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Abstract

Recently, there has been a great interest in the
development of small and accurate neural net-
works that run entirely on devices such as mo-
bile phones, smart watches and IoT. This en-
ables user privacy, consistent user experience
and low latency. Although a wide range of ap-
plications have been targeted from wake word
detection to short text classification, yet there
are no on-device networks for long text classi-
fication.

We propose a novel projection attention neural
network PRADO that combines trainable pro-
jections with attention and convolutions. We
evaluate our approach on multiple large docu-
ment text classification tasks. Our results show
the effectiveness of the trainable projection
model in finding semantically similar phrases
and reaching high performance while main-
taining compact size. Using this approach, we
train tiny neural networks just 200 Kilobytes in
size that improve over prior CNN and LSTM
models and achieve near state of the art per-
formance on multiple long document classi-
fication tasks. We also apply our model for
transfer learning, show its robustness and abil-
ity to further improve the performance in lim-
ited data scenarios.

1 Introduction

One of the fundamental tasks in Natural Language
Processing is related to long text classification.
Given a document, the goal is to assign one or
more categories of interest to the text. This task
is of high importance as it has wide applications
in spam detection (Jindal and Liu, 2007), product
categorization (Kozareva, 2015), sentiment classi-
fication (Pang and Lee, 2008) and it also plays an
important role for improving document retrieval
and ranking (Deerwester et al., 1990).

For a long time, the most successful text clas-
sification approaches relied on sparse lexical fea-

tures such as n-grams, which are later used by lin-
ear or kernel models (Joachims, 1998; McCallum
and Nigam, 1998; Joulin et al., 2016). However,
with the recent advancements in deep learning,
various neural network architectures like CNN
(Kim, 2014), LSTM (Zhang et al., 2015), hierar-
chical attention mechanisms (Yang et al., 2016)
showed improvement in performance.

Recently, (Ravi and Kozareva, 2018) and (Ravi
and Kozareva, 2019) showed the importance of
building on-device neural models for short text
classification, which preserve user privacy, en-
able consistent user experience and most impor-
tantly perform inference on the device. One
of the biggest challenges is how to fit these
large and complex neural networks on devices
with limited memory and computation capac-
ity while still maintaining high performance.
(Ravi and Kozareva, 2018, 2019) developed on-
device self-governing neural networks (SGNN)
and (SGNN++) based on locality-sensitive projec-
tions (Ravi, 2017, 2019). Those methods were
evaluated on short text classification tasks such
as dialog act and user intent understanding and
outperformed prior RNN work (Khanpour et al.,
2016; Ortega and Vu, 2017).

In this work, we take one step further by propos-
ing a novel projection attention neural network
called PRADO . Unlike SGNN which has static
projections, PRADO combines trainable projec-
tions with attention and convolutions allowing it
to capture long range dependencies and making it
a powerful and flexible approach for long text clas-
sification. We study the impact of different hyper-
parameters on accuracy vs model size. We also ad-
dress the problem of producing compact architec-
tures by develop a quantized version of PRADO .
In a series of experimental evaluations on multiple
long text classification tasks, we show that our ap-
proach PRADO improves over prior baselines and
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neural networks such as character and word level
CNNs and LSTMs. The main contributions of our
work are as follows:

• Novel on-device projection attention neural
network PRADO which combines transfer-
able projections with attention and convolu-
tion for long text classification.

• Exhaustive experimental evaluation on mul-
tiple long text classification tasks, outper-
forming traditional feature engineered linear
classifiers and deep learning approaches like
CNN and LSTM.

• Quantized PRADO network, which results
in tiny 200 Kilobytes in size model that im-
proves over prior CNN and LSTM models.

• Applicability of PRADO for transfer learn-
ing, showed its robustness and ability to fur-
ther improve performance in limited data sce-
narios.

2 Related Work

Early work on text classification relied on sparse
lexical features such as n-grams and linear clas-
sifiers (Joachims, 1998; McCallum and Nigam,
1998; Joulin et al., 2016). But with the raise
of deep learning, various CNN and LSTM ap-
proaches lead to significant improvement in per-
formance and reaching state-of-the-art results.
(Kim, 2014) used CNN architecture from com-
puter vision for text classification. (Johnson and
Zhang, 2015), used high-dimensional one hot vec-
tor and later introduced character-level CNN that
achieved even more competitive results. (Tai
et al., 2015) used tree structured LSTM for clas-
sification, while (Tang et al., 2015) use CNN or
LSTM to capture sentence vector followed by bi-
directional gated recurrent network which com-
poses the vectors to get a document vector. Re-
cently, (Yang et al., 2016) introduced hierarchical
attention neural networks, which captures docu-
ment representation by incorporating knowledge
of the document structure into the model. This ap-
proach reaches the best performance on large set
of text classification tasks.

The aforementioned prior work mostly focuses
on building the best neural network model inde-
pendent of any model size or memory constrains.
However, recent work by (Ravi and Kozareva,
2018, 2019) show the importance of building on-
device text classification models that can preserve

user privacy, provide consistent user experience
and most importantly are compact in size, while
yet achieving state-of-art results. Previously, to
build lightweight text classification approaches
(Ravi, 2013) proposed fast sampling techniques,
while (Bui et al., 2018) incorporated deep neu-
ral networks with graph learning. While success-
ful, such approaches resulted in large models for
response completion (Pang and Ravi, 2012) and
Smart Reply (Kannan et al., 2016).

To address the challenge of fitting huge deep
neural network on-device, (Ravi and Kozareva,
2018) developed a novel self-governing neural
networks (SGNNs) that learns projections on the
fly leading to small models. SGNN was applied on
short text classification tasks such as dialog act and
user intent understanding and showed significant
improvement over state-of-the-art RNN (Khan-
pour et al., 2016) and RNN with attention (Ortega
and Vu, 2017) approaches. In this work, we take
one step further by developing trainable projection
network with attention mechanism that captures
long range dependencies making it a powerful and
flexible approach for long text classification. In
addition, we address the problem of producing
compact architectures for text classification when
we have limited amount of memory. FastText
(Joulin et al., 2016) proposed product quantiza-
tion to store word embeddings and have carried
out evaluation which show models that require two
orders of magnitude less memory. We use quanti-
zation techniques and show that we achieve 10x to
100x compression rate while still maintaining high
performance and improving upon prior CNN and
LSTM work. Unlike prior on-device text classifi-
cation work, we also apply our model in a transfer
learning scenario, which demonstrated the robust-
ness of our approach and ability to further improve
performance in limited data scenarios. Next, we
describe the technical details of our approach, fol-
lowed by experimental evaluation and results.

3 PRADO: Projection Attention
Network

Figure 1 shows the overall architecture of our pro-
posed network PRADO . It consists of a projected
embedding layer, a convolutional and attention en-
coder mechanism and a final classification layer.
We describe each component in detail below and
contrast them with existing methods.
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Figure 1: PRADO Model Architecture

3.1 Projected Embedding Layer

Let us assume that the input text has T tokens
or words. wi represents the i-th word, where
i ∈ {0, ...T − 1}. If V is the number of words
in the vocabulary, including an out of vocabulary
token that represents all missing words, then each
word wi is mapped to δi ∈ RV . The first com-
ponent in most neural networks designed for lan-
guage tasks uses an embedding layer with train-
able parameters W ∈ Rd·V to map words to fixed
length d-dimensional vectors ei = Wδi, where
ei ∈ Rd are the word vectors that are processed
by the rest of the network. A large fraction of
the parameters in the network is concentrated in
W , since V often has to be large (upto hundreds
of thousands or millions of words) to obtain good
performance. Furthermore, by choosing V upfront
we are assuming that words or phrases relevant
for the classification task are known apriori, which
may not be true. It should be noted that though we
express the operation to obtain the word vector ei
as a matrix multiplication, in reality it is a look-up
of the corresponding row in the embedding matrix
as δi is modeled using the Dirac delta function.
Embeddings via Trainable Projections: Our ap-
proach PRADO replaces this embedding with a
projection approach to build the word encoder. In-
stead of mapping wi to δi, we map it to fi using
a projection operator P. Recent work (Ravi, 2017;
Ravi and Kozareva, 2018; Ravi, 2019) has shown
that projection-based neural approaches can help
train compact neural networks that achieve good
performance on certain language tasks. These net-
works learn robust representations (Sankar et al.,

2019a) that can be also transferred to other tasks
(Sankar et al., 2019b). We follow a similar strat-
egy but unlike the static projections used in these
works, we propose a new type of projection that
decomposes the operation and makes the projec-
tion trainable, leading to more powerful encoders
capable of capturing contextual information for
long-text classification while maintaining a very
low memory footprint. Our method does not rely
on a fixed vocabulary.

The projection operator we use in this work first
fingerprints the words and extracts B bit features
from the fingerprint. The word vectors ei are ob-
tained using a neural network layer ei = φ(fi).
This allows us to generate compact embeddings,
train the projection encoder layer better and ap-
ply further optimizations like batch normaliza-
tion (Ioffe and Szegedy, 2015) in this step. First,
individual tokens wi in the input text are finger-
printed using a hashing function to generate 2B
bits. The projection operator P then maps every
consecutive two-bit sequence to the set {−1, 0, 1}
resulting in a vector fi ∈ {−1, 0, 1}B . We
chose this specific form since it would enable fur-
ther optimization such as those described in (Li
and Liu, 2016) to reduce the computation in the
first layer. We note that there could be alterna-
tive modeling choices for the specific form of the
projection operator P. Any projection operator
that maps bits from the fingerprint to a bounded
range is expected to perform equally well. φ(.)
is a trainable function with B · d parameters
that maps B-dimensional projection features into
d-dimensional word embedding vectors that are
computed dynamically during training and infer-
ence. In practice, B ∈ [128, 512] and d ∈ [32, 96]
are tiny compared to V .

3.2 Convolution & Attention over Projections

Next, we introduce an encoder mechanism to
map a sequence of projected word embeddings
e0...eT−1 to a fixed length vector that represents
the entire input text. There are many studies that
use 1d convolutions on the word vectors and per-
form pooling to reduce the sequence to a fixed
length vector. But we observe that most words or
tokens in a sentence are not relevant for any classi-
fication problem, as a result methods like average
pooling after convolutions do not effectively re-
duce the most relevant information needed for the
task, especially when the text contains several sen-



5015

tences. Other pooling methods like max or min do
not let gradients flow effectively during backprop-
agation, making it difficult to train the network. To
overcome this, we propose a method that uses con-
volutions and attention mechanism over the word
projections and generate a fixed length encoding
for the input text.
Projected Attention: In our approach, we use two
independent convolutional networks for this step.
First one, which we refer to as the projected fea-
ture network F captures the features that are use-
ful for the classification task. This is comparable
to the convolution networks used in existing stud-
ies except we perform convolutions over the se-
quence of projected word embeddings ei.

Fn
i = Conv(ei, n,N) (1)

where n is the convolution kernel width, N is the
number of output channels in the convolution and
Fn
i ∈ RN . The second one, which we refer to as

attention network A, captures the importance of
these features for the task.

Wn
i = Conv(ei, n,N) (2)

We compute softmax over the sequence dimen-
sion of the results of A. This provides a distri-
bution over the word sequence that captures the
relevance of features at different positions.

An
i =

eW
n
i∑

i e
Wn

i
(3)

We compute an expectation using distribution
A on F that turns the sequence into a fixed length
encoding En for convolution kernel n.

En =
∑
i

An
i Fn

i (4)

Our pooling scheme reduces to average pool-
ing if the An

i is uniform over the sequence dimen-
sion and it becomes max or min pooling if An

i is a
Dirac delta in the maximum or minimum value.

3.3 Sequence Convolution Kernels
For the convolution and attention encoder En
above, we separately apply n-gram kernels of
varying sizes n = 1, 2, 3, .... In addition to n-
grams, we used masked convolution kernels that
simulate the effect of skip-grams. The masking
effectively zeros out certain entries in the convo-
lution kernel as shown in Figure 2. Each kernel n
generates a corresponding fixed length encoding
En of the input sequence.

Bigram

Skip 1 Bigram

Skip 2 Bigram

Trigram

Skip 1 Trigram (a)

Skip 1 Trigram (b)

Figure 2: Skip-gram Simulation with Masked Convo-
lution Kernel

3.4 Classification Layer

The convolution kernel width nmakes the network
react to various word n-grams with a configurable
parameter N for each n-gram. We compute var-
ious n-gram and skip-gram convolution features
and concatenate them to form a fixed length repre-
sentation for the input document xk:

TextEncoder(xk) = concat(E1, E2, ...) (5)

Finally, we use a feed-forward network with fully-
connected layer over the fixed length text encoding
for classification.

output = ψ(TextEncoder(xk)) (6)

We train the network with cross entropy loss
and apply softmax over the output layer to obtain
predicted probabilities yCk for each class C during
inference.

4 Experiments & Results

4.1 Data Sets

We evaluate the performance of our approach on
large scale document classification tasks, which
are widely used in the research community.

• Yelp reviews from the Yelp Challenge (Tang
et al., 2015) with ratings from 1 to 5.

• Amazon reviews from (Zhang et al., 2015)
with ratings from 1 to 5.

• Yahoo Answers from (Zhang et al., 2015)
with documents contain question title, ques-
tion context and best answer and ten classes
such as: Society & Culture; Science & Math-
ematics; Health; Education & Reference;
Computers & Internet; Sports; Business &
Finance; Entertainment & Musical; Family &
Relationship; Politics & Government;

Table 1 shows the characteristics of each data set.
We use the same test sets as (Tang et al., 2015).
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Data Sets #Classes Training Test
Yelp 5 650K 50K
Amazon 5 3M 650K
Yahoo Answers 10 1.4M 60K

Table 1: Data Set Characteristics

Parameter Description
B Dimension of the projection
d Dimension of the word embedding

computed on the fly
N1 Number of unigram convolution channels
N2 Number of bigram convolution channels
N3 Number of trigram convolution channels
N4 Number of 4gram convolution channels
N5 Number of 5gram convolution channels
S1
2 Number of skip 1 bigram convolution channels

S2
2 Number of skip 2 bigram convolution channels

Table 2: Hyper Parameters Searched

4.2 Experimental Setting

We setup our experimental evaluation, as follows:
given a long text classification task and a data set,
we construct a model with the hyper-parameters
listed in Table 2 and we use a hyper-parameter
search technique to find the optimal model for
each data set. In addition to the parameters listed
in Table 2, the search method also looks for op-
timal learning rate schedule and regularization
scale. For the purpose of hyper-parameter search,
we set aside 8% of the training data and use it as
development set. The search method optimizes the
Accuracy on the development set. Once found, we
use the optimal model to evaluate Accuracy on the
test set.

4.3 Implementation Details

Unlike prior document classification neural net-
works (Zhang et al., 2015; Tang et al., 2015; Yang
et al., 2016) which rely on pre-trained word em-
beddings, our approach PRADO learns the projec-
tion weights on the fly during training (i.e word
embeddings (or vocabularies) do not need to be
stored). Prior to learning the projections, we did
a simple pre-possessing that normalized the text
to lowercase, introduced blank space before and
after punctuation to make sure they are treated as
separate tokens and tokenized the text by space.

We used different regularization scales for the
initial fully connected layer and the rest of the
network, as the majority of the parameters were
in the first layer that computes the word embed-
ding vectors on-the-fly. We used Adam optimizer
(Kingma and Ba, 2014) with exponential learn-

ing rate schedule. For regularization, we used
dropouts after the first layer and also distorted
the input text by randomly inserting, deleting and
transposing characters in the token with small
probability.

4.4 Results and Model Comparisons

It is important to recall that the main goal of our
work is to develop fast and efficient on-device neu-
ral text classification approach, which can achieve
near state-of-the-art performance while satisfy-
ing the on-device small size and memory re-
source constrains. Therefore, it is not fair to di-
rectly compare PRADO on-device performance
against existing approaches which do inference on
cloud without constraints. Yet, we compare our
approach against well established baselines and
prior non-on-device work taking into considera-
tion these differences. Table 3 shows the obtained
results for each data set and method.

Baseline Comparison: We use the same base-
lines as described in (Zhang et al., 2015; Tang
et al., 2015). They are traditional approaches,
which rely on hand-crafted features such as bag-
of-words with TFIDF and n-grams with TFIDF,
and use linear or kernel classifiers. As it can be
seen in Table 3, our PRADO approach consis-
tently outperforms all baseline methods with +4.8
to +12.2 for Yelp, +5.9 to +17 for Amazon and
+1.3 to +11.8 for Yahoo data sets. This definitely
shows the power of the trainable projection on-
device neural networks and attention mechanism.

On-device Comparison: We also show com-
parison against prior on-device neural network ap-
proach (Ravi and Kozareva, 2018). Their SGNN
approach was targeted towards short text clas-
sification tasks and as shown in Table 3, our
PRADO model achieves upto +40% improvement
over SGNN demonstrating that PRADO is more
powerful and suited for long text classification.

Deep Learning Comparison: Similarly, we
also compare our PRADO approach against re-
cent neural networks such as LSTM (Zhang et al.,
2015), character and word-based CNNs (Zhang
et al., 2015; Tang et al., 2015), Convolutional
GRNN (Tang et al., 2015) and hierarchical atten-
tion (Yang et al., 2016). We compare performance
for all data sets against (Tang et al., 2015; Zhang
et al., 2015) since their test data sets are exactly
the same as ours. However, (Yang et al., 2016)
uses different test data sizes for the Yelp and Ya-
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Data Set Yelp Amazon Yahoo
PRADO 64.7 61.2 72.3
PRADO 8-bit Quantized 65.9 61.9 72.5
SGNN (Ravi and Kozareva, 2018) 35.4 39.1 36.6
HN-ATT* (Yang et al., 2016) - 63.6 -
HN-MAX* (Yang et al., 2016) - 62.9 -
HN-AVE* (Yang et al., 2016) - 62.9 -
LSTM-GRNN (Tang et al., 2015) 67.6 - -
Conv-GRNN (Tang et al., 2015) 66.0 - -
CNN-char (Zhang et al., 2015) 62.0 59.6 71.2
CNN-word (Tang et al., 2015) 61.5 - -
CNN-word (Zhang et al., 2015) 60.5 57.6 71.2
Paragraph Vector (Tang et al., 2015) 60.5 - -
LSTM (Zhang et al., 2015) 58.2 59.4 70.8
SVM + Bigrams (Tang et al., 2015) 62.4 - -
SVM + Unigrams (Tang et al., 2015) 61.1 - -
SVM + AverageSG (Tang et al., 2015) 56.8 - -
SVM + SSWE (Tang et al., 2015) 55.4 - -
BoW TFIDF (Zhang et al., 2015) 59.9 55.3 71.0
ngrams TFIDF (Zhang et al., 2015) 54.8 52.4 68.5

Table 3: Evaluation Results

hoo Answers evaluation, therefore we do not re-
port their results here. Another interesting as-
pect is that unlike prior work (Zhang et al., 2015;
Tang et al., 2015; Yang et al., 2016) which rely on
large word embeddings (with pre-training in many
cases), our approach computes dynamically the
projection embedding vectors. As shown in Table
3, PRADO significantly outperforms existing neu-
ral networks approaches like LSTM, CNN-char
and CNN-word with +1.1 up to +6.5% depending
on the task and data set, and it achieves compa-
rable results to the hierarchical attention models
of (Yang et al., 2016). This is very impressive
given that PRADO produces magnitudes smaller
and compact neural networks.

4.5 Impact of Hyper-parameters on
Performance

Figure 3 shows Accuracy vs Model Size as a result
of the different hyper-parameters explored during
search. The figure shows results for each data
set individually. Overall, PRADO’s Accuracy im-
proves as the number of parameters increases.

4.6 Model Size: PRADO vs Smaller RNNs
We further compare our PRADO model against
smaller-sized variants of widely-used recurrent
(LSTM) models. This study helps analyze the ef-
fectiveness of PRADO compared to other small

Compression #Parameters Accuracy
(PRADO )

LSTM 100x 18.17M 60.4
43x 7.6M 60.3
11x 1.9M 60.2
3x 504.7K 59.9
1x 179.5K 59.1

PRADO 1x 175K 64.7

Table 4: Model Size vs. Performance for PRADO and
small LSTMs on Yelp. Compression ratio for PRADO
is shown wrt corresponding LSTM models.

neural models and answer the question: Can pop-
ular RNN models be shrunk down to the same size
as PRADO and still achieve high performance?
To construct baseline neural models at smaller
sizes, we use an LSTM architecture with 64 hid-
den units as the state size and vary the input vo-
cabulary size (i.e., picking top K words ordered
by frequency) and embedding dimensions d. Ta-
ble 4 compares the performance of PRADO with
different small and medium-sized LSTM models
(achieved by varying K, d). Our results show that
PRADO achieves the best performance with the
lowest footprint (just 175K parameters) and high
compression ratios (up to 100x smaller) compared
to standard LSTM models.
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Figure 3: Model Size (number of parameters on x-axis)
vs. Performance (accuracy on y-axis).

4.7 PRADO Analysis and Discussion

N-gram Attention Focus: To better understand
our model, we analyze PRADO’s attention distri-
bution. We used a trained PRADO model from a
particular data set and computed the attention dis-
tribution of the projected n-gram features for all
samples in the test set. Then, we pull the word
or word sequence index with the maximum atten-
tion and order them by frequency of the class. Ta-
ble 5 shows examples of the bigrams for 5 and
1 star Yelp reviews. Note, that we did not se-
lect the vocabulary for the data, the model auto-
matically learned to associate the words with the
classes based on the trained projections.
Skipgrams Attention Focus: Similarly, we con-
duct an analysis for the attention distribution of
the skip-1-bigrams channel. Table 5 shows sam-
ple of the most frequent entries for the 5 and 1
star Yelp reviews. The model captures and learns
basic regular expressions. For instance, the skip
gram “waste * time” captures “ waste your time”

Bigrams
5 Star 1 Star
highly recommend zero stars
love this horrible customer
hands down 1 star
was perfect disgusting and
top notch no stars
amazing service better off
Skip-1-Bigrams
5 Star 1 Star
waste * time worst * ever
was * reasonable give * stars
felt * comfortable a * star
is * delicious waste * money
you * comfortable horrible * service
and * delicious worst * experience

Table 5: Prado Attention Focus on Yelp Data

or “waste of time”. Similarly “worst * ever” cap-
tures “worst food ever”, “worst service ever”. Our
analysis shows that overall our trainable projection
with attention and convolution learns embedding
representations that are powerful and capture the
semantic similarity of words and phrases. This in-
formation helps PRADO during classification.

5 PRADO Runtime Performance

Our PRADO approach produces compact neural
networks with tiny memory footprint. Next, we
also show how to further optimize PRADO and
help speed up on-device inference during runtime.

5.1 Training with quantization

We train a PRADO model variant with 8-bit quan-
tization as described in (Jacob et al., 2018). This
procedure simulates the quantization process dur-
ing training by nudging the weights and activa-
tions towards a grid of discrete levels (2N levels,
whereN=8 is the number of bits). We estimate the
activation ranges for each training batch and use
exponential moving average to smooth the quanti-
zation ranges across training steps. (Jacob et al.,
2018) noted that by training with quantization,
they reached similar accuracy with 8-bit models
as floating point ones on several image classifica-
tion and object detection data sets. For text clas-
sification, we observed that training with quanti-
zation significantly improves accuracy as shown
in Table 3. We believe that this is due to the im-
proved regularization as quantization has the high-
est impact on Yelp. This dataset has relatively
few training samples per class (see Table 1) which
causes the model to overfit the training data and
regularization provided by the operation that sim-
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ulates quantization during training helps it gener-
alize better. Furthermore, the model size of 8-bit
quantized PRADO models is equal to the number
of parameters. Figure 3 shows that PRADO can
reach the performance reported in the Table 3 with
model size of less than 200 Kilobytes. PRADO
starts getting competitive results on the same data
sets with tiny model size as low as 25 Kilobytes.

5.2 Computational Cost for Inference
We evaluate the computational cost of PRADO
models for inference wrt floating point (or inte-
ger) operations and latency (in milliseconds). The
number of floating point or integer operations in
our model is dominated by the below factor

Td

(
2B +

5∑
k=1

kNk +

2∑
s=1

(s+ 2)Ss
2

)
(7)

which includes the operations from the first fully
connected layer and the convolutional layers. It
can be seen that our method scales linearly with
the number of time steps T and the dimension of
the projected word embedding d. We measured the
latency of processing a document with 1000 words
using our quantized PRADO model on a Nexus 5x
mobile phone to be between 20 to 40 ms.

6 Transfer Learning with PRADO

Recent popularity of several pre-trained word em-
bedding approaches can be primarily attributed to
their success and effectiveness at transfer learning
for language tasks. Model representations trained
on a data-rich domain can be leveraged for tasks
and domains in limited-data scenarios. However,
as we discussed earlier, these methods require
storing and looking up huge pre-trained embed-
ding tables unlike our PRADO approach which re-
sults in compact models.

Next, we evaluate the effectiveness of PRADO
at learning robust representations and extend it for
transfer learning scenarios. To establish a base-
line, we took 10% of Yelp training data and trained
and evaluated a baseline PRADO model with ran-
dom initialization of weights. We compared this to
initializing the parameters from a PRADO model
trained on the larger Amazon data set. We ran two
different experiments with this initialization.

• Experiment A: Full Transfer We freeze all
weights in PRADO except the last fully con-
nected classification layer. With this setup

Training steps
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Baseline
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Experiment B

8-Bit Baseline

8-Bit Experiment A

8-Bit Experiment B

Figure 4: Transfer Learning Results on Yelp Data

there were around 750 trainable parameters
in the model.

• Experiment B: Projection Transfer We
freeze the weights for only the first (projected
embedding) layer and allow the convolution
layers and the last classification layer to be
trainable.

We trained the baseline and transfer-learned
variants with and without quantization. Figure 4
shows results of the transfer learning runs. We
observe that with random initialization, the base-
line PRADO model reaches a peak performance
of around 57% and starts overfitting on the small
Yelp training data set both with and without quan-
tization. When transferring just the projection
layer and fine-tuning the convolution and classi-
fication layers, training converges quickly and it
reaches better peak accuracy. This demonstrates
that the PRADO projection embeddings trained in
one domain, even though tiny in size, captures use-
ful information that can be leveraged to improve
classification in another domain with limited train-
ing data. This is further improved when transfer-
ring the full PRADO model and fine-tuning just
the last layer. In this case (Experiment A), the
model converges to 61% and 60% accuracy with
and without quantization respectively. The train-
ing also converges quicker than the baseline and
it does not overfit anymore. We note that using
our approach, a PRADO model transfer-learned
on just 10% of training data achieves very compet-
itive performance resulting in less than 10% drop
in relative accuracy on Yelp data set (see Table 3).

7 Conclusion

In this paper, we proposed a novel trainable pro-
jection on-device neural network with attention,
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which is capable of capturing long range depen-
dencies making it flexible for solving long text
classification tasks. We introduced trainable pro-
jection technique, which via the visualization of
the attention mechanism shows that it effectively
captures the semantic representation of the docu-
ment, while still saving on storage and producing
compact models. We demonstrated the effective-
ness of our approach PRADO by conducting ex-
periments on multiple large scale document clas-
sification tasks. The obtained results show that our
approach improved upon traditional linear classi-
fiers from 2% to 12%, character and word level
CNNs and LSTMs neural approaches with 1% to
6% depending on the data set, task and approach.
This is very impressive given the small compact
model produced by PRADO . Similarly, the quan-
tized version of our approach had consistent per-
formance. Finally, we applied our model in a
transfer learning scenario, which demonstrated the
robustness of our approach and ability to further
improve performance in limited data scenarios. In
the future, we want to extend this approach to
more natural language tasks and languages.
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