.50 4.92 11.57 1.19 7.75 15.09
Char-LSTM 0.98 0.92 0.76 2.55 8.65 18.33 1.21 15.11 25.37
DROP-trained
NAQANEet 0.91 0.81 0.72 2.99 14.19 62.17 1.11 11.33 90.01

- GloVe 0.88 0.90 0.82 2.87 5.34 35.39 1.45 9.91 60.70

Table 4: Interpolation with integers (e.g., “18”). All pre-trained embedding methods (e.g., GloVe and ELMo)
surprisingly capture numeracy. The probing model is trained on a randomly shuffled 80% of the Integer Range
and tested on the remaining 20%. The probing model architecture and train/test splits are equivalent across all
embeddings. We show the mean over 5 random shuffles (standard deviation in Appendix D).

Interpolation List Maximum (5-classes)

Float Range [0.0,99.9] [0.0,999.9]
Rand. Vectors 0.18 £ 0.03 0.21 £+ 0.04
ELMo 091 +0.03 0.59 £0.01
BERT 0.82 £0.05 0.51£0.04
Char-CNN 0.87 £0.04 0.75+£0.03
Char-LSTM 0.81 £0.05 0.69 £0.02

Table 5: Interpolation with floats (e.g., “18.1”) for list
maximum. Pre-trained embeddings capture numeracy
for float values. The probing model is trained on a ran-
domly shuffled 80% of the Float Range and tested on
the remaining 20%. See the text for details on select-
ing decimal values. We show the mean alongside the
standard deviation over 5 different random shuffles.

the ranges [151,160], [151,180], and [151,200]; all
methods struggle, especially token vectors.

Augmenting Data to Aid Extrapolation Of
course, in many real-word tasks it is possible
to ameliorate these extrapolation failures by aug-
menting the training data (i.e., turn extrapolation
into interpolation). Here, we apply this idea to
aid in training NAQANet for DROP. For each su-
perlative and comparative example, we duplicate
the example and modify the numbers in its para-
graph using the Add and Multiply techniques de-

Interpolation List Maximum (5-classes)
Integer Range [-50,50]

Rand. Vectors 0.23 +0.12
Word2Vec 0.89 £ 0.02

GloVe 0.89 £ 0.03

ELMo 0.96 + 0.01

BERT 0.94 £ 0.02
Char-CNN 0.95 + 0.07
Char-LSTM 0.97 £0.02

Table 6: Interpolation with negatives (e.g., “-18”) on
list maximum. Pre-trained embeddings capture numer-
acy for negative values.

scribed in Section 2.5. Table 11 shows that this
data augmentation can improve both interpolation
and extrapolation, e.g., the accuracy on superlative
questions with large numbers can double.
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Extrapolation List Maximum (5-classes)
Test Range [151,160] [151,180] [151,200]
Rand. Vectors 0.17 0.22 0.15
Untrained CNN 0.80 0.47 0.41
Pre-trained
Word2Vec 0.14 0.16 0.11
GloVe 0.19 0.17 0.21
ELMo 0.65 0.57 0.38
BERT 0.35 0.11 0.14
Learned
Char-CNN 0.81 0.75 0.73
Char-LSTM 0.88 0.84 0.82
DROP
NAQANet 0.31 0.29 0.25
- GloVe 0.58 0.53 0.48

Table 7: Extrapolation on list maximum. The prob-
ing model is trained on the integer range [0,150] and
evaluated on integers from the Test Range. The prob-
ing model struggles to extrapolate when trained on the
pre-trained embeddings.

4 Discussion and Related Work

An open question is how the training process elic-
its numeracy for word vectors and contextualized
embeddings. Understanding this, perhaps by trac-
ing numeracy back to the training data, is a fruitful
direction to explore further (c.f., influence func-
tions (Koh and Liang, 2017; Brunet et al., 2019)).

More generally, numeracy is one type of emer-
gent knowledge. For instance, embeddings may
capture the size of objects (Forbes and Choi,
2017), speed of vehicles, and many other “com-
monsense” phenomena (Yang et al., 2018). Ven-
drov et al. (2016) introduce methods to encode
the order of such phenomena into embeddings for
concepts such as hypernymy; our work and Yang
et al. (2018) show that a relative ordering naturally
emerges for certain concepts.

In concurrent work, Naik et al. (2019) also ex-
plore numeracy in word vectors. Their method-
ology is based on variants of nearest neighbors
and cosine distance; we use neural network prob-
ing classifiers which can capture highly non-linear
dependencies between embeddings. We also ex-
plore more powerful embedding methods such as
ELMo, BERT, and learned embedding methods.

Probing Models Our probes of numeracy par-
allel work in understanding the linguistic capabil-
ities (literacy) of neural models (Conneau et al.,
2018; Liu et al., 2019). LSTMs can remember sen-
tence length, word order, and which words were
present in a sentence (Adi et al., 2017). Khandel-

wal et al. (2018) show how language models lever-
age context, while Linzen et al. (2016) demon-
strate that language models understand subject-
verb agreement.

Numerical Value Prediction Spithourakis and
Riedel (2018) improve the ability of language
models to predict numbers, i.e., they go beyond
categorical predictions over a fixed-size vocabu-
lary. They focus on improving models; our focus
is probing embeddings. Kotnis and Garcia-Durdn
(2019) predict numerical attributes in knowledge
bases, e.g., they develop models that try to predict
the population of Paris.

Synthetic Numerical Tasks Similar to our syn-
thetic numerical reasoning tasks, other work
considers sorting (Graves et al., 2014), count-
ing (Weiss et al., 2018), or decoding tasks (Trask
et al., 2018). They use synthetic tasks as a testbed
to prove or design better models, whereas we use
synthetic tasks as a probe to understand token em-
beddings. In developing the Neural Arithmetic
Logic Unit, Trask et al. (2018) arrive at similar
conclusions regarding extrapolation: neural mod-
els have difficulty outputting numerical values out-
side the training range.

5 Conclusion

How much do NLP models know about numbers?
By digging into a surprisingly successful model
on a numerical reasoning dataset (DROP), we dis-
cover that pre-trained token representations natu-
rally encode numeracy.

We analyze the limits of this numeracy, finding
that CNNSs are a particularly good prior (and likely
the cause of ELMo’s superior numeracy compared
to BERT) and that it is difficult for neural mod-
els to extrapolate beyond the values seen during
training. There are still many fruitful areas for fu-
ture research, including discovering why numer-
acy naturally emerges in embeddings, and what
other properties are similarly emergent.
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